Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "isel"
     15 #include "SDNodeDbgValue.h"
     16 #include "SelectionDAGBuilder.h"
     17 #include "llvm/ADT/BitVector.h"
     18 #include "llvm/ADT/PostOrderIterator.h"
     19 #include "llvm/ADT/SmallSet.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/CallingConv.h"
     25 #include "llvm/DebugInfo.h"
     26 #include "llvm/DerivedTypes.h"
     27 #include "llvm/Function.h"
     28 #include "llvm/GlobalVariable.h"
     29 #include "llvm/InlineAsm.h"
     30 #include "llvm/Instructions.h"
     31 #include "llvm/Intrinsics.h"
     32 #include "llvm/IntrinsicInst.h"
     33 #include "llvm/LLVMContext.h"
     34 #include "llvm/Module.h"
     35 #include "llvm/CodeGen/Analysis.h"
     36 #include "llvm/CodeGen/FastISel.h"
     37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     38 #include "llvm/CodeGen/GCStrategy.h"
     39 #include "llvm/CodeGen/GCMetadata.h"
     40 #include "llvm/CodeGen/MachineFunction.h"
     41 #include "llvm/CodeGen/MachineFrameInfo.h"
     42 #include "llvm/CodeGen/MachineInstrBuilder.h"
     43 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     44 #include "llvm/CodeGen/MachineModuleInfo.h"
     45 #include "llvm/CodeGen/MachineRegisterInfo.h"
     46 #include "llvm/CodeGen/SelectionDAG.h"
     47 #include "llvm/Target/TargetData.h"
     48 #include "llvm/Target/TargetFrameLowering.h"
     49 #include "llvm/Target/TargetInstrInfo.h"
     50 #include "llvm/Target/TargetIntrinsicInfo.h"
     51 #include "llvm/Target/TargetLibraryInfo.h"
     52 #include "llvm/Target/TargetLowering.h"
     53 #include "llvm/Target/TargetOptions.h"
     54 #include "llvm/Support/CommandLine.h"
     55 #include "llvm/Support/IntegersSubsetMapping.h"
     56 #include "llvm/Support/Debug.h"
     57 #include "llvm/Support/ErrorHandling.h"
     58 #include "llvm/Support/MathExtras.h"
     59 #include "llvm/Support/raw_ostream.h"
     60 #include <algorithm>
     61 using namespace llvm;
     62 
     63 /// LimitFloatPrecision - Generate low-precision inline sequences for
     64 /// some float libcalls (6, 8 or 12 bits).
     65 static unsigned LimitFloatPrecision;
     66 
     67 static cl::opt<unsigned, true>
     68 LimitFPPrecision("limit-float-precision",
     69                  cl::desc("Generate low-precision inline sequences "
     70                           "for some float libcalls"),
     71                  cl::location(LimitFloatPrecision),
     72                  cl::init(0));
     73 
     74 // Limit the width of DAG chains. This is important in general to prevent
     75 // prevent DAG-based analysis from blowing up. For example, alias analysis and
     76 // load clustering may not complete in reasonable time. It is difficult to
     77 // recognize and avoid this situation within each individual analysis, and
     78 // future analyses are likely to have the same behavior. Limiting DAG width is
     79 // the safe approach, and will be especially important with global DAGs.
     80 //
     81 // MaxParallelChains default is arbitrarily high to avoid affecting
     82 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
     83 // sequence over this should have been converted to llvm.memcpy by the
     84 // frontend. It easy to induce this behavior with .ll code such as:
     85 // %buffer = alloca [4096 x i8]
     86 // %data = load [4096 x i8]* %argPtr
     87 // store [4096 x i8] %data, [4096 x i8]* %buffer
     88 static const unsigned MaxParallelChains = 64;
     89 
     90 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
     91                                       const SDValue *Parts, unsigned NumParts,
     92                                       EVT PartVT, EVT ValueVT);
     93 
     94 /// getCopyFromParts - Create a value that contains the specified legal parts
     95 /// combined into the value they represent.  If the parts combine to a type
     96 /// larger then ValueVT then AssertOp can be used to specify whether the extra
     97 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
     98 /// (ISD::AssertSext).
     99 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
    100                                 const SDValue *Parts,
    101                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
    102                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
    103   if (ValueVT.isVector())
    104     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
    105 
    106   assert(NumParts > 0 && "No parts to assemble!");
    107   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    108   SDValue Val = Parts[0];
    109 
    110   if (NumParts > 1) {
    111     // Assemble the value from multiple parts.
    112     if (ValueVT.isInteger()) {
    113       unsigned PartBits = PartVT.getSizeInBits();
    114       unsigned ValueBits = ValueVT.getSizeInBits();
    115 
    116       // Assemble the power of 2 part.
    117       unsigned RoundParts = NumParts & (NumParts - 1) ?
    118         1 << Log2_32(NumParts) : NumParts;
    119       unsigned RoundBits = PartBits * RoundParts;
    120       EVT RoundVT = RoundBits == ValueBits ?
    121         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
    122       SDValue Lo, Hi;
    123 
    124       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
    125 
    126       if (RoundParts > 2) {
    127         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
    128                               PartVT, HalfVT);
    129         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
    130                               RoundParts / 2, PartVT, HalfVT);
    131       } else {
    132         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
    133         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
    134       }
    135 
    136       if (TLI.isBigEndian())
    137         std::swap(Lo, Hi);
    138 
    139       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
    140 
    141       if (RoundParts < NumParts) {
    142         // Assemble the trailing non-power-of-2 part.
    143         unsigned OddParts = NumParts - RoundParts;
    144         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
    145         Hi = getCopyFromParts(DAG, DL,
    146                               Parts + RoundParts, OddParts, PartVT, OddVT);
    147 
    148         // Combine the round and odd parts.
    149         Lo = Val;
    150         if (TLI.isBigEndian())
    151           std::swap(Lo, Hi);
    152         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    153         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
    154         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
    155                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
    156                                          TLI.getPointerTy()));
    157         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
    158         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
    159       }
    160     } else if (PartVT.isFloatingPoint()) {
    161       // FP split into multiple FP parts (for ppcf128)
    162       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
    163              "Unexpected split");
    164       SDValue Lo, Hi;
    165       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
    166       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
    167       if (TLI.isBigEndian())
    168         std::swap(Lo, Hi);
    169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
    170     } else {
    171       // FP split into integer parts (soft fp)
    172       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
    173              !PartVT.isVector() && "Unexpected split");
    174       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
    175       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
    176     }
    177   }
    178 
    179   // There is now one part, held in Val.  Correct it to match ValueVT.
    180   PartVT = Val.getValueType();
    181 
    182   if (PartVT == ValueVT)
    183     return Val;
    184 
    185   if (PartVT.isInteger() && ValueVT.isInteger()) {
    186     if (ValueVT.bitsLT(PartVT)) {
    187       // For a truncate, see if we have any information to
    188       // indicate whether the truncated bits will always be
    189       // zero or sign-extension.
    190       if (AssertOp != ISD::DELETED_NODE)
    191         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
    192                           DAG.getValueType(ValueVT));
    193       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    194     }
    195     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
    196   }
    197 
    198   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
    199     // FP_ROUND's are always exact here.
    200     if (ValueVT.bitsLT(Val.getValueType()))
    201       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
    202                          DAG.getTargetConstant(1, TLI.getPointerTy()));
    203 
    204     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
    205   }
    206 
    207   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
    208     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    209 
    210   llvm_unreachable("Unknown mismatch!");
    211 }
    212 
    213 /// getCopyFromParts - Create a value that contains the specified legal parts
    214 /// combined into the value they represent.  If the parts combine to a type
    215 /// larger then ValueVT then AssertOp can be used to specify whether the extra
    216 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
    217 /// (ISD::AssertSext).
    218 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
    219                                       const SDValue *Parts, unsigned NumParts,
    220                                       EVT PartVT, EVT ValueVT) {
    221   assert(ValueVT.isVector() && "Not a vector value");
    222   assert(NumParts > 0 && "No parts to assemble!");
    223   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    224   SDValue Val = Parts[0];
    225 
    226   // Handle a multi-element vector.
    227   if (NumParts > 1) {
    228     EVT IntermediateVT, RegisterVT;
    229     unsigned NumIntermediates;
    230     unsigned NumRegs =
    231     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
    232                                NumIntermediates, RegisterVT);
    233     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
    234     NumParts = NumRegs; // Silence a compiler warning.
    235     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
    236     assert(RegisterVT == Parts[0].getValueType() &&
    237            "Part type doesn't match part!");
    238 
    239     // Assemble the parts into intermediate operands.
    240     SmallVector<SDValue, 8> Ops(NumIntermediates);
    241     if (NumIntermediates == NumParts) {
    242       // If the register was not expanded, truncate or copy the value,
    243       // as appropriate.
    244       for (unsigned i = 0; i != NumParts; ++i)
    245         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
    246                                   PartVT, IntermediateVT);
    247     } else if (NumParts > 0) {
    248       // If the intermediate type was expanded, build the intermediate
    249       // operands from the parts.
    250       assert(NumParts % NumIntermediates == 0 &&
    251              "Must expand into a divisible number of parts!");
    252       unsigned Factor = NumParts / NumIntermediates;
    253       for (unsigned i = 0; i != NumIntermediates; ++i)
    254         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
    255                                   PartVT, IntermediateVT);
    256     }
    257 
    258     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
    259     // intermediate operands.
    260     Val = DAG.getNode(IntermediateVT.isVector() ?
    261                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
    262                       ValueVT, &Ops[0], NumIntermediates);
    263   }
    264 
    265   // There is now one part, held in Val.  Correct it to match ValueVT.
    266   PartVT = Val.getValueType();
    267 
    268   if (PartVT == ValueVT)
    269     return Val;
    270 
    271   if (PartVT.isVector()) {
    272     // If the element type of the source/dest vectors are the same, but the
    273     // parts vector has more elements than the value vector, then we have a
    274     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
    275     // elements we want.
    276     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
    277       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
    278              "Cannot narrow, it would be a lossy transformation");
    279       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
    280                          DAG.getIntPtrConstant(0));
    281     }
    282 
    283     // Vector/Vector bitcast.
    284     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
    285       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    286 
    287     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
    288       "Cannot handle this kind of promotion");
    289     // Promoted vector extract
    290     bool Smaller = ValueVT.bitsLE(PartVT);
    291     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    292                        DL, ValueVT, Val);
    293 
    294   }
    295 
    296   // Trivial bitcast if the types are the same size and the destination
    297   // vector type is legal.
    298   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
    299       TLI.isTypeLegal(ValueVT))
    300     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    301 
    302   // Handle cases such as i8 -> <1 x i1>
    303   assert(ValueVT.getVectorNumElements() == 1 &&
    304          "Only trivial scalar-to-vector conversions should get here!");
    305 
    306   if (ValueVT.getVectorNumElements() == 1 &&
    307       ValueVT.getVectorElementType() != PartVT) {
    308     bool Smaller = ValueVT.bitsLE(PartVT);
    309     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    310                        DL, ValueVT.getScalarType(), Val);
    311   }
    312 
    313   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
    314 }
    315 
    316 
    317 
    318 
    319 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
    320                                  SDValue Val, SDValue *Parts, unsigned NumParts,
    321                                  EVT PartVT);
    322 
    323 /// getCopyToParts - Create a series of nodes that contain the specified value
    324 /// split into legal parts.  If the parts contain more bits than Val, then, for
    325 /// integers, ExtendKind can be used to specify how to generate the extra bits.
    326 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
    327                            SDValue Val, SDValue *Parts, unsigned NumParts,
    328                            EVT PartVT,
    329                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
    330   EVT ValueVT = Val.getValueType();
    331 
    332   // Handle the vector case separately.
    333   if (ValueVT.isVector())
    334     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
    335 
    336   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    337   unsigned PartBits = PartVT.getSizeInBits();
    338   unsigned OrigNumParts = NumParts;
    339   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
    340 
    341   if (NumParts == 0)
    342     return;
    343 
    344   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
    345   if (PartVT == ValueVT) {
    346     assert(NumParts == 1 && "No-op copy with multiple parts!");
    347     Parts[0] = Val;
    348     return;
    349   }
    350 
    351   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
    352     // If the parts cover more bits than the value has, promote the value.
    353     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
    354       assert(NumParts == 1 && "Do not know what to promote to!");
    355       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
    356     } else {
    357       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
    358              ValueVT.isInteger() &&
    359              "Unknown mismatch!");
    360       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    361       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
    362       if (PartVT == MVT::x86mmx)
    363         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    364     }
    365   } else if (PartBits == ValueVT.getSizeInBits()) {
    366     // Different types of the same size.
    367     assert(NumParts == 1 && PartVT != ValueVT);
    368     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    369   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
    370     // If the parts cover less bits than value has, truncate the value.
    371     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
    372            ValueVT.isInteger() &&
    373            "Unknown mismatch!");
    374     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    375     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    376     if (PartVT == MVT::x86mmx)
    377       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    378   }
    379 
    380   // The value may have changed - recompute ValueVT.
    381   ValueVT = Val.getValueType();
    382   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
    383          "Failed to tile the value with PartVT!");
    384 
    385   if (NumParts == 1) {
    386     assert(PartVT == ValueVT && "Type conversion failed!");
    387     Parts[0] = Val;
    388     return;
    389   }
    390 
    391   // Expand the value into multiple parts.
    392   if (NumParts & (NumParts - 1)) {
    393     // The number of parts is not a power of 2.  Split off and copy the tail.
    394     assert(PartVT.isInteger() && ValueVT.isInteger() &&
    395            "Do not know what to expand to!");
    396     unsigned RoundParts = 1 << Log2_32(NumParts);
    397     unsigned RoundBits = RoundParts * PartBits;
    398     unsigned OddParts = NumParts - RoundParts;
    399     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
    400                                  DAG.getIntPtrConstant(RoundBits));
    401     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
    402 
    403     if (TLI.isBigEndian())
    404       // The odd parts were reversed by getCopyToParts - unreverse them.
    405       std::reverse(Parts + RoundParts, Parts + NumParts);
    406 
    407     NumParts = RoundParts;
    408     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    409     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    410   }
    411 
    412   // The number of parts is a power of 2.  Repeatedly bisect the value using
    413   // EXTRACT_ELEMENT.
    414   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
    415                          EVT::getIntegerVT(*DAG.getContext(),
    416                                            ValueVT.getSizeInBits()),
    417                          Val);
    418 
    419   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
    420     for (unsigned i = 0; i < NumParts; i += StepSize) {
    421       unsigned ThisBits = StepSize * PartBits / 2;
    422       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
    423       SDValue &Part0 = Parts[i];
    424       SDValue &Part1 = Parts[i+StepSize/2];
    425 
    426       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
    427                           ThisVT, Part0, DAG.getIntPtrConstant(1));
    428       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
    429                           ThisVT, Part0, DAG.getIntPtrConstant(0));
    430 
    431       if (ThisBits == PartBits && ThisVT != PartVT) {
    432         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
    433         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
    434       }
    435     }
    436   }
    437 
    438   if (TLI.isBigEndian())
    439     std::reverse(Parts, Parts + OrigNumParts);
    440 }
    441 
    442 
    443 /// getCopyToPartsVector - Create a series of nodes that contain the specified
    444 /// value split into legal parts.
    445 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
    446                                  SDValue Val, SDValue *Parts, unsigned NumParts,
    447                                  EVT PartVT) {
    448   EVT ValueVT = Val.getValueType();
    449   assert(ValueVT.isVector() && "Not a vector");
    450   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    451 
    452   if (NumParts == 1) {
    453     if (PartVT == ValueVT) {
    454       // Nothing to do.
    455     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
    456       // Bitconvert vector->vector case.
    457       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    458     } else if (PartVT.isVector() &&
    459                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
    460                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
    461       EVT ElementVT = PartVT.getVectorElementType();
    462       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
    463       // undef elements.
    464       SmallVector<SDValue, 16> Ops;
    465       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
    466         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    467                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
    468 
    469       for (unsigned i = ValueVT.getVectorNumElements(),
    470            e = PartVT.getVectorNumElements(); i != e; ++i)
    471         Ops.push_back(DAG.getUNDEF(ElementVT));
    472 
    473       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
    474 
    475       // FIXME: Use CONCAT for 2x -> 4x.
    476 
    477       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
    478       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
    479     } else if (PartVT.isVector() &&
    480                PartVT.getVectorElementType().bitsGE(
    481                  ValueVT.getVectorElementType()) &&
    482                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
    483 
    484       // Promoted vector extract
    485       bool Smaller = PartVT.bitsLE(ValueVT);
    486       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    487                         DL, PartVT, Val);
    488     } else{
    489       // Vector -> scalar conversion.
    490       assert(ValueVT.getVectorNumElements() == 1 &&
    491              "Only trivial vector-to-scalar conversions should get here!");
    492       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    493                         PartVT, Val, DAG.getIntPtrConstant(0));
    494 
    495       bool Smaller = ValueVT.bitsLE(PartVT);
    496       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
    497                          DL, PartVT, Val);
    498     }
    499 
    500     Parts[0] = Val;
    501     return;
    502   }
    503 
    504   // Handle a multi-element vector.
    505   EVT IntermediateVT, RegisterVT;
    506   unsigned NumIntermediates;
    507   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
    508                                                 IntermediateVT,
    509                                                 NumIntermediates, RegisterVT);
    510   unsigned NumElements = ValueVT.getVectorNumElements();
    511 
    512   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
    513   NumParts = NumRegs; // Silence a compiler warning.
    514   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
    515 
    516   // Split the vector into intermediate operands.
    517   SmallVector<SDValue, 8> Ops(NumIntermediates);
    518   for (unsigned i = 0; i != NumIntermediates; ++i) {
    519     if (IntermediateVT.isVector())
    520       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
    521                            IntermediateVT, Val,
    522                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
    523     else
    524       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
    525                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
    526   }
    527 
    528   // Split the intermediate operands into legal parts.
    529   if (NumParts == NumIntermediates) {
    530     // If the register was not expanded, promote or copy the value,
    531     // as appropriate.
    532     for (unsigned i = 0; i != NumParts; ++i)
    533       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
    534   } else if (NumParts > 0) {
    535     // If the intermediate type was expanded, split each the value into
    536     // legal parts.
    537     assert(NumParts % NumIntermediates == 0 &&
    538            "Must expand into a divisible number of parts!");
    539     unsigned Factor = NumParts / NumIntermediates;
    540     for (unsigned i = 0; i != NumIntermediates; ++i)
    541       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
    542   }
    543 }
    544 
    545 
    546 
    547 
    548 namespace {
    549   /// RegsForValue - This struct represents the registers (physical or virtual)
    550   /// that a particular set of values is assigned, and the type information
    551   /// about the value. The most common situation is to represent one value at a
    552   /// time, but struct or array values are handled element-wise as multiple
    553   /// values.  The splitting of aggregates is performed recursively, so that we
    554   /// never have aggregate-typed registers. The values at this point do not
    555   /// necessarily have legal types, so each value may require one or more
    556   /// registers of some legal type.
    557   ///
    558   struct RegsForValue {
    559     /// ValueVTs - The value types of the values, which may not be legal, and
    560     /// may need be promoted or synthesized from one or more registers.
    561     ///
    562     SmallVector<EVT, 4> ValueVTs;
    563 
    564     /// RegVTs - The value types of the registers. This is the same size as
    565     /// ValueVTs and it records, for each value, what the type of the assigned
    566     /// register or registers are. (Individual values are never synthesized
    567     /// from more than one type of register.)
    568     ///
    569     /// With virtual registers, the contents of RegVTs is redundant with TLI's
    570     /// getRegisterType member function, however when with physical registers
    571     /// it is necessary to have a separate record of the types.
    572     ///
    573     SmallVector<EVT, 4> RegVTs;
    574 
    575     /// Regs - This list holds the registers assigned to the values.
    576     /// Each legal or promoted value requires one register, and each
    577     /// expanded value requires multiple registers.
    578     ///
    579     SmallVector<unsigned, 4> Regs;
    580 
    581     RegsForValue() {}
    582 
    583     RegsForValue(const SmallVector<unsigned, 4> &regs,
    584                  EVT regvt, EVT valuevt)
    585       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
    586 
    587     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
    588                  unsigned Reg, Type *Ty) {
    589       ComputeValueVTs(tli, Ty, ValueVTs);
    590 
    591       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    592         EVT ValueVT = ValueVTs[Value];
    593         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
    594         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
    595         for (unsigned i = 0; i != NumRegs; ++i)
    596           Regs.push_back(Reg + i);
    597         RegVTs.push_back(RegisterVT);
    598         Reg += NumRegs;
    599       }
    600     }
    601 
    602     /// areValueTypesLegal - Return true if types of all the values are legal.
    603     bool areValueTypesLegal(const TargetLowering &TLI) {
    604       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    605         EVT RegisterVT = RegVTs[Value];
    606         if (!TLI.isTypeLegal(RegisterVT))
    607           return false;
    608       }
    609       return true;
    610     }
    611 
    612     /// append - Add the specified values to this one.
    613     void append(const RegsForValue &RHS) {
    614       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
    615       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
    616       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
    617     }
    618 
    619     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
    620     /// this value and returns the result as a ValueVTs value.  This uses
    621     /// Chain/Flag as the input and updates them for the output Chain/Flag.
    622     /// If the Flag pointer is NULL, no flag is used.
    623     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
    624                             DebugLoc dl,
    625                             SDValue &Chain, SDValue *Flag) const;
    626 
    627     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
    628     /// specified value into the registers specified by this object.  This uses
    629     /// Chain/Flag as the input and updates them for the output Chain/Flag.
    630     /// If the Flag pointer is NULL, no flag is used.
    631     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
    632                        SDValue &Chain, SDValue *Flag) const;
    633 
    634     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
    635     /// operand list.  This adds the code marker, matching input operand index
    636     /// (if applicable), and includes the number of values added into it.
    637     void AddInlineAsmOperands(unsigned Kind,
    638                               bool HasMatching, unsigned MatchingIdx,
    639                               SelectionDAG &DAG,
    640                               std::vector<SDValue> &Ops) const;
    641   };
    642 }
    643 
    644 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
    645 /// this value and returns the result as a ValueVT value.  This uses
    646 /// Chain/Flag as the input and updates them for the output Chain/Flag.
    647 /// If the Flag pointer is NULL, no flag is used.
    648 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
    649                                       FunctionLoweringInfo &FuncInfo,
    650                                       DebugLoc dl,
    651                                       SDValue &Chain, SDValue *Flag) const {
    652   // A Value with type {} or [0 x %t] needs no registers.
    653   if (ValueVTs.empty())
    654     return SDValue();
    655 
    656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    657 
    658   // Assemble the legal parts into the final values.
    659   SmallVector<SDValue, 4> Values(ValueVTs.size());
    660   SmallVector<SDValue, 8> Parts;
    661   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
    662     // Copy the legal parts from the registers.
    663     EVT ValueVT = ValueVTs[Value];
    664     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
    665     EVT RegisterVT = RegVTs[Value];
    666 
    667     Parts.resize(NumRegs);
    668     for (unsigned i = 0; i != NumRegs; ++i) {
    669       SDValue P;
    670       if (Flag == 0) {
    671         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
    672       } else {
    673         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
    674         *Flag = P.getValue(2);
    675       }
    676 
    677       Chain = P.getValue(1);
    678       Parts[i] = P;
    679 
    680       // If the source register was virtual and if we know something about it,
    681       // add an assert node.
    682       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
    683           !RegisterVT.isInteger() || RegisterVT.isVector())
    684         continue;
    685 
    686       const FunctionLoweringInfo::LiveOutInfo *LOI =
    687         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
    688       if (!LOI)
    689         continue;
    690 
    691       unsigned RegSize = RegisterVT.getSizeInBits();
    692       unsigned NumSignBits = LOI->NumSignBits;
    693       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
    694 
    695       // FIXME: We capture more information than the dag can represent.  For
    696       // now, just use the tightest assertzext/assertsext possible.
    697       bool isSExt = true;
    698       EVT FromVT(MVT::Other);
    699       if (NumSignBits == RegSize)
    700         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
    701       else if (NumZeroBits >= RegSize-1)
    702         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
    703       else if (NumSignBits > RegSize-8)
    704         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
    705       else if (NumZeroBits >= RegSize-8)
    706         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
    707       else if (NumSignBits > RegSize-16)
    708         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
    709       else if (NumZeroBits >= RegSize-16)
    710         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
    711       else if (NumSignBits > RegSize-32)
    712         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
    713       else if (NumZeroBits >= RegSize-32)
    714         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
    715       else
    716         continue;
    717 
    718       // Add an assertion node.
    719       assert(FromVT != MVT::Other);
    720       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
    721                              RegisterVT, P, DAG.getValueType(FromVT));
    722     }
    723 
    724     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
    725                                      NumRegs, RegisterVT, ValueVT);
    726     Part += NumRegs;
    727     Parts.clear();
    728   }
    729 
    730   return DAG.getNode(ISD::MERGE_VALUES, dl,
    731                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
    732                      &Values[0], ValueVTs.size());
    733 }
    734 
    735 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
    736 /// specified value into the registers specified by this object.  This uses
    737 /// Chain/Flag as the input and updates them for the output Chain/Flag.
    738 /// If the Flag pointer is NULL, no flag is used.
    739 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
    740                                  SDValue &Chain, SDValue *Flag) const {
    741   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    742 
    743   // Get the list of the values's legal parts.
    744   unsigned NumRegs = Regs.size();
    745   SmallVector<SDValue, 8> Parts(NumRegs);
    746   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
    747     EVT ValueVT = ValueVTs[Value];
    748     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
    749     EVT RegisterVT = RegVTs[Value];
    750 
    751     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
    752                    &Parts[Part], NumParts, RegisterVT);
    753     Part += NumParts;
    754   }
    755 
    756   // Copy the parts into the registers.
    757   SmallVector<SDValue, 8> Chains(NumRegs);
    758   for (unsigned i = 0; i != NumRegs; ++i) {
    759     SDValue Part;
    760     if (Flag == 0) {
    761       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
    762     } else {
    763       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
    764       *Flag = Part.getValue(1);
    765     }
    766 
    767     Chains[i] = Part.getValue(0);
    768   }
    769 
    770   if (NumRegs == 1 || Flag)
    771     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
    772     // flagged to it. That is the CopyToReg nodes and the user are considered
    773     // a single scheduling unit. If we create a TokenFactor and return it as
    774     // chain, then the TokenFactor is both a predecessor (operand) of the
    775     // user as well as a successor (the TF operands are flagged to the user).
    776     // c1, f1 = CopyToReg
    777     // c2, f2 = CopyToReg
    778     // c3     = TokenFactor c1, c2
    779     // ...
    780     //        = op c3, ..., f2
    781     Chain = Chains[NumRegs-1];
    782   else
    783     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
    784 }
    785 
    786 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
    787 /// operand list.  This adds the code marker and includes the number of
    788 /// values added into it.
    789 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
    790                                         unsigned MatchingIdx,
    791                                         SelectionDAG &DAG,
    792                                         std::vector<SDValue> &Ops) const {
    793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    794 
    795   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
    796   if (HasMatching)
    797     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
    798   else if (!Regs.empty() &&
    799            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
    800     // Put the register class of the virtual registers in the flag word.  That
    801     // way, later passes can recompute register class constraints for inline
    802     // assembly as well as normal instructions.
    803     // Don't do this for tied operands that can use the regclass information
    804     // from the def.
    805     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
    806     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
    807     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
    808   }
    809 
    810   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
    811   Ops.push_back(Res);
    812 
    813   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
    814     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
    815     EVT RegisterVT = RegVTs[Value];
    816     for (unsigned i = 0; i != NumRegs; ++i) {
    817       assert(Reg < Regs.size() && "Mismatch in # registers expected");
    818       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
    819     }
    820   }
    821 }
    822 
    823 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
    824                                const TargetLibraryInfo *li) {
    825   AA = &aa;
    826   GFI = gfi;
    827   LibInfo = li;
    828   TD = DAG.getTarget().getTargetData();
    829   Context = DAG.getContext();
    830   LPadToCallSiteMap.clear();
    831 }
    832 
    833 /// clear - Clear out the current SelectionDAG and the associated
    834 /// state and prepare this SelectionDAGBuilder object to be used
    835 /// for a new block. This doesn't clear out information about
    836 /// additional blocks that are needed to complete switch lowering
    837 /// or PHI node updating; that information is cleared out as it is
    838 /// consumed.
    839 void SelectionDAGBuilder::clear() {
    840   NodeMap.clear();
    841   UnusedArgNodeMap.clear();
    842   PendingLoads.clear();
    843   PendingExports.clear();
    844   CurDebugLoc = DebugLoc();
    845   HasTailCall = false;
    846 }
    847 
    848 /// clearDanglingDebugInfo - Clear the dangling debug information
    849 /// map. This function is separated from the clear so that debug
    850 /// information that is dangling in a basic block can be properly
    851 /// resolved in a different basic block. This allows the
    852 /// SelectionDAG to resolve dangling debug information attached
    853 /// to PHI nodes.
    854 void SelectionDAGBuilder::clearDanglingDebugInfo() {
    855   DanglingDebugInfoMap.clear();
    856 }
    857 
    858 /// getRoot - Return the current virtual root of the Selection DAG,
    859 /// flushing any PendingLoad items. This must be done before emitting
    860 /// a store or any other node that may need to be ordered after any
    861 /// prior load instructions.
    862 ///
    863 SDValue SelectionDAGBuilder::getRoot() {
    864   if (PendingLoads.empty())
    865     return DAG.getRoot();
    866 
    867   if (PendingLoads.size() == 1) {
    868     SDValue Root = PendingLoads[0];
    869     DAG.setRoot(Root);
    870     PendingLoads.clear();
    871     return Root;
    872   }
    873 
    874   // Otherwise, we have to make a token factor node.
    875   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
    876                                &PendingLoads[0], PendingLoads.size());
    877   PendingLoads.clear();
    878   DAG.setRoot(Root);
    879   return Root;
    880 }
    881 
    882 /// getControlRoot - Similar to getRoot, but instead of flushing all the
    883 /// PendingLoad items, flush all the PendingExports items. It is necessary
    884 /// to do this before emitting a terminator instruction.
    885 ///
    886 SDValue SelectionDAGBuilder::getControlRoot() {
    887   SDValue Root = DAG.getRoot();
    888 
    889   if (PendingExports.empty())
    890     return Root;
    891 
    892   // Turn all of the CopyToReg chains into one factored node.
    893   if (Root.getOpcode() != ISD::EntryToken) {
    894     unsigned i = 0, e = PendingExports.size();
    895     for (; i != e; ++i) {
    896       assert(PendingExports[i].getNode()->getNumOperands() > 1);
    897       if (PendingExports[i].getNode()->getOperand(0) == Root)
    898         break;  // Don't add the root if we already indirectly depend on it.
    899     }
    900 
    901     if (i == e)
    902       PendingExports.push_back(Root);
    903   }
    904 
    905   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
    906                      &PendingExports[0],
    907                      PendingExports.size());
    908   PendingExports.clear();
    909   DAG.setRoot(Root);
    910   return Root;
    911 }
    912 
    913 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
    914   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
    915   DAG.AssignOrdering(Node, SDNodeOrder);
    916 
    917   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
    918     AssignOrderingToNode(Node->getOperand(I).getNode());
    919 }
    920 
    921 void SelectionDAGBuilder::visit(const Instruction &I) {
    922   // Set up outgoing PHI node register values before emitting the terminator.
    923   if (isa<TerminatorInst>(&I))
    924     HandlePHINodesInSuccessorBlocks(I.getParent());
    925 
    926   CurDebugLoc = I.getDebugLoc();
    927 
    928   visit(I.getOpcode(), I);
    929 
    930   if (!isa<TerminatorInst>(&I) && !HasTailCall)
    931     CopyToExportRegsIfNeeded(&I);
    932 
    933   CurDebugLoc = DebugLoc();
    934 }
    935 
    936 void SelectionDAGBuilder::visitPHI(const PHINode &) {
    937   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
    938 }
    939 
    940 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
    941   // Note: this doesn't use InstVisitor, because it has to work with
    942   // ConstantExpr's in addition to instructions.
    943   switch (Opcode) {
    944   default: llvm_unreachable("Unknown instruction type encountered!");
    945     // Build the switch statement using the Instruction.def file.
    946 #define HANDLE_INST(NUM, OPCODE, CLASS) \
    947     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
    948 #include "llvm/Instruction.def"
    949   }
    950 
    951   // Assign the ordering to the freshly created DAG nodes.
    952   if (NodeMap.count(&I)) {
    953     ++SDNodeOrder;
    954     AssignOrderingToNode(getValue(&I).getNode());
    955   }
    956 }
    957 
    958 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
    959 // generate the debug data structures now that we've seen its definition.
    960 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
    961                                                    SDValue Val) {
    962   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
    963   if (DDI.getDI()) {
    964     const DbgValueInst *DI = DDI.getDI();
    965     DebugLoc dl = DDI.getdl();
    966     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
    967     MDNode *Variable = DI->getVariable();
    968     uint64_t Offset = DI->getOffset();
    969     SDDbgValue *SDV;
    970     if (Val.getNode()) {
    971       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
    972         SDV = DAG.getDbgValue(Variable, Val.getNode(),
    973                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
    974         DAG.AddDbgValue(SDV, Val.getNode(), false);
    975       }
    976     } else
    977       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
    978     DanglingDebugInfoMap[V] = DanglingDebugInfo();
    979   }
    980 }
    981 
    982 /// getValue - Return an SDValue for the given Value.
    983 SDValue SelectionDAGBuilder::getValue(const Value *V) {
    984   // If we already have an SDValue for this value, use it. It's important
    985   // to do this first, so that we don't create a CopyFromReg if we already
    986   // have a regular SDValue.
    987   SDValue &N = NodeMap[V];
    988   if (N.getNode()) return N;
    989 
    990   // If there's a virtual register allocated and initialized for this
    991   // value, use it.
    992   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
    993   if (It != FuncInfo.ValueMap.end()) {
    994     unsigned InReg = It->second;
    995     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
    996     SDValue Chain = DAG.getEntryNode();
    997     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
    998     resolveDanglingDebugInfo(V, N);
    999     return N;
   1000   }
   1001 
   1002   // Otherwise create a new SDValue and remember it.
   1003   SDValue Val = getValueImpl(V);
   1004   NodeMap[V] = Val;
   1005   resolveDanglingDebugInfo(V, Val);
   1006   return Val;
   1007 }
   1008 
   1009 /// getNonRegisterValue - Return an SDValue for the given Value, but
   1010 /// don't look in FuncInfo.ValueMap for a virtual register.
   1011 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
   1012   // If we already have an SDValue for this value, use it.
   1013   SDValue &N = NodeMap[V];
   1014   if (N.getNode()) return N;
   1015 
   1016   // Otherwise create a new SDValue and remember it.
   1017   SDValue Val = getValueImpl(V);
   1018   NodeMap[V] = Val;
   1019   resolveDanglingDebugInfo(V, Val);
   1020   return Val;
   1021 }
   1022 
   1023 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
   1024 /// Create an SDValue for the given value.
   1025 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
   1026   if (const Constant *C = dyn_cast<Constant>(V)) {
   1027     EVT VT = TLI.getValueType(V->getType(), true);
   1028 
   1029     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
   1030       return DAG.getConstant(*CI, VT);
   1031 
   1032     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
   1033       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
   1034 
   1035     if (isa<ConstantPointerNull>(C))
   1036       return DAG.getConstant(0, TLI.getPointerTy());
   1037 
   1038     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
   1039       return DAG.getConstantFP(*CFP, VT);
   1040 
   1041     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
   1042       return DAG.getUNDEF(VT);
   1043 
   1044     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   1045       visit(CE->getOpcode(), *CE);
   1046       SDValue N1 = NodeMap[V];
   1047       assert(N1.getNode() && "visit didn't populate the NodeMap!");
   1048       return N1;
   1049     }
   1050 
   1051     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
   1052       SmallVector<SDValue, 4> Constants;
   1053       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
   1054            OI != OE; ++OI) {
   1055         SDNode *Val = getValue(*OI).getNode();
   1056         // If the operand is an empty aggregate, there are no values.
   1057         if (!Val) continue;
   1058         // Add each leaf value from the operand to the Constants list
   1059         // to form a flattened list of all the values.
   1060         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
   1061           Constants.push_back(SDValue(Val, i));
   1062       }
   1063 
   1064       return DAG.getMergeValues(&Constants[0], Constants.size(),
   1065                                 getCurDebugLoc());
   1066     }
   1067 
   1068     if (const ConstantDataSequential *CDS =
   1069           dyn_cast<ConstantDataSequential>(C)) {
   1070       SmallVector<SDValue, 4> Ops;
   1071       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1072         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
   1073         // Add each leaf value from the operand to the Constants list
   1074         // to form a flattened list of all the values.
   1075         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
   1076           Ops.push_back(SDValue(Val, i));
   1077       }
   1078 
   1079       if (isa<ArrayType>(CDS->getType()))
   1080         return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
   1081       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
   1082                                       VT, &Ops[0], Ops.size());
   1083     }
   1084 
   1085     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
   1086       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
   1087              "Unknown struct or array constant!");
   1088 
   1089       SmallVector<EVT, 4> ValueVTs;
   1090       ComputeValueVTs(TLI, C->getType(), ValueVTs);
   1091       unsigned NumElts = ValueVTs.size();
   1092       if (NumElts == 0)
   1093         return SDValue(); // empty struct
   1094       SmallVector<SDValue, 4> Constants(NumElts);
   1095       for (unsigned i = 0; i != NumElts; ++i) {
   1096         EVT EltVT = ValueVTs[i];
   1097         if (isa<UndefValue>(C))
   1098           Constants[i] = DAG.getUNDEF(EltVT);
   1099         else if (EltVT.isFloatingPoint())
   1100           Constants[i] = DAG.getConstantFP(0, EltVT);
   1101         else
   1102           Constants[i] = DAG.getConstant(0, EltVT);
   1103       }
   1104 
   1105       return DAG.getMergeValues(&Constants[0], NumElts,
   1106                                 getCurDebugLoc());
   1107     }
   1108 
   1109     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
   1110       return DAG.getBlockAddress(BA, VT);
   1111 
   1112     VectorType *VecTy = cast<VectorType>(V->getType());
   1113     unsigned NumElements = VecTy->getNumElements();
   1114 
   1115     // Now that we know the number and type of the elements, get that number of
   1116     // elements into the Ops array based on what kind of constant it is.
   1117     SmallVector<SDValue, 16> Ops;
   1118     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
   1119       for (unsigned i = 0; i != NumElements; ++i)
   1120         Ops.push_back(getValue(CV->getOperand(i)));
   1121     } else {
   1122       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
   1123       EVT EltVT = TLI.getValueType(VecTy->getElementType());
   1124 
   1125       SDValue Op;
   1126       if (EltVT.isFloatingPoint())
   1127         Op = DAG.getConstantFP(0, EltVT);
   1128       else
   1129         Op = DAG.getConstant(0, EltVT);
   1130       Ops.assign(NumElements, Op);
   1131     }
   1132 
   1133     // Create a BUILD_VECTOR node.
   1134     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
   1135                                     VT, &Ops[0], Ops.size());
   1136   }
   1137 
   1138   // If this is a static alloca, generate it as the frameindex instead of
   1139   // computation.
   1140   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
   1141     DenseMap<const AllocaInst*, int>::iterator SI =
   1142       FuncInfo.StaticAllocaMap.find(AI);
   1143     if (SI != FuncInfo.StaticAllocaMap.end())
   1144       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
   1145   }
   1146 
   1147   // If this is an instruction which fast-isel has deferred, select it now.
   1148   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   1149     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
   1150     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
   1151     SDValue Chain = DAG.getEntryNode();
   1152     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
   1153   }
   1154 
   1155   llvm_unreachable("Can't get register for value!");
   1156 }
   1157 
   1158 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
   1159   SDValue Chain = getControlRoot();
   1160   SmallVector<ISD::OutputArg, 8> Outs;
   1161   SmallVector<SDValue, 8> OutVals;
   1162 
   1163   if (!FuncInfo.CanLowerReturn) {
   1164     unsigned DemoteReg = FuncInfo.DemoteRegister;
   1165     const Function *F = I.getParent()->getParent();
   1166 
   1167     // Emit a store of the return value through the virtual register.
   1168     // Leave Outs empty so that LowerReturn won't try to load return
   1169     // registers the usual way.
   1170     SmallVector<EVT, 1> PtrValueVTs;
   1171     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
   1172                     PtrValueVTs);
   1173 
   1174     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
   1175     SDValue RetOp = getValue(I.getOperand(0));
   1176 
   1177     SmallVector<EVT, 4> ValueVTs;
   1178     SmallVector<uint64_t, 4> Offsets;
   1179     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
   1180     unsigned NumValues = ValueVTs.size();
   1181 
   1182     SmallVector<SDValue, 4> Chains(NumValues);
   1183     for (unsigned i = 0; i != NumValues; ++i) {
   1184       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   1185                                 RetPtr.getValueType(), RetPtr,
   1186                                 DAG.getIntPtrConstant(Offsets[i]));
   1187       Chains[i] =
   1188         DAG.getStore(Chain, getCurDebugLoc(),
   1189                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
   1190                      // FIXME: better loc info would be nice.
   1191                      Add, MachinePointerInfo(), false, false, 0);
   1192     }
   1193 
   1194     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   1195                         MVT::Other, &Chains[0], NumValues);
   1196   } else if (I.getNumOperands() != 0) {
   1197     SmallVector<EVT, 4> ValueVTs;
   1198     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
   1199     unsigned NumValues = ValueVTs.size();
   1200     if (NumValues) {
   1201       SDValue RetOp = getValue(I.getOperand(0));
   1202       for (unsigned j = 0, f = NumValues; j != f; ++j) {
   1203         EVT VT = ValueVTs[j];
   1204 
   1205         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1206 
   1207         const Function *F = I.getParent()->getParent();
   1208         if (F->paramHasAttr(0, Attribute::SExt))
   1209           ExtendKind = ISD::SIGN_EXTEND;
   1210         else if (F->paramHasAttr(0, Attribute::ZExt))
   1211           ExtendKind = ISD::ZERO_EXTEND;
   1212 
   1213         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
   1214           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
   1215 
   1216         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
   1217         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
   1218         SmallVector<SDValue, 4> Parts(NumParts);
   1219         getCopyToParts(DAG, getCurDebugLoc(),
   1220                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
   1221                        &Parts[0], NumParts, PartVT, ExtendKind);
   1222 
   1223         // 'inreg' on function refers to return value
   1224         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1225         if (F->paramHasAttr(0, Attribute::InReg))
   1226           Flags.setInReg();
   1227 
   1228         // Propagate extension type if any
   1229         if (ExtendKind == ISD::SIGN_EXTEND)
   1230           Flags.setSExt();
   1231         else if (ExtendKind == ISD::ZERO_EXTEND)
   1232           Flags.setZExt();
   1233 
   1234         for (unsigned i = 0; i < NumParts; ++i) {
   1235           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
   1236                                         /*isfixed=*/true));
   1237           OutVals.push_back(Parts[i]);
   1238         }
   1239       }
   1240     }
   1241   }
   1242 
   1243   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
   1244   CallingConv::ID CallConv =
   1245     DAG.getMachineFunction().getFunction()->getCallingConv();
   1246   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
   1247                           Outs, OutVals, getCurDebugLoc(), DAG);
   1248 
   1249   // Verify that the target's LowerReturn behaved as expected.
   1250   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
   1251          "LowerReturn didn't return a valid chain!");
   1252 
   1253   // Update the DAG with the new chain value resulting from return lowering.
   1254   DAG.setRoot(Chain);
   1255 }
   1256 
   1257 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
   1258 /// created for it, emit nodes to copy the value into the virtual
   1259 /// registers.
   1260 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
   1261   // Skip empty types
   1262   if (V->getType()->isEmptyTy())
   1263     return;
   1264 
   1265   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
   1266   if (VMI != FuncInfo.ValueMap.end()) {
   1267     assert(!V->use_empty() && "Unused value assigned virtual registers!");
   1268     CopyValueToVirtualRegister(V, VMI->second);
   1269   }
   1270 }
   1271 
   1272 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
   1273 /// the current basic block, add it to ValueMap now so that we'll get a
   1274 /// CopyTo/FromReg.
   1275 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
   1276   // No need to export constants.
   1277   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
   1278 
   1279   // Already exported?
   1280   if (FuncInfo.isExportedInst(V)) return;
   1281 
   1282   unsigned Reg = FuncInfo.InitializeRegForValue(V);
   1283   CopyValueToVirtualRegister(V, Reg);
   1284 }
   1285 
   1286 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
   1287                                                      const BasicBlock *FromBB) {
   1288   // The operands of the setcc have to be in this block.  We don't know
   1289   // how to export them from some other block.
   1290   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
   1291     // Can export from current BB.
   1292     if (VI->getParent() == FromBB)
   1293       return true;
   1294 
   1295     // Is already exported, noop.
   1296     return FuncInfo.isExportedInst(V);
   1297   }
   1298 
   1299   // If this is an argument, we can export it if the BB is the entry block or
   1300   // if it is already exported.
   1301   if (isa<Argument>(V)) {
   1302     if (FromBB == &FromBB->getParent()->getEntryBlock())
   1303       return true;
   1304 
   1305     // Otherwise, can only export this if it is already exported.
   1306     return FuncInfo.isExportedInst(V);
   1307   }
   1308 
   1309   // Otherwise, constants can always be exported.
   1310   return true;
   1311 }
   1312 
   1313 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
   1314 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
   1315                                             const MachineBasicBlock *Dst) const {
   1316   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   1317   if (!BPI)
   1318     return 0;
   1319   const BasicBlock *SrcBB = Src->getBasicBlock();
   1320   const BasicBlock *DstBB = Dst->getBasicBlock();
   1321   return BPI->getEdgeWeight(SrcBB, DstBB);
   1322 }
   1323 
   1324 void SelectionDAGBuilder::
   1325 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
   1326                        uint32_t Weight /* = 0 */) {
   1327   if (!Weight)
   1328     Weight = getEdgeWeight(Src, Dst);
   1329   Src->addSuccessor(Dst, Weight);
   1330 }
   1331 
   1332 
   1333 static bool InBlock(const Value *V, const BasicBlock *BB) {
   1334   if (const Instruction *I = dyn_cast<Instruction>(V))
   1335     return I->getParent() == BB;
   1336   return true;
   1337 }
   1338 
   1339 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
   1340 /// This function emits a branch and is used at the leaves of an OR or an
   1341 /// AND operator tree.
   1342 ///
   1343 void
   1344 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
   1345                                                   MachineBasicBlock *TBB,
   1346                                                   MachineBasicBlock *FBB,
   1347                                                   MachineBasicBlock *CurBB,
   1348                                                   MachineBasicBlock *SwitchBB) {
   1349   const BasicBlock *BB = CurBB->getBasicBlock();
   1350 
   1351   // If the leaf of the tree is a comparison, merge the condition into
   1352   // the caseblock.
   1353   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
   1354     // The operands of the cmp have to be in this block.  We don't know
   1355     // how to export them from some other block.  If this is the first block
   1356     // of the sequence, no exporting is needed.
   1357     if (CurBB == SwitchBB ||
   1358         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
   1359          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
   1360       ISD::CondCode Condition;
   1361       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
   1362         Condition = getICmpCondCode(IC->getPredicate());
   1363       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
   1364         Condition = getFCmpCondCode(FC->getPredicate());
   1365         if (TM.Options.NoNaNsFPMath)
   1366           Condition = getFCmpCodeWithoutNaN(Condition);
   1367       } else {
   1368         Condition = ISD::SETEQ; // silence warning.
   1369         llvm_unreachable("Unknown compare instruction");
   1370       }
   1371 
   1372       CaseBlock CB(Condition, BOp->getOperand(0),
   1373                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
   1374       SwitchCases.push_back(CB);
   1375       return;
   1376     }
   1377   }
   1378 
   1379   // Create a CaseBlock record representing this branch.
   1380   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
   1381                NULL, TBB, FBB, CurBB);
   1382   SwitchCases.push_back(CB);
   1383 }
   1384 
   1385 /// FindMergedConditions - If Cond is an expression like
   1386 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
   1387                                                MachineBasicBlock *TBB,
   1388                                                MachineBasicBlock *FBB,
   1389                                                MachineBasicBlock *CurBB,
   1390                                                MachineBasicBlock *SwitchBB,
   1391                                                unsigned Opc) {
   1392   // If this node is not part of the or/and tree, emit it as a branch.
   1393   const Instruction *BOp = dyn_cast<Instruction>(Cond);
   1394   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
   1395       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
   1396       BOp->getParent() != CurBB->getBasicBlock() ||
   1397       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
   1398       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
   1399     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
   1400     return;
   1401   }
   1402 
   1403   //  Create TmpBB after CurBB.
   1404   MachineFunction::iterator BBI = CurBB;
   1405   MachineFunction &MF = DAG.getMachineFunction();
   1406   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
   1407   CurBB->getParent()->insert(++BBI, TmpBB);
   1408 
   1409   if (Opc == Instruction::Or) {
   1410     // Codegen X | Y as:
   1411     //   jmp_if_X TBB
   1412     //   jmp TmpBB
   1413     // TmpBB:
   1414     //   jmp_if_Y TBB
   1415     //   jmp FBB
   1416     //
   1417 
   1418     // Emit the LHS condition.
   1419     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
   1420 
   1421     // Emit the RHS condition into TmpBB.
   1422     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
   1423   } else {
   1424     assert(Opc == Instruction::And && "Unknown merge op!");
   1425     // Codegen X & Y as:
   1426     //   jmp_if_X TmpBB
   1427     //   jmp FBB
   1428     // TmpBB:
   1429     //   jmp_if_Y TBB
   1430     //   jmp FBB
   1431     //
   1432     //  This requires creation of TmpBB after CurBB.
   1433 
   1434     // Emit the LHS condition.
   1435     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
   1436 
   1437     // Emit the RHS condition into TmpBB.
   1438     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
   1439   }
   1440 }
   1441 
   1442 /// If the set of cases should be emitted as a series of branches, return true.
   1443 /// If we should emit this as a bunch of and/or'd together conditions, return
   1444 /// false.
   1445 bool
   1446 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
   1447   if (Cases.size() != 2) return true;
   1448 
   1449   // If this is two comparisons of the same values or'd or and'd together, they
   1450   // will get folded into a single comparison, so don't emit two blocks.
   1451   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
   1452        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
   1453       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
   1454        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
   1455     return false;
   1456   }
   1457 
   1458   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
   1459   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
   1460   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
   1461       Cases[0].CC == Cases[1].CC &&
   1462       isa<Constant>(Cases[0].CmpRHS) &&
   1463       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
   1464     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
   1465       return false;
   1466     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
   1467       return false;
   1468   }
   1469 
   1470   return true;
   1471 }
   1472 
   1473 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
   1474   MachineBasicBlock *BrMBB = FuncInfo.MBB;
   1475 
   1476   // Update machine-CFG edges.
   1477   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
   1478 
   1479   // Figure out which block is immediately after the current one.
   1480   MachineBasicBlock *NextBlock = 0;
   1481   MachineFunction::iterator BBI = BrMBB;
   1482   if (++BBI != FuncInfo.MF->end())
   1483     NextBlock = BBI;
   1484 
   1485   if (I.isUnconditional()) {
   1486     // Update machine-CFG edges.
   1487     BrMBB->addSuccessor(Succ0MBB);
   1488 
   1489     // If this is not a fall-through branch, emit the branch.
   1490     if (Succ0MBB != NextBlock)
   1491       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
   1492                               MVT::Other, getControlRoot(),
   1493                               DAG.getBasicBlock(Succ0MBB)));
   1494 
   1495     return;
   1496   }
   1497 
   1498   // If this condition is one of the special cases we handle, do special stuff
   1499   // now.
   1500   const Value *CondVal = I.getCondition();
   1501   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
   1502 
   1503   // If this is a series of conditions that are or'd or and'd together, emit
   1504   // this as a sequence of branches instead of setcc's with and/or operations.
   1505   // As long as jumps are not expensive, this should improve performance.
   1506   // For example, instead of something like:
   1507   //     cmp A, B
   1508   //     C = seteq
   1509   //     cmp D, E
   1510   //     F = setle
   1511   //     or C, F
   1512   //     jnz foo
   1513   // Emit:
   1514   //     cmp A, B
   1515   //     je foo
   1516   //     cmp D, E
   1517   //     jle foo
   1518   //
   1519   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
   1520     if (!TLI.isJumpExpensive() &&
   1521         BOp->hasOneUse() &&
   1522         (BOp->getOpcode() == Instruction::And ||
   1523          BOp->getOpcode() == Instruction::Or)) {
   1524       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
   1525                            BOp->getOpcode());
   1526       // If the compares in later blocks need to use values not currently
   1527       // exported from this block, export them now.  This block should always
   1528       // be the first entry.
   1529       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
   1530 
   1531       // Allow some cases to be rejected.
   1532       if (ShouldEmitAsBranches(SwitchCases)) {
   1533         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
   1534           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
   1535           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
   1536         }
   1537 
   1538         // Emit the branch for this block.
   1539         visitSwitchCase(SwitchCases[0], BrMBB);
   1540         SwitchCases.erase(SwitchCases.begin());
   1541         return;
   1542       }
   1543 
   1544       // Okay, we decided not to do this, remove any inserted MBB's and clear
   1545       // SwitchCases.
   1546       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
   1547         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
   1548 
   1549       SwitchCases.clear();
   1550     }
   1551   }
   1552 
   1553   // Create a CaseBlock record representing this branch.
   1554   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
   1555                NULL, Succ0MBB, Succ1MBB, BrMBB);
   1556 
   1557   // Use visitSwitchCase to actually insert the fast branch sequence for this
   1558   // cond branch.
   1559   visitSwitchCase(CB, BrMBB);
   1560 }
   1561 
   1562 /// visitSwitchCase - Emits the necessary code to represent a single node in
   1563 /// the binary search tree resulting from lowering a switch instruction.
   1564 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
   1565                                           MachineBasicBlock *SwitchBB) {
   1566   SDValue Cond;
   1567   SDValue CondLHS = getValue(CB.CmpLHS);
   1568   DebugLoc dl = getCurDebugLoc();
   1569 
   1570   // Build the setcc now.
   1571   if (CB.CmpMHS == NULL) {
   1572     // Fold "(X == true)" to X and "(X == false)" to !X to
   1573     // handle common cases produced by branch lowering.
   1574     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
   1575         CB.CC == ISD::SETEQ)
   1576       Cond = CondLHS;
   1577     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
   1578              CB.CC == ISD::SETEQ) {
   1579       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
   1580       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
   1581     } else
   1582       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
   1583   } else {
   1584     assert(CB.CC == ISD::SETCC_INVALID &&
   1585            "Condition is undefined for to-the-range belonging check.");
   1586 
   1587     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
   1588     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
   1589 
   1590     SDValue CmpOp = getValue(CB.CmpMHS);
   1591     EVT VT = CmpOp.getValueType();
   1592 
   1593     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
   1594       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
   1595                           ISD::SETULE);
   1596     } else {
   1597       SDValue SUB = DAG.getNode(ISD::SUB, dl,
   1598                                 VT, CmpOp, DAG.getConstant(Low, VT));
   1599       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
   1600                           DAG.getConstant(High-Low, VT), ISD::SETULE);
   1601     }
   1602   }
   1603 
   1604   // Update successor info
   1605   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
   1606   // TrueBB and FalseBB are always different unless the incoming IR is
   1607   // degenerate. This only happens when running llc on weird IR.
   1608   if (CB.TrueBB != CB.FalseBB)
   1609     addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
   1610 
   1611   // Set NextBlock to be the MBB immediately after the current one, if any.
   1612   // This is used to avoid emitting unnecessary branches to the next block.
   1613   MachineBasicBlock *NextBlock = 0;
   1614   MachineFunction::iterator BBI = SwitchBB;
   1615   if (++BBI != FuncInfo.MF->end())
   1616     NextBlock = BBI;
   1617 
   1618   // If the lhs block is the next block, invert the condition so that we can
   1619   // fall through to the lhs instead of the rhs block.
   1620   if (CB.TrueBB == NextBlock) {
   1621     std::swap(CB.TrueBB, CB.FalseBB);
   1622     SDValue True = DAG.getConstant(1, Cond.getValueType());
   1623     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
   1624   }
   1625 
   1626   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
   1627                                MVT::Other, getControlRoot(), Cond,
   1628                                DAG.getBasicBlock(CB.TrueBB));
   1629 
   1630   // Insert the false branch. Do this even if it's a fall through branch,
   1631   // this makes it easier to do DAG optimizations which require inverting
   1632   // the branch condition.
   1633   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
   1634                        DAG.getBasicBlock(CB.FalseBB));
   1635 
   1636   DAG.setRoot(BrCond);
   1637 }
   1638 
   1639 /// visitJumpTable - Emit JumpTable node in the current MBB
   1640 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
   1641   // Emit the code for the jump table
   1642   assert(JT.Reg != -1U && "Should lower JT Header first!");
   1643   EVT PTy = TLI.getPointerTy();
   1644   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
   1645                                      JT.Reg, PTy);
   1646   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
   1647   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
   1648                                     MVT::Other, Index.getValue(1),
   1649                                     Table, Index);
   1650   DAG.setRoot(BrJumpTable);
   1651 }
   1652 
   1653 /// visitJumpTableHeader - This function emits necessary code to produce index
   1654 /// in the JumpTable from switch case.
   1655 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
   1656                                                JumpTableHeader &JTH,
   1657                                                MachineBasicBlock *SwitchBB) {
   1658   // Subtract the lowest switch case value from the value being switched on and
   1659   // conditional branch to default mbb if the result is greater than the
   1660   // difference between smallest and largest cases.
   1661   SDValue SwitchOp = getValue(JTH.SValue);
   1662   EVT VT = SwitchOp.getValueType();
   1663   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
   1664                             DAG.getConstant(JTH.First, VT));
   1665 
   1666   // The SDNode we just created, which holds the value being switched on minus
   1667   // the smallest case value, needs to be copied to a virtual register so it
   1668   // can be used as an index into the jump table in a subsequent basic block.
   1669   // This value may be smaller or larger than the target's pointer type, and
   1670   // therefore require extension or truncating.
   1671   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
   1672 
   1673   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
   1674   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
   1675                                     JumpTableReg, SwitchOp);
   1676   JT.Reg = JumpTableReg;
   1677 
   1678   // Emit the range check for the jump table, and branch to the default block
   1679   // for the switch statement if the value being switched on exceeds the largest
   1680   // case in the switch.
   1681   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
   1682                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
   1683                              DAG.getConstant(JTH.Last-JTH.First,VT),
   1684                              ISD::SETUGT);
   1685 
   1686   // Set NextBlock to be the MBB immediately after the current one, if any.
   1687   // This is used to avoid emitting unnecessary branches to the next block.
   1688   MachineBasicBlock *NextBlock = 0;
   1689   MachineFunction::iterator BBI = SwitchBB;
   1690 
   1691   if (++BBI != FuncInfo.MF->end())
   1692     NextBlock = BBI;
   1693 
   1694   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
   1695                                MVT::Other, CopyTo, CMP,
   1696                                DAG.getBasicBlock(JT.Default));
   1697 
   1698   if (JT.MBB != NextBlock)
   1699     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
   1700                          DAG.getBasicBlock(JT.MBB));
   1701 
   1702   DAG.setRoot(BrCond);
   1703 }
   1704 
   1705 /// visitBitTestHeader - This function emits necessary code to produce value
   1706 /// suitable for "bit tests"
   1707 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
   1708                                              MachineBasicBlock *SwitchBB) {
   1709   // Subtract the minimum value
   1710   SDValue SwitchOp = getValue(B.SValue);
   1711   EVT VT = SwitchOp.getValueType();
   1712   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
   1713                             DAG.getConstant(B.First, VT));
   1714 
   1715   // Check range
   1716   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
   1717                                   TLI.getSetCCResultType(Sub.getValueType()),
   1718                                   Sub, DAG.getConstant(B.Range, VT),
   1719                                   ISD::SETUGT);
   1720 
   1721   // Determine the type of the test operands.
   1722   bool UsePtrType = false;
   1723   if (!TLI.isTypeLegal(VT))
   1724     UsePtrType = true;
   1725   else {
   1726     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
   1727       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
   1728         // Switch table case range are encoded into series of masks.
   1729         // Just use pointer type, it's guaranteed to fit.
   1730         UsePtrType = true;
   1731         break;
   1732       }
   1733   }
   1734   if (UsePtrType) {
   1735     VT = TLI.getPointerTy();
   1736     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
   1737   }
   1738 
   1739   B.RegVT = VT;
   1740   B.Reg = FuncInfo.CreateReg(VT);
   1741   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
   1742                                     B.Reg, Sub);
   1743 
   1744   // Set NextBlock to be the MBB immediately after the current one, if any.
   1745   // This is used to avoid emitting unnecessary branches to the next block.
   1746   MachineBasicBlock *NextBlock = 0;
   1747   MachineFunction::iterator BBI = SwitchBB;
   1748   if (++BBI != FuncInfo.MF->end())
   1749     NextBlock = BBI;
   1750 
   1751   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
   1752 
   1753   addSuccessorWithWeight(SwitchBB, B.Default);
   1754   addSuccessorWithWeight(SwitchBB, MBB);
   1755 
   1756   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
   1757                                 MVT::Other, CopyTo, RangeCmp,
   1758                                 DAG.getBasicBlock(B.Default));
   1759 
   1760   if (MBB != NextBlock)
   1761     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
   1762                           DAG.getBasicBlock(MBB));
   1763 
   1764   DAG.setRoot(BrRange);
   1765 }
   1766 
   1767 /// visitBitTestCase - this function produces one "bit test"
   1768 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
   1769                                            MachineBasicBlock* NextMBB,
   1770                                            uint32_t BranchWeightToNext,
   1771                                            unsigned Reg,
   1772                                            BitTestCase &B,
   1773                                            MachineBasicBlock *SwitchBB) {
   1774   EVT VT = BB.RegVT;
   1775   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
   1776                                        Reg, VT);
   1777   SDValue Cmp;
   1778   unsigned PopCount = CountPopulation_64(B.Mask);
   1779   if (PopCount == 1) {
   1780     // Testing for a single bit; just compare the shift count with what it
   1781     // would need to be to shift a 1 bit in that position.
   1782     Cmp = DAG.getSetCC(getCurDebugLoc(),
   1783                        TLI.getSetCCResultType(VT),
   1784                        ShiftOp,
   1785                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
   1786                        ISD::SETEQ);
   1787   } else if (PopCount == BB.Range) {
   1788     // There is only one zero bit in the range, test for it directly.
   1789     Cmp = DAG.getSetCC(getCurDebugLoc(),
   1790                        TLI.getSetCCResultType(VT),
   1791                        ShiftOp,
   1792                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
   1793                        ISD::SETNE);
   1794   } else {
   1795     // Make desired shift
   1796     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
   1797                                     DAG.getConstant(1, VT), ShiftOp);
   1798 
   1799     // Emit bit tests and jumps
   1800     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
   1801                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
   1802     Cmp = DAG.getSetCC(getCurDebugLoc(),
   1803                        TLI.getSetCCResultType(VT),
   1804                        AndOp, DAG.getConstant(0, VT),
   1805                        ISD::SETNE);
   1806   }
   1807 
   1808   // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
   1809   addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
   1810   // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
   1811   addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
   1812 
   1813   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
   1814                               MVT::Other, getControlRoot(),
   1815                               Cmp, DAG.getBasicBlock(B.TargetBB));
   1816 
   1817   // Set NextBlock to be the MBB immediately after the current one, if any.
   1818   // This is used to avoid emitting unnecessary branches to the next block.
   1819   MachineBasicBlock *NextBlock = 0;
   1820   MachineFunction::iterator BBI = SwitchBB;
   1821   if (++BBI != FuncInfo.MF->end())
   1822     NextBlock = BBI;
   1823 
   1824   if (NextMBB != NextBlock)
   1825     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
   1826                         DAG.getBasicBlock(NextMBB));
   1827 
   1828   DAG.setRoot(BrAnd);
   1829 }
   1830 
   1831 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
   1832   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
   1833 
   1834   // Retrieve successors.
   1835   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
   1836   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
   1837 
   1838   const Value *Callee(I.getCalledValue());
   1839   const Function *Fn = dyn_cast<Function>(Callee);
   1840   if (isa<InlineAsm>(Callee))
   1841     visitInlineAsm(&I);
   1842   else if (Fn && Fn->isIntrinsic()) {
   1843     assert(Fn->getIntrinsicID() == Intrinsic::donothing);
   1844     // Ignore invokes to @llvm.donothing: jump directly to the next BB.
   1845   } else
   1846     LowerCallTo(&I, getValue(Callee), false, LandingPad);
   1847 
   1848   // If the value of the invoke is used outside of its defining block, make it
   1849   // available as a virtual register.
   1850   CopyToExportRegsIfNeeded(&I);
   1851 
   1852   // Update successor info
   1853   addSuccessorWithWeight(InvokeMBB, Return);
   1854   addSuccessorWithWeight(InvokeMBB, LandingPad);
   1855 
   1856   // Drop into normal successor.
   1857   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
   1858                           MVT::Other, getControlRoot(),
   1859                           DAG.getBasicBlock(Return)));
   1860 }
   1861 
   1862 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
   1863   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
   1864 }
   1865 
   1866 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
   1867   assert(FuncInfo.MBB->isLandingPad() &&
   1868          "Call to landingpad not in landing pad!");
   1869 
   1870   MachineBasicBlock *MBB = FuncInfo.MBB;
   1871   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   1872   AddLandingPadInfo(LP, MMI, MBB);
   1873 
   1874   // If there aren't registers to copy the values into (e.g., during SjLj
   1875   // exceptions), then don't bother to create these DAG nodes.
   1876   if (TLI.getExceptionPointerRegister() == 0 &&
   1877       TLI.getExceptionSelectorRegister() == 0)
   1878     return;
   1879 
   1880   SmallVector<EVT, 2> ValueVTs;
   1881   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
   1882 
   1883   // Insert the EXCEPTIONADDR instruction.
   1884   assert(FuncInfo.MBB->isLandingPad() &&
   1885          "Call to eh.exception not in landing pad!");
   1886   SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
   1887   SDValue Ops[2];
   1888   Ops[0] = DAG.getRoot();
   1889   SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
   1890   SDValue Chain = Op1.getValue(1);
   1891 
   1892   // Insert the EHSELECTION instruction.
   1893   VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
   1894   Ops[0] = Op1;
   1895   Ops[1] = Chain;
   1896   SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
   1897   Chain = Op2.getValue(1);
   1898   Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
   1899 
   1900   Ops[0] = Op1;
   1901   Ops[1] = Op2;
   1902   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   1903                             DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
   1904                             &Ops[0], 2);
   1905 
   1906   std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
   1907   setValue(&LP, RetPair.first);
   1908   DAG.setRoot(RetPair.second);
   1909 }
   1910 
   1911 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
   1912 /// small case ranges).
   1913 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
   1914                                                  CaseRecVector& WorkList,
   1915                                                  const Value* SV,
   1916                                                  MachineBasicBlock *Default,
   1917                                                  MachineBasicBlock *SwitchBB) {
   1918   // Size is the number of Cases represented by this range.
   1919   size_t Size = CR.Range.second - CR.Range.first;
   1920   if (Size > 3)
   1921     return false;
   1922 
   1923   // Get the MachineFunction which holds the current MBB.  This is used when
   1924   // inserting any additional MBBs necessary to represent the switch.
   1925   MachineFunction *CurMF = FuncInfo.MF;
   1926 
   1927   // Figure out which block is immediately after the current one.
   1928   MachineBasicBlock *NextBlock = 0;
   1929   MachineFunction::iterator BBI = CR.CaseBB;
   1930 
   1931   if (++BBI != FuncInfo.MF->end())
   1932     NextBlock = BBI;
   1933 
   1934   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   1935   // If any two of the cases has the same destination, and if one value
   1936   // is the same as the other, but has one bit unset that the other has set,
   1937   // use bit manipulation to do two compares at once.  For example:
   1938   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
   1939   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
   1940   // TODO: Handle cases where CR.CaseBB != SwitchBB.
   1941   if (Size == 2 && CR.CaseBB == SwitchBB) {
   1942     Case &Small = *CR.Range.first;
   1943     Case &Big = *(CR.Range.second-1);
   1944 
   1945     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
   1946       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
   1947       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
   1948 
   1949       // Check that there is only one bit different.
   1950       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
   1951           (SmallValue | BigValue) == BigValue) {
   1952         // Isolate the common bit.
   1953         APInt CommonBit = BigValue & ~SmallValue;
   1954         assert((SmallValue | CommonBit) == BigValue &&
   1955                CommonBit.countPopulation() == 1 && "Not a common bit?");
   1956 
   1957         SDValue CondLHS = getValue(SV);
   1958         EVT VT = CondLHS.getValueType();
   1959         DebugLoc DL = getCurDebugLoc();
   1960 
   1961         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
   1962                                  DAG.getConstant(CommonBit, VT));
   1963         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
   1964                                     Or, DAG.getConstant(BigValue, VT),
   1965                                     ISD::SETEQ);
   1966 
   1967         // Update successor info.
   1968         // Both Small and Big will jump to Small.BB, so we sum up the weights.
   1969         addSuccessorWithWeight(SwitchBB, Small.BB,
   1970                                Small.ExtraWeight + Big.ExtraWeight);
   1971         addSuccessorWithWeight(SwitchBB, Default,
   1972           // The default destination is the first successor in IR.
   1973           BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
   1974 
   1975         // Insert the true branch.
   1976         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
   1977                                      getControlRoot(), Cond,
   1978                                      DAG.getBasicBlock(Small.BB));
   1979 
   1980         // Insert the false branch.
   1981         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
   1982                              DAG.getBasicBlock(Default));
   1983 
   1984         DAG.setRoot(BrCond);
   1985         return true;
   1986       }
   1987     }
   1988   }
   1989 
   1990   // Order cases by weight so the most likely case will be checked first.
   1991   uint32_t UnhandledWeights = 0;
   1992   if (BPI) {
   1993     for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
   1994       uint32_t IWeight = I->ExtraWeight;
   1995       UnhandledWeights += IWeight;
   1996       for (CaseItr J = CR.Range.first; J < I; ++J) {
   1997         uint32_t JWeight = J->ExtraWeight;
   1998         if (IWeight > JWeight)
   1999           std::swap(*I, *J);
   2000       }
   2001     }
   2002   }
   2003   // Rearrange the case blocks so that the last one falls through if possible.
   2004   Case &BackCase = *(CR.Range.second-1);
   2005   if (Size > 1 &&
   2006       NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
   2007     // The last case block won't fall through into 'NextBlock' if we emit the
   2008     // branches in this order.  See if rearranging a case value would help.
   2009     // We start at the bottom as it's the case with the least weight.
   2010     for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
   2011       if (I->BB == NextBlock) {
   2012         std::swap(*I, BackCase);
   2013         break;
   2014       }
   2015     }
   2016   }
   2017 
   2018   // Create a CaseBlock record representing a conditional branch to
   2019   // the Case's target mbb if the value being switched on SV is equal
   2020   // to C.
   2021   MachineBasicBlock *CurBlock = CR.CaseBB;
   2022   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
   2023     MachineBasicBlock *FallThrough;
   2024     if (I != E-1) {
   2025       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
   2026       CurMF->insert(BBI, FallThrough);
   2027 
   2028       // Put SV in a virtual register to make it available from the new blocks.
   2029       ExportFromCurrentBlock(SV);
   2030     } else {
   2031       // If the last case doesn't match, go to the default block.
   2032       FallThrough = Default;
   2033     }
   2034 
   2035     const Value *RHS, *LHS, *MHS;
   2036     ISD::CondCode CC;
   2037     if (I->High == I->Low) {
   2038       // This is just small small case range :) containing exactly 1 case
   2039       CC = ISD::SETEQ;
   2040       LHS = SV; RHS = I->High; MHS = NULL;
   2041     } else {
   2042       CC = ISD::SETCC_INVALID;
   2043       LHS = I->Low; MHS = SV; RHS = I->High;
   2044     }
   2045 
   2046     // The false weight should be sum of all un-handled cases.
   2047     UnhandledWeights -= I->ExtraWeight;
   2048     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
   2049                  /* me */ CurBlock,
   2050                  /* trueweight */ I->ExtraWeight,
   2051                  /* falseweight */ UnhandledWeights);
   2052 
   2053     // If emitting the first comparison, just call visitSwitchCase to emit the
   2054     // code into the current block.  Otherwise, push the CaseBlock onto the
   2055     // vector to be later processed by SDISel, and insert the node's MBB
   2056     // before the next MBB.
   2057     if (CurBlock == SwitchBB)
   2058       visitSwitchCase(CB, SwitchBB);
   2059     else
   2060       SwitchCases.push_back(CB);
   2061 
   2062     CurBlock = FallThrough;
   2063   }
   2064 
   2065   return true;
   2066 }
   2067 
   2068 static inline bool areJTsAllowed(const TargetLowering &TLI) {
   2069   return TLI.supportJumpTables() &&
   2070           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
   2071            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
   2072 }
   2073 
   2074 static APInt ComputeRange(const APInt &First, const APInt &Last) {
   2075   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
   2076   APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
   2077   return (LastExt - FirstExt + 1ULL);
   2078 }
   2079 
   2080 /// handleJTSwitchCase - Emit jumptable for current switch case range
   2081 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
   2082                                              CaseRecVector &WorkList,
   2083                                              const Value *SV,
   2084                                              MachineBasicBlock *Default,
   2085                                              MachineBasicBlock *SwitchBB) {
   2086   Case& FrontCase = *CR.Range.first;
   2087   Case& BackCase  = *(CR.Range.second-1);
   2088 
   2089   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
   2090   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
   2091 
   2092   APInt TSize(First.getBitWidth(), 0);
   2093   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
   2094     TSize += I->size();
   2095 
   2096   if (!areJTsAllowed(TLI) || TSize.ult(4))
   2097     return false;
   2098 
   2099   APInt Range = ComputeRange(First, Last);
   2100   // The density is TSize / Range. Require at least 40%.
   2101   // It should not be possible for IntTSize to saturate for sane code, but make
   2102   // sure we handle Range saturation correctly.
   2103   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
   2104   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
   2105   if (IntTSize * 10 < IntRange * 4)
   2106     return false;
   2107 
   2108   DEBUG(dbgs() << "Lowering jump table\n"
   2109                << "First entry: " << First << ". Last entry: " << Last << '\n'
   2110                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
   2111 
   2112   // Get the MachineFunction which holds the current MBB.  This is used when
   2113   // inserting any additional MBBs necessary to represent the switch.
   2114   MachineFunction *CurMF = FuncInfo.MF;
   2115 
   2116   // Figure out which block is immediately after the current one.
   2117   MachineFunction::iterator BBI = CR.CaseBB;
   2118   ++BBI;
   2119 
   2120   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   2121 
   2122   // Create a new basic block to hold the code for loading the address
   2123   // of the jump table, and jumping to it.  Update successor information;
   2124   // we will either branch to the default case for the switch, or the jump
   2125   // table.
   2126   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2127   CurMF->insert(BBI, JumpTableBB);
   2128 
   2129   addSuccessorWithWeight(CR.CaseBB, Default);
   2130   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
   2131 
   2132   // Build a vector of destination BBs, corresponding to each target
   2133   // of the jump table. If the value of the jump table slot corresponds to
   2134   // a case statement, push the case's BB onto the vector, otherwise, push
   2135   // the default BB.
   2136   std::vector<MachineBasicBlock*> DestBBs;
   2137   APInt TEI = First;
   2138   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
   2139     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
   2140     const APInt &High = cast<ConstantInt>(I->High)->getValue();
   2141 
   2142     if (Low.ule(TEI) && TEI.ule(High)) {
   2143       DestBBs.push_back(I->BB);
   2144       if (TEI==High)
   2145         ++I;
   2146     } else {
   2147       DestBBs.push_back(Default);
   2148     }
   2149   }
   2150 
   2151   // Calculate weight for each unique destination in CR.
   2152   DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
   2153   if (FuncInfo.BPI)
   2154     for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
   2155       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
   2156           DestWeights.find(I->BB);
   2157       if (Itr != DestWeights.end())
   2158         Itr->second += I->ExtraWeight;
   2159       else
   2160         DestWeights[I->BB] = I->ExtraWeight;
   2161     }
   2162 
   2163   // Update successor info. Add one edge to each unique successor.
   2164   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
   2165   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
   2166          E = DestBBs.end(); I != E; ++I) {
   2167     if (!SuccsHandled[(*I)->getNumber()]) {
   2168       SuccsHandled[(*I)->getNumber()] = true;
   2169       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
   2170           DestWeights.find(*I);
   2171       addSuccessorWithWeight(JumpTableBB, *I,
   2172                              Itr != DestWeights.end() ? Itr->second : 0);
   2173     }
   2174   }
   2175 
   2176   // Create a jump table index for this jump table.
   2177   unsigned JTEncoding = TLI.getJumpTableEncoding();
   2178   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
   2179                        ->createJumpTableIndex(DestBBs);
   2180 
   2181   // Set the jump table information so that we can codegen it as a second
   2182   // MachineBasicBlock
   2183   JumpTable JT(-1U, JTI, JumpTableBB, Default);
   2184   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
   2185   if (CR.CaseBB == SwitchBB)
   2186     visitJumpTableHeader(JT, JTH, SwitchBB);
   2187 
   2188   JTCases.push_back(JumpTableBlock(JTH, JT));
   2189   return true;
   2190 }
   2191 
   2192 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
   2193 /// 2 subtrees.
   2194 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
   2195                                                   CaseRecVector& WorkList,
   2196                                                   const Value* SV,
   2197                                                   MachineBasicBlock *Default,
   2198                                                   MachineBasicBlock *SwitchBB) {
   2199   // Get the MachineFunction which holds the current MBB.  This is used when
   2200   // inserting any additional MBBs necessary to represent the switch.
   2201   MachineFunction *CurMF = FuncInfo.MF;
   2202 
   2203   // Figure out which block is immediately after the current one.
   2204   MachineFunction::iterator BBI = CR.CaseBB;
   2205   ++BBI;
   2206 
   2207   Case& FrontCase = *CR.Range.first;
   2208   Case& BackCase  = *(CR.Range.second-1);
   2209   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   2210 
   2211   // Size is the number of Cases represented by this range.
   2212   unsigned Size = CR.Range.second - CR.Range.first;
   2213 
   2214   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
   2215   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
   2216   double FMetric = 0;
   2217   CaseItr Pivot = CR.Range.first + Size/2;
   2218 
   2219   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
   2220   // (heuristically) allow us to emit JumpTable's later.
   2221   APInt TSize(First.getBitWidth(), 0);
   2222   for (CaseItr I = CR.Range.first, E = CR.Range.second;
   2223        I!=E; ++I)
   2224     TSize += I->size();
   2225 
   2226   APInt LSize = FrontCase.size();
   2227   APInt RSize = TSize-LSize;
   2228   DEBUG(dbgs() << "Selecting best pivot: \n"
   2229                << "First: " << First << ", Last: " << Last <<'\n'
   2230                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
   2231   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
   2232        J!=E; ++I, ++J) {
   2233     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
   2234     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
   2235     APInt Range = ComputeRange(LEnd, RBegin);
   2236     assert((Range - 2ULL).isNonNegative() &&
   2237            "Invalid case distance");
   2238     // Use volatile double here to avoid excess precision issues on some hosts,
   2239     // e.g. that use 80-bit X87 registers.
   2240     volatile double LDensity =
   2241        (double)LSize.roundToDouble() /
   2242                            (LEnd - First + 1ULL).roundToDouble();
   2243     volatile double RDensity =
   2244       (double)RSize.roundToDouble() /
   2245                            (Last - RBegin + 1ULL).roundToDouble();
   2246     double Metric = Range.logBase2()*(LDensity+RDensity);
   2247     // Should always split in some non-trivial place
   2248     DEBUG(dbgs() <<"=>Step\n"
   2249                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
   2250                  << "LDensity: " << LDensity
   2251                  << ", RDensity: " << RDensity << '\n'
   2252                  << "Metric: " << Metric << '\n');
   2253     if (FMetric < Metric) {
   2254       Pivot = J;
   2255       FMetric = Metric;
   2256       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
   2257     }
   2258 
   2259     LSize += J->size();
   2260     RSize -= J->size();
   2261   }
   2262   if (areJTsAllowed(TLI)) {
   2263     // If our case is dense we *really* should handle it earlier!
   2264     assert((FMetric > 0) && "Should handle dense range earlier!");
   2265   } else {
   2266     Pivot = CR.Range.first + Size/2;
   2267   }
   2268 
   2269   CaseRange LHSR(CR.Range.first, Pivot);
   2270   CaseRange RHSR(Pivot, CR.Range.second);
   2271   const Constant *C = Pivot->Low;
   2272   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
   2273 
   2274   // We know that we branch to the LHS if the Value being switched on is
   2275   // less than the Pivot value, C.  We use this to optimize our binary
   2276   // tree a bit, by recognizing that if SV is greater than or equal to the
   2277   // LHS's Case Value, and that Case Value is exactly one less than the
   2278   // Pivot's Value, then we can branch directly to the LHS's Target,
   2279   // rather than creating a leaf node for it.
   2280   if ((LHSR.second - LHSR.first) == 1 &&
   2281       LHSR.first->High == CR.GE &&
   2282       cast<ConstantInt>(C)->getValue() ==
   2283       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
   2284     TrueBB = LHSR.first->BB;
   2285   } else {
   2286     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2287     CurMF->insert(BBI, TrueBB);
   2288     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
   2289 
   2290     // Put SV in a virtual register to make it available from the new blocks.
   2291     ExportFromCurrentBlock(SV);
   2292   }
   2293 
   2294   // Similar to the optimization above, if the Value being switched on is
   2295   // known to be less than the Constant CR.LT, and the current Case Value
   2296   // is CR.LT - 1, then we can branch directly to the target block for
   2297   // the current Case Value, rather than emitting a RHS leaf node for it.
   2298   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
   2299       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
   2300       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
   2301     FalseBB = RHSR.first->BB;
   2302   } else {
   2303     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2304     CurMF->insert(BBI, FalseBB);
   2305     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
   2306 
   2307     // Put SV in a virtual register to make it available from the new blocks.
   2308     ExportFromCurrentBlock(SV);
   2309   }
   2310 
   2311   // Create a CaseBlock record representing a conditional branch to
   2312   // the LHS node if the value being switched on SV is less than C.
   2313   // Otherwise, branch to LHS.
   2314   CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
   2315 
   2316   if (CR.CaseBB == SwitchBB)
   2317     visitSwitchCase(CB, SwitchBB);
   2318   else
   2319     SwitchCases.push_back(CB);
   2320 
   2321   return true;
   2322 }
   2323 
   2324 /// handleBitTestsSwitchCase - if current case range has few destination and
   2325 /// range span less, than machine word bitwidth, encode case range into series
   2326 /// of masks and emit bit tests with these masks.
   2327 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
   2328                                                    CaseRecVector& WorkList,
   2329                                                    const Value* SV,
   2330                                                    MachineBasicBlock* Default,
   2331                                                    MachineBasicBlock *SwitchBB){
   2332   EVT PTy = TLI.getPointerTy();
   2333   unsigned IntPtrBits = PTy.getSizeInBits();
   2334 
   2335   Case& FrontCase = *CR.Range.first;
   2336   Case& BackCase  = *(CR.Range.second-1);
   2337 
   2338   // Get the MachineFunction which holds the current MBB.  This is used when
   2339   // inserting any additional MBBs necessary to represent the switch.
   2340   MachineFunction *CurMF = FuncInfo.MF;
   2341 
   2342   // If target does not have legal shift left, do not emit bit tests at all.
   2343   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
   2344     return false;
   2345 
   2346   size_t numCmps = 0;
   2347   for (CaseItr I = CR.Range.first, E = CR.Range.second;
   2348        I!=E; ++I) {
   2349     // Single case counts one, case range - two.
   2350     numCmps += (I->Low == I->High ? 1 : 2);
   2351   }
   2352 
   2353   // Count unique destinations
   2354   SmallSet<MachineBasicBlock*, 4> Dests;
   2355   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
   2356     Dests.insert(I->BB);
   2357     if (Dests.size() > 3)
   2358       // Don't bother the code below, if there are too much unique destinations
   2359       return false;
   2360   }
   2361   DEBUG(dbgs() << "Total number of unique destinations: "
   2362         << Dests.size() << '\n'
   2363         << "Total number of comparisons: " << numCmps << '\n');
   2364 
   2365   // Compute span of values.
   2366   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
   2367   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
   2368   APInt cmpRange = maxValue - minValue;
   2369 
   2370   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
   2371                << "Low bound: " << minValue << '\n'
   2372                << "High bound: " << maxValue << '\n');
   2373 
   2374   if (cmpRange.uge(IntPtrBits) ||
   2375       (!(Dests.size() == 1 && numCmps >= 3) &&
   2376        !(Dests.size() == 2 && numCmps >= 5) &&
   2377        !(Dests.size() >= 3 && numCmps >= 6)))
   2378     return false;
   2379 
   2380   DEBUG(dbgs() << "Emitting bit tests\n");
   2381   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
   2382 
   2383   // Optimize the case where all the case values fit in a
   2384   // word without having to subtract minValue. In this case,
   2385   // we can optimize away the subtraction.
   2386   if (maxValue.ult(IntPtrBits)) {
   2387     cmpRange = maxValue;
   2388   } else {
   2389     lowBound = minValue;
   2390   }
   2391 
   2392   CaseBitsVector CasesBits;
   2393   unsigned i, count = 0;
   2394 
   2395   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
   2396     MachineBasicBlock* Dest = I->BB;
   2397     for (i = 0; i < count; ++i)
   2398       if (Dest == CasesBits[i].BB)
   2399         break;
   2400 
   2401     if (i == count) {
   2402       assert((count < 3) && "Too much destinations to test!");
   2403       CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
   2404       count++;
   2405     }
   2406 
   2407     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
   2408     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
   2409 
   2410     uint64_t lo = (lowValue - lowBound).getZExtValue();
   2411     uint64_t hi = (highValue - lowBound).getZExtValue();
   2412     CasesBits[i].ExtraWeight += I->ExtraWeight;
   2413 
   2414     for (uint64_t j = lo; j <= hi; j++) {
   2415       CasesBits[i].Mask |=  1ULL << j;
   2416       CasesBits[i].Bits++;
   2417     }
   2418 
   2419   }
   2420   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
   2421 
   2422   BitTestInfo BTC;
   2423 
   2424   // Figure out which block is immediately after the current one.
   2425   MachineFunction::iterator BBI = CR.CaseBB;
   2426   ++BBI;
   2427 
   2428   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
   2429 
   2430   DEBUG(dbgs() << "Cases:\n");
   2431   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
   2432     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
   2433                  << ", Bits: " << CasesBits[i].Bits
   2434                  << ", BB: " << CasesBits[i].BB << '\n');
   2435 
   2436     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
   2437     CurMF->insert(BBI, CaseBB);
   2438     BTC.push_back(BitTestCase(CasesBits[i].Mask,
   2439                               CaseBB,
   2440                               CasesBits[i].BB, CasesBits[i].ExtraWeight));
   2441 
   2442     // Put SV in a virtual register to make it available from the new blocks.
   2443     ExportFromCurrentBlock(SV);
   2444   }
   2445 
   2446   BitTestBlock BTB(lowBound, cmpRange, SV,
   2447                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
   2448                    CR.CaseBB, Default, BTC);
   2449 
   2450   if (CR.CaseBB == SwitchBB)
   2451     visitBitTestHeader(BTB, SwitchBB);
   2452 
   2453   BitTestCases.push_back(BTB);
   2454 
   2455   return true;
   2456 }
   2457 
   2458 /// Clusterify - Transform simple list of Cases into list of CaseRange's
   2459 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
   2460                                        const SwitchInst& SI) {
   2461 
   2462   /// Use a shorter form of declaration, and also
   2463   /// show the we want to use CRSBuilder as Clusterifier.
   2464   typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
   2465 
   2466   Clusterifier TheClusterifier;
   2467 
   2468   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   2469   // Start with "simple" cases
   2470   for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
   2471        i != e; ++i) {
   2472     const BasicBlock *SuccBB = i.getCaseSuccessor();
   2473     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
   2474 
   2475     TheClusterifier.add(i.getCaseValueEx(), SMBB,
   2476         BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
   2477   }
   2478 
   2479   TheClusterifier.optimize();
   2480 
   2481   size_t numCmps = 0;
   2482   for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
   2483        e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
   2484     Clusterifier::Cluster &C = *i;
   2485     // Update edge weight for the cluster.
   2486     unsigned W = C.first.Weight;
   2487 
   2488     // FIXME: Currently work with ConstantInt based numbers.
   2489     // Changing it to APInt based is a pretty heavy for this commit.
   2490     Cases.push_back(Case(C.first.getLow().toConstantInt(),
   2491                          C.first.getHigh().toConstantInt(), C.second, W));
   2492 
   2493     if (C.first.getLow() != C.first.getHigh())
   2494     // A range counts double, since it requires two compares.
   2495     ++numCmps;
   2496   }
   2497 
   2498   return numCmps;
   2499 }
   2500 
   2501 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
   2502                                            MachineBasicBlock *Last) {
   2503   // Update JTCases.
   2504   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
   2505     if (JTCases[i].first.HeaderBB == First)
   2506       JTCases[i].first.HeaderBB = Last;
   2507 
   2508   // Update BitTestCases.
   2509   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
   2510     if (BitTestCases[i].Parent == First)
   2511       BitTestCases[i].Parent = Last;
   2512 }
   2513 
   2514 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
   2515   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
   2516 
   2517   // Figure out which block is immediately after the current one.
   2518   MachineBasicBlock *NextBlock = 0;
   2519   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
   2520 
   2521   // If there is only the default destination, branch to it if it is not the
   2522   // next basic block.  Otherwise, just fall through.
   2523   if (!SI.getNumCases()) {
   2524     // Update machine-CFG edges.
   2525 
   2526     // If this is not a fall-through branch, emit the branch.
   2527     SwitchMBB->addSuccessor(Default);
   2528     if (Default != NextBlock)
   2529       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
   2530                               MVT::Other, getControlRoot(),
   2531                               DAG.getBasicBlock(Default)));
   2532 
   2533     return;
   2534   }
   2535 
   2536   // If there are any non-default case statements, create a vector of Cases
   2537   // representing each one, and sort the vector so that we can efficiently
   2538   // create a binary search tree from them.
   2539   CaseVector Cases;
   2540   size_t numCmps = Clusterify(Cases, SI);
   2541   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
   2542                << ". Total compares: " << numCmps << '\n');
   2543   (void)numCmps;
   2544 
   2545   // Get the Value to be switched on and default basic blocks, which will be
   2546   // inserted into CaseBlock records, representing basic blocks in the binary
   2547   // search tree.
   2548   const Value *SV = SI.getCondition();
   2549 
   2550   // Push the initial CaseRec onto the worklist
   2551   CaseRecVector WorkList;
   2552   WorkList.push_back(CaseRec(SwitchMBB,0,0,
   2553                              CaseRange(Cases.begin(),Cases.end())));
   2554 
   2555   while (!WorkList.empty()) {
   2556     // Grab a record representing a case range to process off the worklist
   2557     CaseRec CR = WorkList.back();
   2558     WorkList.pop_back();
   2559 
   2560     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
   2561       continue;
   2562 
   2563     // If the range has few cases (two or less) emit a series of specific
   2564     // tests.
   2565     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
   2566       continue;
   2567 
   2568     // If the switch has more than 5 blocks, and at least 40% dense, and the
   2569     // target supports indirect branches, then emit a jump table rather than
   2570     // lowering the switch to a binary tree of conditional branches.
   2571     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
   2572       continue;
   2573 
   2574     // Emit binary tree. We need to pick a pivot, and push left and right ranges
   2575     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
   2576     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
   2577   }
   2578 }
   2579 
   2580 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
   2581   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
   2582 
   2583   // Update machine-CFG edges with unique successors.
   2584   SmallVector<BasicBlock*, 32> succs;
   2585   succs.reserve(I.getNumSuccessors());
   2586   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
   2587     succs.push_back(I.getSuccessor(i));
   2588   array_pod_sort(succs.begin(), succs.end());
   2589   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
   2590   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
   2591     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
   2592     addSuccessorWithWeight(IndirectBrMBB, Succ);
   2593   }
   2594 
   2595   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
   2596                           MVT::Other, getControlRoot(),
   2597                           getValue(I.getAddress())));
   2598 }
   2599 
   2600 void SelectionDAGBuilder::visitFSub(const User &I) {
   2601   // -0.0 - X --> fneg
   2602   Type *Ty = I.getType();
   2603   if (isa<Constant>(I.getOperand(0)) &&
   2604       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
   2605     SDValue Op2 = getValue(I.getOperand(1));
   2606     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
   2607                              Op2.getValueType(), Op2));
   2608     return;
   2609   }
   2610 
   2611   visitBinary(I, ISD::FSUB);
   2612 }
   2613 
   2614 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
   2615   SDValue Op1 = getValue(I.getOperand(0));
   2616   SDValue Op2 = getValue(I.getOperand(1));
   2617   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
   2618                            Op1.getValueType(), Op1, Op2));
   2619 }
   2620 
   2621 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
   2622   SDValue Op1 = getValue(I.getOperand(0));
   2623   SDValue Op2 = getValue(I.getOperand(1));
   2624 
   2625   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
   2626 
   2627   // Coerce the shift amount to the right type if we can.
   2628   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
   2629     unsigned ShiftSize = ShiftTy.getSizeInBits();
   2630     unsigned Op2Size = Op2.getValueType().getSizeInBits();
   2631     DebugLoc DL = getCurDebugLoc();
   2632 
   2633     // If the operand is smaller than the shift count type, promote it.
   2634     if (ShiftSize > Op2Size)
   2635       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
   2636 
   2637     // If the operand is larger than the shift count type but the shift
   2638     // count type has enough bits to represent any shift value, truncate
   2639     // it now. This is a common case and it exposes the truncate to
   2640     // optimization early.
   2641     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
   2642       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
   2643     // Otherwise we'll need to temporarily settle for some other convenient
   2644     // type.  Type legalization will make adjustments once the shiftee is split.
   2645     else
   2646       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
   2647   }
   2648 
   2649   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
   2650                            Op1.getValueType(), Op1, Op2));
   2651 }
   2652 
   2653 void SelectionDAGBuilder::visitSDiv(const User &I) {
   2654   SDValue Op1 = getValue(I.getOperand(0));
   2655   SDValue Op2 = getValue(I.getOperand(1));
   2656 
   2657   // Turn exact SDivs into multiplications.
   2658   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
   2659   // exact bit.
   2660   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
   2661       !isa<ConstantSDNode>(Op1) &&
   2662       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
   2663     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
   2664   else
   2665     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
   2666                              Op1, Op2));
   2667 }
   2668 
   2669 void SelectionDAGBuilder::visitICmp(const User &I) {
   2670   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
   2671   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
   2672     predicate = IC->getPredicate();
   2673   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
   2674     predicate = ICmpInst::Predicate(IC->getPredicate());
   2675   SDValue Op1 = getValue(I.getOperand(0));
   2676   SDValue Op2 = getValue(I.getOperand(1));
   2677   ISD::CondCode Opcode = getICmpCondCode(predicate);
   2678 
   2679   EVT DestVT = TLI.getValueType(I.getType());
   2680   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
   2681 }
   2682 
   2683 void SelectionDAGBuilder::visitFCmp(const User &I) {
   2684   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
   2685   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
   2686     predicate = FC->getPredicate();
   2687   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
   2688     predicate = FCmpInst::Predicate(FC->getPredicate());
   2689   SDValue Op1 = getValue(I.getOperand(0));
   2690   SDValue Op2 = getValue(I.getOperand(1));
   2691   ISD::CondCode Condition = getFCmpCondCode(predicate);
   2692   if (TM.Options.NoNaNsFPMath)
   2693     Condition = getFCmpCodeWithoutNaN(Condition);
   2694   EVT DestVT = TLI.getValueType(I.getType());
   2695   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
   2696 }
   2697 
   2698 void SelectionDAGBuilder::visitSelect(const User &I) {
   2699   SmallVector<EVT, 4> ValueVTs;
   2700   ComputeValueVTs(TLI, I.getType(), ValueVTs);
   2701   unsigned NumValues = ValueVTs.size();
   2702   if (NumValues == 0) return;
   2703 
   2704   SmallVector<SDValue, 4> Values(NumValues);
   2705   SDValue Cond     = getValue(I.getOperand(0));
   2706   SDValue TrueVal  = getValue(I.getOperand(1));
   2707   SDValue FalseVal = getValue(I.getOperand(2));
   2708   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
   2709     ISD::VSELECT : ISD::SELECT;
   2710 
   2711   for (unsigned i = 0; i != NumValues; ++i)
   2712     Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
   2713                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
   2714                             Cond,
   2715                             SDValue(TrueVal.getNode(),
   2716                                     TrueVal.getResNo() + i),
   2717                             SDValue(FalseVal.getNode(),
   2718                                     FalseVal.getResNo() + i));
   2719 
   2720   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   2721                            DAG.getVTList(&ValueVTs[0], NumValues),
   2722                            &Values[0], NumValues));
   2723 }
   2724 
   2725 void SelectionDAGBuilder::visitTrunc(const User &I) {
   2726   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
   2727   SDValue N = getValue(I.getOperand(0));
   2728   EVT DestVT = TLI.getValueType(I.getType());
   2729   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
   2730 }
   2731 
   2732 void SelectionDAGBuilder::visitZExt(const User &I) {
   2733   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
   2734   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
   2735   SDValue N = getValue(I.getOperand(0));
   2736   EVT DestVT = TLI.getValueType(I.getType());
   2737   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
   2738 }
   2739 
   2740 void SelectionDAGBuilder::visitSExt(const User &I) {
   2741   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
   2742   // SExt also can't be a cast to bool for same reason. So, nothing much to do
   2743   SDValue N = getValue(I.getOperand(0));
   2744   EVT DestVT = TLI.getValueType(I.getType());
   2745   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
   2746 }
   2747 
   2748 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
   2749   // FPTrunc is never a no-op cast, no need to check
   2750   SDValue N = getValue(I.getOperand(0));
   2751   EVT DestVT = TLI.getValueType(I.getType());
   2752   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
   2753                            DestVT, N,
   2754                            DAG.getTargetConstant(0, TLI.getPointerTy())));
   2755 }
   2756 
   2757 void SelectionDAGBuilder::visitFPExt(const User &I){
   2758   // FPExt is never a no-op cast, no need to check
   2759   SDValue N = getValue(I.getOperand(0));
   2760   EVT DestVT = TLI.getValueType(I.getType());
   2761   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
   2762 }
   2763 
   2764 void SelectionDAGBuilder::visitFPToUI(const User &I) {
   2765   // FPToUI is never a no-op cast, no need to check
   2766   SDValue N = getValue(I.getOperand(0));
   2767   EVT DestVT = TLI.getValueType(I.getType());
   2768   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
   2769 }
   2770 
   2771 void SelectionDAGBuilder::visitFPToSI(const User &I) {
   2772   // FPToSI is never a no-op cast, no need to check
   2773   SDValue N = getValue(I.getOperand(0));
   2774   EVT DestVT = TLI.getValueType(I.getType());
   2775   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
   2776 }
   2777 
   2778 void SelectionDAGBuilder::visitUIToFP(const User &I) {
   2779   // UIToFP is never a no-op cast, no need to check
   2780   SDValue N = getValue(I.getOperand(0));
   2781   EVT DestVT = TLI.getValueType(I.getType());
   2782   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
   2783 }
   2784 
   2785 void SelectionDAGBuilder::visitSIToFP(const User &I){
   2786   // SIToFP is never a no-op cast, no need to check
   2787   SDValue N = getValue(I.getOperand(0));
   2788   EVT DestVT = TLI.getValueType(I.getType());
   2789   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
   2790 }
   2791 
   2792 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
   2793   // What to do depends on the size of the integer and the size of the pointer.
   2794   // We can either truncate, zero extend, or no-op, accordingly.
   2795   SDValue N = getValue(I.getOperand(0));
   2796   EVT DestVT = TLI.getValueType(I.getType());
   2797   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
   2798 }
   2799 
   2800 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
   2801   // What to do depends on the size of the integer and the size of the pointer.
   2802   // We can either truncate, zero extend, or no-op, accordingly.
   2803   SDValue N = getValue(I.getOperand(0));
   2804   EVT DestVT = TLI.getValueType(I.getType());
   2805   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
   2806 }
   2807 
   2808 void SelectionDAGBuilder::visitBitCast(const User &I) {
   2809   SDValue N = getValue(I.getOperand(0));
   2810   EVT DestVT = TLI.getValueType(I.getType());
   2811 
   2812   // BitCast assures us that source and destination are the same size so this is
   2813   // either a BITCAST or a no-op.
   2814   if (DestVT != N.getValueType())
   2815     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
   2816                              DestVT, N)); // convert types.
   2817   else
   2818     setValue(&I, N);            // noop cast.
   2819 }
   2820 
   2821 void SelectionDAGBuilder::visitInsertElement(const User &I) {
   2822   SDValue InVec = getValue(I.getOperand(0));
   2823   SDValue InVal = getValue(I.getOperand(1));
   2824   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
   2825                               TLI.getPointerTy(),
   2826                               getValue(I.getOperand(2)));
   2827   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
   2828                            TLI.getValueType(I.getType()),
   2829                            InVec, InVal, InIdx));
   2830 }
   2831 
   2832 void SelectionDAGBuilder::visitExtractElement(const User &I) {
   2833   SDValue InVec = getValue(I.getOperand(0));
   2834   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
   2835                               TLI.getPointerTy(),
   2836                               getValue(I.getOperand(1)));
   2837   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
   2838                            TLI.getValueType(I.getType()), InVec, InIdx));
   2839 }
   2840 
   2841 // Utility for visitShuffleVector - Return true if every element in Mask,
   2842 // beginning from position Pos and ending in Pos+Size, falls within the
   2843 // specified sequential range [L, L+Pos). or is undef.
   2844 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
   2845                                 unsigned Pos, unsigned Size, int Low) {
   2846   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
   2847     if (Mask[i] >= 0 && Mask[i] != Low)
   2848       return false;
   2849   return true;
   2850 }
   2851 
   2852 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
   2853   SDValue Src1 = getValue(I.getOperand(0));
   2854   SDValue Src2 = getValue(I.getOperand(1));
   2855 
   2856   SmallVector<int, 8> Mask;
   2857   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
   2858   unsigned MaskNumElts = Mask.size();
   2859 
   2860   EVT VT = TLI.getValueType(I.getType());
   2861   EVT SrcVT = Src1.getValueType();
   2862   unsigned SrcNumElts = SrcVT.getVectorNumElements();
   2863 
   2864   if (SrcNumElts == MaskNumElts) {
   2865     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
   2866                                       &Mask[0]));
   2867     return;
   2868   }
   2869 
   2870   // Normalize the shuffle vector since mask and vector length don't match.
   2871   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
   2872     // Mask is longer than the source vectors and is a multiple of the source
   2873     // vectors.  We can use concatenate vector to make the mask and vectors
   2874     // lengths match.
   2875     if (SrcNumElts*2 == MaskNumElts) {
   2876       // First check for Src1 in low and Src2 in high
   2877       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
   2878           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
   2879         // The shuffle is concatenating two vectors together.
   2880         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
   2881                                  VT, Src1, Src2));
   2882         return;
   2883       }
   2884       // Then check for Src2 in low and Src1 in high
   2885       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
   2886           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
   2887         // The shuffle is concatenating two vectors together.
   2888         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
   2889                                  VT, Src2, Src1));
   2890         return;
   2891       }
   2892     }
   2893 
   2894     // Pad both vectors with undefs to make them the same length as the mask.
   2895     unsigned NumConcat = MaskNumElts / SrcNumElts;
   2896     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
   2897     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
   2898     SDValue UndefVal = DAG.getUNDEF(SrcVT);
   2899 
   2900     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
   2901     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
   2902     MOps1[0] = Src1;
   2903     MOps2[0] = Src2;
   2904 
   2905     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
   2906                                                   getCurDebugLoc(), VT,
   2907                                                   &MOps1[0], NumConcat);
   2908     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
   2909                                                   getCurDebugLoc(), VT,
   2910                                                   &MOps2[0], NumConcat);
   2911 
   2912     // Readjust mask for new input vector length.
   2913     SmallVector<int, 8> MappedOps;
   2914     for (unsigned i = 0; i != MaskNumElts; ++i) {
   2915       int Idx = Mask[i];
   2916       if (Idx >= (int)SrcNumElts)
   2917         Idx -= SrcNumElts - MaskNumElts;
   2918       MappedOps.push_back(Idx);
   2919     }
   2920 
   2921     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
   2922                                       &MappedOps[0]));
   2923     return;
   2924   }
   2925 
   2926   if (SrcNumElts > MaskNumElts) {
   2927     // Analyze the access pattern of the vector to see if we can extract
   2928     // two subvectors and do the shuffle. The analysis is done by calculating
   2929     // the range of elements the mask access on both vectors.
   2930     int MinRange[2] = { static_cast<int>(SrcNumElts),
   2931                         static_cast<int>(SrcNumElts)};
   2932     int MaxRange[2] = {-1, -1};
   2933 
   2934     for (unsigned i = 0; i != MaskNumElts; ++i) {
   2935       int Idx = Mask[i];
   2936       unsigned Input = 0;
   2937       if (Idx < 0)
   2938         continue;
   2939 
   2940       if (Idx >= (int)SrcNumElts) {
   2941         Input = 1;
   2942         Idx -= SrcNumElts;
   2943       }
   2944       if (Idx > MaxRange[Input])
   2945         MaxRange[Input] = Idx;
   2946       if (Idx < MinRange[Input])
   2947         MinRange[Input] = Idx;
   2948     }
   2949 
   2950     // Check if the access is smaller than the vector size and can we find
   2951     // a reasonable extract index.
   2952     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
   2953                                    // Extract.
   2954     int StartIdx[2];  // StartIdx to extract from
   2955     for (unsigned Input = 0; Input < 2; ++Input) {
   2956       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
   2957         RangeUse[Input] = 0; // Unused
   2958         StartIdx[Input] = 0;
   2959         continue;
   2960       }
   2961 
   2962       // Find a good start index that is a multiple of the mask length. Then
   2963       // see if the rest of the elements are in range.
   2964       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
   2965       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
   2966           StartIdx[Input] + MaskNumElts <= SrcNumElts)
   2967         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
   2968     }
   2969 
   2970     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
   2971       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
   2972       return;
   2973     }
   2974     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
   2975       // Extract appropriate subvector and generate a vector shuffle
   2976       for (unsigned Input = 0; Input < 2; ++Input) {
   2977         SDValue &Src = Input == 0 ? Src1 : Src2;
   2978         if (RangeUse[Input] == 0)
   2979           Src = DAG.getUNDEF(VT);
   2980         else
   2981           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
   2982                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
   2983       }
   2984 
   2985       // Calculate new mask.
   2986       SmallVector<int, 8> MappedOps;
   2987       for (unsigned i = 0; i != MaskNumElts; ++i) {
   2988         int Idx = Mask[i];
   2989         if (Idx >= 0) {
   2990           if (Idx < (int)SrcNumElts)
   2991             Idx -= StartIdx[0];
   2992           else
   2993             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
   2994         }
   2995         MappedOps.push_back(Idx);
   2996       }
   2997 
   2998       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
   2999                                         &MappedOps[0]));
   3000       return;
   3001     }
   3002   }
   3003 
   3004   // We can't use either concat vectors or extract subvectors so fall back to
   3005   // replacing the shuffle with extract and build vector.
   3006   // to insert and build vector.
   3007   EVT EltVT = VT.getVectorElementType();
   3008   EVT PtrVT = TLI.getPointerTy();
   3009   SmallVector<SDValue,8> Ops;
   3010   for (unsigned i = 0; i != MaskNumElts; ++i) {
   3011     int Idx = Mask[i];
   3012     SDValue Res;
   3013 
   3014     if (Idx < 0) {
   3015       Res = DAG.getUNDEF(EltVT);
   3016     } else {
   3017       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
   3018       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
   3019 
   3020       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
   3021                         EltVT, Src, DAG.getConstant(Idx, PtrVT));
   3022     }
   3023 
   3024     Ops.push_back(Res);
   3025   }
   3026 
   3027   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
   3028                            VT, &Ops[0], Ops.size()));
   3029 }
   3030 
   3031 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
   3032   const Value *Op0 = I.getOperand(0);
   3033   const Value *Op1 = I.getOperand(1);
   3034   Type *AggTy = I.getType();
   3035   Type *ValTy = Op1->getType();
   3036   bool IntoUndef = isa<UndefValue>(Op0);
   3037   bool FromUndef = isa<UndefValue>(Op1);
   3038 
   3039   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
   3040 
   3041   SmallVector<EVT, 4> AggValueVTs;
   3042   ComputeValueVTs(TLI, AggTy, AggValueVTs);
   3043   SmallVector<EVT, 4> ValValueVTs;
   3044   ComputeValueVTs(TLI, ValTy, ValValueVTs);
   3045 
   3046   unsigned NumAggValues = AggValueVTs.size();
   3047   unsigned NumValValues = ValValueVTs.size();
   3048   SmallVector<SDValue, 4> Values(NumAggValues);
   3049 
   3050   SDValue Agg = getValue(Op0);
   3051   unsigned i = 0;
   3052   // Copy the beginning value(s) from the original aggregate.
   3053   for (; i != LinearIndex; ++i)
   3054     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   3055                 SDValue(Agg.getNode(), Agg.getResNo() + i);
   3056   // Copy values from the inserted value(s).
   3057   if (NumValValues) {
   3058     SDValue Val = getValue(Op1);
   3059     for (; i != LinearIndex + NumValValues; ++i)
   3060       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   3061                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
   3062   }
   3063   // Copy remaining value(s) from the original aggregate.
   3064   for (; i != NumAggValues; ++i)
   3065     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   3066                 SDValue(Agg.getNode(), Agg.getResNo() + i);
   3067 
   3068   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   3069                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
   3070                            &Values[0], NumAggValues));
   3071 }
   3072 
   3073 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
   3074   const Value *Op0 = I.getOperand(0);
   3075   Type *AggTy = Op0->getType();
   3076   Type *ValTy = I.getType();
   3077   bool OutOfUndef = isa<UndefValue>(Op0);
   3078 
   3079   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
   3080 
   3081   SmallVector<EVT, 4> ValValueVTs;
   3082   ComputeValueVTs(TLI, ValTy, ValValueVTs);
   3083 
   3084   unsigned NumValValues = ValValueVTs.size();
   3085 
   3086   // Ignore a extractvalue that produces an empty object
   3087   if (!NumValValues) {
   3088     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
   3089     return;
   3090   }
   3091 
   3092   SmallVector<SDValue, 4> Values(NumValValues);
   3093 
   3094   SDValue Agg = getValue(Op0);
   3095   // Copy out the selected value(s).
   3096   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
   3097     Values[i - LinearIndex] =
   3098       OutOfUndef ?
   3099         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
   3100         SDValue(Agg.getNode(), Agg.getResNo() + i);
   3101 
   3102   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   3103                            DAG.getVTList(&ValValueVTs[0], NumValValues),
   3104                            &Values[0], NumValValues));
   3105 }
   3106 
   3107 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
   3108   SDValue N = getValue(I.getOperand(0));
   3109   // Note that the pointer operand may be a vector of pointers. Take the scalar
   3110   // element which holds a pointer.
   3111   Type *Ty = I.getOperand(0)->getType()->getScalarType();
   3112 
   3113   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
   3114        OI != E; ++OI) {
   3115     const Value *Idx = *OI;
   3116     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
   3117       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
   3118       if (Field) {
   3119         // N = N + Offset
   3120         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
   3121         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
   3122                         DAG.getIntPtrConstant(Offset));
   3123       }
   3124 
   3125       Ty = StTy->getElementType(Field);
   3126     } else {
   3127       Ty = cast<SequentialType>(Ty)->getElementType();
   3128 
   3129       // If this is a constant subscript, handle it quickly.
   3130       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
   3131         if (CI->isZero()) continue;
   3132         uint64_t Offs =
   3133             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
   3134         SDValue OffsVal;
   3135         EVT PTy = TLI.getPointerTy();
   3136         unsigned PtrBits = PTy.getSizeInBits();
   3137         if (PtrBits < 64)
   3138           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
   3139                                 TLI.getPointerTy(),
   3140                                 DAG.getConstant(Offs, MVT::i64));
   3141         else
   3142           OffsVal = DAG.getIntPtrConstant(Offs);
   3143 
   3144         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
   3145                         OffsVal);
   3146         continue;
   3147       }
   3148 
   3149       // N = N + Idx * ElementSize;
   3150       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
   3151                                 TD->getTypeAllocSize(Ty));
   3152       SDValue IdxN = getValue(Idx);
   3153 
   3154       // If the index is smaller or larger than intptr_t, truncate or extend
   3155       // it.
   3156       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
   3157 
   3158       // If this is a multiply by a power of two, turn it into a shl
   3159       // immediately.  This is a very common case.
   3160       if (ElementSize != 1) {
   3161         if (ElementSize.isPowerOf2()) {
   3162           unsigned Amt = ElementSize.logBase2();
   3163           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
   3164                              N.getValueType(), IdxN,
   3165                              DAG.getConstant(Amt, IdxN.getValueType()));
   3166         } else {
   3167           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
   3168           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
   3169                              N.getValueType(), IdxN, Scale);
   3170         }
   3171       }
   3172 
   3173       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   3174                       N.getValueType(), N, IdxN);
   3175     }
   3176   }
   3177 
   3178   setValue(&I, N);
   3179 }
   3180 
   3181 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
   3182   // If this is a fixed sized alloca in the entry block of the function,
   3183   // allocate it statically on the stack.
   3184   if (FuncInfo.StaticAllocaMap.count(&I))
   3185     return;   // getValue will auto-populate this.
   3186 
   3187   Type *Ty = I.getAllocatedType();
   3188   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
   3189   unsigned Align =
   3190     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
   3191              I.getAlignment());
   3192 
   3193   SDValue AllocSize = getValue(I.getArraySize());
   3194 
   3195   EVT IntPtr = TLI.getPointerTy();
   3196   if (AllocSize.getValueType() != IntPtr)
   3197     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
   3198 
   3199   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
   3200                           AllocSize,
   3201                           DAG.getConstant(TySize, IntPtr));
   3202 
   3203   // Handle alignment.  If the requested alignment is less than or equal to
   3204   // the stack alignment, ignore it.  If the size is greater than or equal to
   3205   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
   3206   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
   3207   if (Align <= StackAlign)
   3208     Align = 0;
   3209 
   3210   // Round the size of the allocation up to the stack alignment size
   3211   // by add SA-1 to the size.
   3212   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   3213                           AllocSize.getValueType(), AllocSize,
   3214                           DAG.getIntPtrConstant(StackAlign-1));
   3215 
   3216   // Mask out the low bits for alignment purposes.
   3217   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
   3218                           AllocSize.getValueType(), AllocSize,
   3219                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
   3220 
   3221   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
   3222   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
   3223   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
   3224                             VTs, Ops, 3);
   3225   setValue(&I, DSA);
   3226   DAG.setRoot(DSA.getValue(1));
   3227 
   3228   // Inform the Frame Information that we have just allocated a variable-sized
   3229   // object.
   3230   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
   3231 }
   3232 
   3233 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
   3234   if (I.isAtomic())
   3235     return visitAtomicLoad(I);
   3236 
   3237   const Value *SV = I.getOperand(0);
   3238   SDValue Ptr = getValue(SV);
   3239 
   3240   Type *Ty = I.getType();
   3241 
   3242   bool isVolatile = I.isVolatile();
   3243   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
   3244   bool isInvariant = I.getMetadata("invariant.load") != 0;
   3245   unsigned Alignment = I.getAlignment();
   3246   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
   3247   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
   3248 
   3249   SmallVector<EVT, 4> ValueVTs;
   3250   SmallVector<uint64_t, 4> Offsets;
   3251   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
   3252   unsigned NumValues = ValueVTs.size();
   3253   if (NumValues == 0)
   3254     return;
   3255 
   3256   SDValue Root;
   3257   bool ConstantMemory = false;
   3258   if (I.isVolatile() || NumValues > MaxParallelChains)
   3259     // Serialize volatile loads with other side effects.
   3260     Root = getRoot();
   3261   else if (AA->pointsToConstantMemory(
   3262              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
   3263     // Do not serialize (non-volatile) loads of constant memory with anything.
   3264     Root = DAG.getEntryNode();
   3265     ConstantMemory = true;
   3266   } else {
   3267     // Do not serialize non-volatile loads against each other.
   3268     Root = DAG.getRoot();
   3269   }
   3270 
   3271   SmallVector<SDValue, 4> Values(NumValues);
   3272   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
   3273                                           NumValues));
   3274   EVT PtrVT = Ptr.getValueType();
   3275   unsigned ChainI = 0;
   3276   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
   3277     // Serializing loads here may result in excessive register pressure, and
   3278     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
   3279     // could recover a bit by hoisting nodes upward in the chain by recognizing
   3280     // they are side-effect free or do not alias. The optimizer should really
   3281     // avoid this case by converting large object/array copies to llvm.memcpy
   3282     // (MaxParallelChains should always remain as failsafe).
   3283     if (ChainI == MaxParallelChains) {
   3284       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
   3285       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3286                                   MVT::Other, &Chains[0], ChainI);
   3287       Root = Chain;
   3288       ChainI = 0;
   3289     }
   3290     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
   3291                             PtrVT, Ptr,
   3292                             DAG.getConstant(Offsets[i], PtrVT));
   3293     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
   3294                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
   3295                             isNonTemporal, isInvariant, Alignment, TBAAInfo,
   3296                             Ranges);
   3297 
   3298     Values[i] = L;
   3299     Chains[ChainI] = L.getValue(1);
   3300   }
   3301 
   3302   if (!ConstantMemory) {
   3303     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3304                                 MVT::Other, &Chains[0], ChainI);
   3305     if (isVolatile)
   3306       DAG.setRoot(Chain);
   3307     else
   3308       PendingLoads.push_back(Chain);
   3309   }
   3310 
   3311   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   3312                            DAG.getVTList(&ValueVTs[0], NumValues),
   3313                            &Values[0], NumValues));
   3314 }
   3315 
   3316 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
   3317   if (I.isAtomic())
   3318     return visitAtomicStore(I);
   3319 
   3320   const Value *SrcV = I.getOperand(0);
   3321   const Value *PtrV = I.getOperand(1);
   3322 
   3323   SmallVector<EVT, 4> ValueVTs;
   3324   SmallVector<uint64_t, 4> Offsets;
   3325   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
   3326   unsigned NumValues = ValueVTs.size();
   3327   if (NumValues == 0)
   3328     return;
   3329 
   3330   // Get the lowered operands. Note that we do this after
   3331   // checking if NumResults is zero, because with zero results
   3332   // the operands won't have values in the map.
   3333   SDValue Src = getValue(SrcV);
   3334   SDValue Ptr = getValue(PtrV);
   3335 
   3336   SDValue Root = getRoot();
   3337   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
   3338                                           NumValues));
   3339   EVT PtrVT = Ptr.getValueType();
   3340   bool isVolatile = I.isVolatile();
   3341   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
   3342   unsigned Alignment = I.getAlignment();
   3343   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
   3344 
   3345   unsigned ChainI = 0;
   3346   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
   3347     // See visitLoad comments.
   3348     if (ChainI == MaxParallelChains) {
   3349       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3350                                   MVT::Other, &Chains[0], ChainI);
   3351       Root = Chain;
   3352       ChainI = 0;
   3353     }
   3354     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
   3355                               DAG.getConstant(Offsets[i], PtrVT));
   3356     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
   3357                               SDValue(Src.getNode(), Src.getResNo() + i),
   3358                               Add, MachinePointerInfo(PtrV, Offsets[i]),
   3359                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
   3360     Chains[ChainI] = St;
   3361   }
   3362 
   3363   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   3364                                   MVT::Other, &Chains[0], ChainI);
   3365   ++SDNodeOrder;
   3366   AssignOrderingToNode(StoreNode.getNode());
   3367   DAG.setRoot(StoreNode);
   3368 }
   3369 
   3370 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
   3371                                     SynchronizationScope Scope,
   3372                                     bool Before, DebugLoc dl,
   3373                                     SelectionDAG &DAG,
   3374                                     const TargetLowering &TLI) {
   3375   // Fence, if necessary
   3376   if (Before) {
   3377     if (Order == AcquireRelease || Order == SequentiallyConsistent)
   3378       Order = Release;
   3379     else if (Order == Acquire || Order == Monotonic)
   3380       return Chain;
   3381   } else {
   3382     if (Order == AcquireRelease)
   3383       Order = Acquire;
   3384     else if (Order == Release || Order == Monotonic)
   3385       return Chain;
   3386   }
   3387   SDValue Ops[3];
   3388   Ops[0] = Chain;
   3389   Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
   3390   Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
   3391   return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
   3392 }
   3393 
   3394 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
   3395   DebugLoc dl = getCurDebugLoc();
   3396   AtomicOrdering Order = I.getOrdering();
   3397   SynchronizationScope Scope = I.getSynchScope();
   3398 
   3399   SDValue InChain = getRoot();
   3400 
   3401   if (TLI.getInsertFencesForAtomic())
   3402     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
   3403                                    DAG, TLI);
   3404 
   3405   SDValue L =
   3406     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
   3407                   getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
   3408                   InChain,
   3409                   getValue(I.getPointerOperand()),
   3410                   getValue(I.getCompareOperand()),
   3411                   getValue(I.getNewValOperand()),
   3412                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
   3413                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
   3414                   Scope);
   3415 
   3416   SDValue OutChain = L.getValue(1);
   3417 
   3418   if (TLI.getInsertFencesForAtomic())
   3419     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
   3420                                     DAG, TLI);
   3421 
   3422   setValue(&I, L);
   3423   DAG.setRoot(OutChain);
   3424 }
   3425 
   3426 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
   3427   DebugLoc dl = getCurDebugLoc();
   3428   ISD::NodeType NT;
   3429   switch (I.getOperation()) {
   3430   default: llvm_unreachable("Unknown atomicrmw operation");
   3431   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
   3432   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
   3433   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
   3434   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
   3435   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
   3436   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
   3437   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
   3438   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
   3439   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
   3440   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
   3441   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
   3442   }
   3443   AtomicOrdering Order = I.getOrdering();
   3444   SynchronizationScope Scope = I.getSynchScope();
   3445 
   3446   SDValue InChain = getRoot();
   3447 
   3448   if (TLI.getInsertFencesForAtomic())
   3449     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
   3450                                    DAG, TLI);
   3451 
   3452   SDValue L =
   3453     DAG.getAtomic(NT, dl,
   3454                   getValue(I.getValOperand()).getValueType().getSimpleVT(),
   3455                   InChain,
   3456                   getValue(I.getPointerOperand()),
   3457                   getValue(I.getValOperand()),
   3458                   I.getPointerOperand(), 0 /* Alignment */,
   3459                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
   3460                   Scope);
   3461 
   3462   SDValue OutChain = L.getValue(1);
   3463 
   3464   if (TLI.getInsertFencesForAtomic())
   3465     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
   3466                                     DAG, TLI);
   3467 
   3468   setValue(&I, L);
   3469   DAG.setRoot(OutChain);
   3470 }
   3471 
   3472 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
   3473   DebugLoc dl = getCurDebugLoc();
   3474   SDValue Ops[3];
   3475   Ops[0] = getRoot();
   3476   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
   3477   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
   3478   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
   3479 }
   3480 
   3481 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
   3482   DebugLoc dl = getCurDebugLoc();
   3483   AtomicOrdering Order = I.getOrdering();
   3484   SynchronizationScope Scope = I.getSynchScope();
   3485 
   3486   SDValue InChain = getRoot();
   3487 
   3488   EVT VT = TLI.getValueType(I.getType());
   3489 
   3490   if (I.getAlignment() * 8 < VT.getSizeInBits())
   3491     report_fatal_error("Cannot generate unaligned atomic load");
   3492 
   3493   SDValue L =
   3494     DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
   3495                   getValue(I.getPointerOperand()),
   3496                   I.getPointerOperand(), I.getAlignment(),
   3497                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
   3498                   Scope);
   3499 
   3500   SDValue OutChain = L.getValue(1);
   3501 
   3502   if (TLI.getInsertFencesForAtomic())
   3503     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
   3504                                     DAG, TLI);
   3505 
   3506   setValue(&I, L);
   3507   DAG.setRoot(OutChain);
   3508 }
   3509 
   3510 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
   3511   DebugLoc dl = getCurDebugLoc();
   3512 
   3513   AtomicOrdering Order = I.getOrdering();
   3514   SynchronizationScope Scope = I.getSynchScope();
   3515 
   3516   SDValue InChain = getRoot();
   3517 
   3518   EVT VT = TLI.getValueType(I.getValueOperand()->getType());
   3519 
   3520   if (I.getAlignment() * 8 < VT.getSizeInBits())
   3521     report_fatal_error("Cannot generate unaligned atomic store");
   3522 
   3523   if (TLI.getInsertFencesForAtomic())
   3524     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
   3525                                    DAG, TLI);
   3526 
   3527   SDValue OutChain =
   3528     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
   3529                   InChain,
   3530                   getValue(I.getPointerOperand()),
   3531                   getValue(I.getValueOperand()),
   3532                   I.getPointerOperand(), I.getAlignment(),
   3533                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
   3534                   Scope);
   3535 
   3536   if (TLI.getInsertFencesForAtomic())
   3537     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
   3538                                     DAG, TLI);
   3539 
   3540   DAG.setRoot(OutChain);
   3541 }
   3542 
   3543 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
   3544 /// node.
   3545 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
   3546                                                unsigned Intrinsic) {
   3547   bool HasChain = !I.doesNotAccessMemory();
   3548   bool OnlyLoad = HasChain && I.onlyReadsMemory();
   3549 
   3550   // Build the operand list.
   3551   SmallVector<SDValue, 8> Ops;
   3552   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
   3553     if (OnlyLoad) {
   3554       // We don't need to serialize loads against other loads.
   3555       Ops.push_back(DAG.getRoot());
   3556     } else {
   3557       Ops.push_back(getRoot());
   3558     }
   3559   }
   3560 
   3561   // Info is set by getTgtMemInstrinsic
   3562   TargetLowering::IntrinsicInfo Info;
   3563   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
   3564 
   3565   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
   3566   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
   3567       Info.opc == ISD::INTRINSIC_W_CHAIN)
   3568     Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
   3569 
   3570   // Add all operands of the call to the operand list.
   3571   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
   3572     SDValue Op = getValue(I.getArgOperand(i));
   3573     Ops.push_back(Op);
   3574   }
   3575 
   3576   SmallVector<EVT, 4> ValueVTs;
   3577   ComputeValueVTs(TLI, I.getType(), ValueVTs);
   3578 
   3579   if (HasChain)
   3580     ValueVTs.push_back(MVT::Other);
   3581 
   3582   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
   3583 
   3584   // Create the node.
   3585   SDValue Result;
   3586   if (IsTgtIntrinsic) {
   3587     // This is target intrinsic that touches memory
   3588     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
   3589                                      VTs, &Ops[0], Ops.size(),
   3590                                      Info.memVT,
   3591                                    MachinePointerInfo(Info.ptrVal, Info.offset),
   3592                                      Info.align, Info.vol,
   3593                                      Info.readMem, Info.writeMem);
   3594   } else if (!HasChain) {
   3595     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
   3596                          VTs, &Ops[0], Ops.size());
   3597   } else if (!I.getType()->isVoidTy()) {
   3598     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
   3599                          VTs, &Ops[0], Ops.size());
   3600   } else {
   3601     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
   3602                          VTs, &Ops[0], Ops.size());
   3603   }
   3604 
   3605   if (HasChain) {
   3606     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
   3607     if (OnlyLoad)
   3608       PendingLoads.push_back(Chain);
   3609     else
   3610       DAG.setRoot(Chain);
   3611   }
   3612 
   3613   if (!I.getType()->isVoidTy()) {
   3614     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
   3615       EVT VT = TLI.getValueType(PTy);
   3616       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
   3617     }
   3618 
   3619     setValue(&I, Result);
   3620   } else {
   3621     // Assign order to result here. If the intrinsic does not produce a result,
   3622     // it won't be mapped to a SDNode and visit() will not assign it an order
   3623     // number.
   3624     ++SDNodeOrder;
   3625     AssignOrderingToNode(Result.getNode());
   3626   }
   3627 }
   3628 
   3629 /// GetSignificand - Get the significand and build it into a floating-point
   3630 /// number with exponent of 1:
   3631 ///
   3632 ///   Op = (Op & 0x007fffff) | 0x3f800000;
   3633 ///
   3634 /// where Op is the hexidecimal representation of floating point value.
   3635 static SDValue
   3636 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
   3637   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
   3638                            DAG.getConstant(0x007fffff, MVT::i32));
   3639   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
   3640                            DAG.getConstant(0x3f800000, MVT::i32));
   3641   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
   3642 }
   3643 
   3644 /// GetExponent - Get the exponent:
   3645 ///
   3646 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
   3647 ///
   3648 /// where Op is the hexidecimal representation of floating point value.
   3649 static SDValue
   3650 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
   3651             DebugLoc dl) {
   3652   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
   3653                            DAG.getConstant(0x7f800000, MVT::i32));
   3654   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
   3655                            DAG.getConstant(23, TLI.getPointerTy()));
   3656   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
   3657                            DAG.getConstant(127, MVT::i32));
   3658   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
   3659 }
   3660 
   3661 /// getF32Constant - Get 32-bit floating point constant.
   3662 static SDValue
   3663 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
   3664   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
   3665 }
   3666 
   3667 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
   3668 /// limited-precision mode.
   3669 void
   3670 SelectionDAGBuilder::visitExp(const CallInst &I) {
   3671   SDValue result;
   3672   DebugLoc dl = getCurDebugLoc();
   3673 
   3674   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3675       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3676     SDValue Op = getValue(I.getArgOperand(0));
   3677 
   3678     // Put the exponent in the right bit position for later addition to the
   3679     // final result:
   3680     //
   3681     //   #define LOG2OFe 1.4426950f
   3682     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
   3683     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
   3684                              getF32Constant(DAG, 0x3fb8aa3b));
   3685     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
   3686 
   3687     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
   3688     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   3689     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
   3690 
   3691     //   IntegerPartOfX <<= 23;
   3692     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   3693                                  DAG.getConstant(23, TLI.getPointerTy()));
   3694 
   3695     if (LimitFloatPrecision <= 6) {
   3696       // For floating-point precision of 6:
   3697       //
   3698       //   TwoToFractionalPartOfX =
   3699       //     0.997535578f +
   3700       //       (0.735607626f + 0.252464424f * x) * x;
   3701       //
   3702       // error 0.0144103317, which is 6 bits
   3703       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3704                                getF32Constant(DAG, 0x3e814304));
   3705       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3706                                getF32Constant(DAG, 0x3f3c50c8));
   3707       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3708       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3709                                getF32Constant(DAG, 0x3f7f5e7e));
   3710       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
   3711 
   3712       // Add the exponent into the result in integer domain.
   3713       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   3714                                TwoToFracPartOfX, IntegerPartOfX);
   3715 
   3716       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
   3717     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3718       // For floating-point precision of 12:
   3719       //
   3720       //   TwoToFractionalPartOfX =
   3721       //     0.999892986f +
   3722       //       (0.696457318f +
   3723       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   3724       //
   3725       // 0.000107046256 error, which is 13 to 14 bits
   3726       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3727                                getF32Constant(DAG, 0x3da235e3));
   3728       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3729                                getF32Constant(DAG, 0x3e65b8f3));
   3730       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3731       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3732                                getF32Constant(DAG, 0x3f324b07));
   3733       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3734       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3735                                getF32Constant(DAG, 0x3f7ff8fd));
   3736       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
   3737 
   3738       // Add the exponent into the result in integer domain.
   3739       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   3740                                TwoToFracPartOfX, IntegerPartOfX);
   3741 
   3742       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
   3743     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   3744       // For floating-point precision of 18:
   3745       //
   3746       //   TwoToFractionalPartOfX =
   3747       //     0.999999982f +
   3748       //       (0.693148872f +
   3749       //         (0.240227044f +
   3750       //           (0.554906021e-1f +
   3751       //             (0.961591928e-2f +
   3752       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   3753       //
   3754       // error 2.47208000*10^(-7), which is better than 18 bits
   3755       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3756                                getF32Constant(DAG, 0x3924b03e));
   3757       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3758                                getF32Constant(DAG, 0x3ab24b87));
   3759       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3760       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3761                                getF32Constant(DAG, 0x3c1d8c17));
   3762       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3763       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3764                                getF32Constant(DAG, 0x3d634a1d));
   3765       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3766       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3767                                getF32Constant(DAG, 0x3e75fe14));
   3768       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3769       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   3770                                 getF32Constant(DAG, 0x3f317234));
   3771       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   3772       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   3773                                 getF32Constant(DAG, 0x3f800000));
   3774       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
   3775                                              MVT::i32, t13);
   3776 
   3777       // Add the exponent into the result in integer domain.
   3778       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
   3779                                 TwoToFracPartOfX, IntegerPartOfX);
   3780 
   3781       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
   3782     }
   3783   } else {
   3784     // No special expansion.
   3785     result = DAG.getNode(ISD::FEXP, dl,
   3786                          getValue(I.getArgOperand(0)).getValueType(),
   3787                          getValue(I.getArgOperand(0)));
   3788   }
   3789 
   3790   setValue(&I, result);
   3791 }
   3792 
   3793 /// visitLog - Lower a log intrinsic. Handles the special sequences for
   3794 /// limited-precision mode.
   3795 void
   3796 SelectionDAGBuilder::visitLog(const CallInst &I) {
   3797   SDValue result;
   3798   DebugLoc dl = getCurDebugLoc();
   3799 
   3800   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3801       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3802     SDValue Op = getValue(I.getArgOperand(0));
   3803     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3804 
   3805     // Scale the exponent by log(2) [0.69314718f].
   3806     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
   3807     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
   3808                                         getF32Constant(DAG, 0x3f317218));
   3809 
   3810     // Get the significand and build it into a floating-point number with
   3811     // exponent of 1.
   3812     SDValue X = GetSignificand(DAG, Op1, dl);
   3813 
   3814     if (LimitFloatPrecision <= 6) {
   3815       // For floating-point precision of 6:
   3816       //
   3817       //   LogofMantissa =
   3818       //     -1.1609546f +
   3819       //       (1.4034025f - 0.23903021f * x) * x;
   3820       //
   3821       // error 0.0034276066, which is better than 8 bits
   3822       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3823                                getF32Constant(DAG, 0xbe74c456));
   3824       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3825                                getF32Constant(DAG, 0x3fb3a2b1));
   3826       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3827       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3828                                           getF32Constant(DAG, 0x3f949a29));
   3829 
   3830       result = DAG.getNode(ISD::FADD, dl,
   3831                            MVT::f32, LogOfExponent, LogOfMantissa);
   3832     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3833       // For floating-point precision of 12:
   3834       //
   3835       //   LogOfMantissa =
   3836       //     -1.7417939f +
   3837       //       (2.8212026f +
   3838       //         (-1.4699568f +
   3839       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
   3840       //
   3841       // error 0.000061011436, which is 14 bits
   3842       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3843                                getF32Constant(DAG, 0xbd67b6d6));
   3844       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3845                                getF32Constant(DAG, 0x3ee4f4b8));
   3846       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3847       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3848                                getF32Constant(DAG, 0x3fbc278b));
   3849       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3850       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3851                                getF32Constant(DAG, 0x40348e95));
   3852       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3853       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3854                                           getF32Constant(DAG, 0x3fdef31a));
   3855 
   3856       result = DAG.getNode(ISD::FADD, dl,
   3857                            MVT::f32, LogOfExponent, LogOfMantissa);
   3858     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   3859       // For floating-point precision of 18:
   3860       //
   3861       //   LogOfMantissa =
   3862       //     -2.1072184f +
   3863       //       (4.2372794f +
   3864       //         (-3.7029485f +
   3865       //           (2.2781945f +
   3866       //             (-0.87823314f +
   3867       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
   3868       //
   3869       // error 0.0000023660568, which is better than 18 bits
   3870       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3871                                getF32Constant(DAG, 0xbc91e5ac));
   3872       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3873                                getF32Constant(DAG, 0x3e4350aa));
   3874       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3875       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3876                                getF32Constant(DAG, 0x3f60d3e3));
   3877       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3878       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3879                                getF32Constant(DAG, 0x4011cdf0));
   3880       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3881       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3882                                getF32Constant(DAG, 0x406cfd1c));
   3883       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3884       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3885                                getF32Constant(DAG, 0x408797cb));
   3886       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3887       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
   3888                                           getF32Constant(DAG, 0x4006dcab));
   3889 
   3890       result = DAG.getNode(ISD::FADD, dl,
   3891                            MVT::f32, LogOfExponent, LogOfMantissa);
   3892     }
   3893   } else {
   3894     // No special expansion.
   3895     result = DAG.getNode(ISD::FLOG, dl,
   3896                          getValue(I.getArgOperand(0)).getValueType(),
   3897                          getValue(I.getArgOperand(0)));
   3898   }
   3899 
   3900   setValue(&I, result);
   3901 }
   3902 
   3903 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
   3904 /// limited-precision mode.
   3905 void
   3906 SelectionDAGBuilder::visitLog2(const CallInst &I) {
   3907   SDValue result;
   3908   DebugLoc dl = getCurDebugLoc();
   3909 
   3910   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   3911       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3912     SDValue Op = getValue(I.getArgOperand(0));
   3913     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3914 
   3915     // Get the exponent.
   3916     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
   3917 
   3918     // Get the significand and build it into a floating-point number with
   3919     // exponent of 1.
   3920     SDValue X = GetSignificand(DAG, Op1, dl);
   3921 
   3922     // Different possible minimax approximations of significand in
   3923     // floating-point for various degrees of accuracy over [1,2].
   3924     if (LimitFloatPrecision <= 6) {
   3925       // For floating-point precision of 6:
   3926       //
   3927       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
   3928       //
   3929       // error 0.0049451742, which is more than 7 bits
   3930       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3931                                getF32Constant(DAG, 0xbeb08fe0));
   3932       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3933                                getF32Constant(DAG, 0x40019463));
   3934       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3935       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3936                                            getF32Constant(DAG, 0x3fd6633d));
   3937 
   3938       result = DAG.getNode(ISD::FADD, dl,
   3939                            MVT::f32, LogOfExponent, Log2ofMantissa);
   3940     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   3941       // For floating-point precision of 12:
   3942       //
   3943       //   Log2ofMantissa =
   3944       //     -2.51285454f +
   3945       //       (4.07009056f +
   3946       //         (-2.12067489f +
   3947       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
   3948       //
   3949       // error 0.0000876136000, which is better than 13 bits
   3950       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3951                                getF32Constant(DAG, 0xbda7262e));
   3952       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3953                                getF32Constant(DAG, 0x3f25280b));
   3954       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3955       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3956                                getF32Constant(DAG, 0x4007b923));
   3957       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3958       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3959                                getF32Constant(DAG, 0x40823e2f));
   3960       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3961       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3962                                            getF32Constant(DAG, 0x4020d29c));
   3963 
   3964       result = DAG.getNode(ISD::FADD, dl,
   3965                            MVT::f32, LogOfExponent, Log2ofMantissa);
   3966     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   3967       // For floating-point precision of 18:
   3968       //
   3969       //   Log2ofMantissa =
   3970       //     -3.0400495f +
   3971       //       (6.1129976f +
   3972       //         (-5.3420409f +
   3973       //           (3.2865683f +
   3974       //             (-1.2669343f +
   3975       //               (0.27515199f -
   3976       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
   3977       //
   3978       // error 0.0000018516, which is better than 18 bits
   3979       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3980                                getF32Constant(DAG, 0xbcd2769e));
   3981       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3982                                getF32Constant(DAG, 0x3e8ce0b9));
   3983       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3984       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3985                                getF32Constant(DAG, 0x3fa22ae7));
   3986       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3987       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3988                                getF32Constant(DAG, 0x40525723));
   3989       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3990       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3991                                getF32Constant(DAG, 0x40aaf200));
   3992       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3993       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3994                                getF32Constant(DAG, 0x40c39dad));
   3995       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3996       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
   3997                                            getF32Constant(DAG, 0x4042902c));
   3998 
   3999       result = DAG.getNode(ISD::FADD, dl,
   4000                            MVT::f32, LogOfExponent, Log2ofMantissa);
   4001     }
   4002   } else {
   4003     // No special expansion.
   4004     result = DAG.getNode(ISD::FLOG2, dl,
   4005                          getValue(I.getArgOperand(0)).getValueType(),
   4006                          getValue(I.getArgOperand(0)));
   4007   }
   4008 
   4009   setValue(&I, result);
   4010 }
   4011 
   4012 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
   4013 /// limited-precision mode.
   4014 void
   4015 SelectionDAGBuilder::visitLog10(const CallInst &I) {
   4016   SDValue result;
   4017   DebugLoc dl = getCurDebugLoc();
   4018 
   4019   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   4020       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4021     SDValue Op = getValue(I.getArgOperand(0));
   4022     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   4023 
   4024     // Scale the exponent by log10(2) [0.30102999f].
   4025     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
   4026     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
   4027                                         getF32Constant(DAG, 0x3e9a209a));
   4028 
   4029     // Get the significand and build it into a floating-point number with
   4030     // exponent of 1.
   4031     SDValue X = GetSignificand(DAG, Op1, dl);
   4032 
   4033     if (LimitFloatPrecision <= 6) {
   4034       // For floating-point precision of 6:
   4035       //
   4036       //   Log10ofMantissa =
   4037       //     -0.50419619f +
   4038       //       (0.60948995f - 0.10380950f * x) * x;
   4039       //
   4040       // error 0.0014886165, which is 6 bits
   4041       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4042                                getF32Constant(DAG, 0xbdd49a13));
   4043       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   4044                                getF32Constant(DAG, 0x3f1c0789));
   4045       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4046       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   4047                                             getF32Constant(DAG, 0x3f011300));
   4048 
   4049       result = DAG.getNode(ISD::FADD, dl,
   4050                            MVT::f32, LogOfExponent, Log10ofMantissa);
   4051     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   4052       // For floating-point precision of 12:
   4053       //
   4054       //   Log10ofMantissa =
   4055       //     -0.64831180f +
   4056       //       (0.91751397f +
   4057       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
   4058       //
   4059       // error 0.00019228036, which is better than 12 bits
   4060       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4061                                getF32Constant(DAG, 0x3d431f31));
   4062       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
   4063                                getF32Constant(DAG, 0x3ea21fb2));
   4064       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4065       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4066                                getF32Constant(DAG, 0x3f6ae232));
   4067       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4068       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
   4069                                             getF32Constant(DAG, 0x3f25f7c3));
   4070 
   4071       result = DAG.getNode(ISD::FADD, dl,
   4072                            MVT::f32, LogOfExponent, Log10ofMantissa);
   4073     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   4074       // For floating-point precision of 18:
   4075       //
   4076       //   Log10ofMantissa =
   4077       //     -0.84299375f +
   4078       //       (1.5327582f +
   4079       //         (-1.0688956f +
   4080       //           (0.49102474f +
   4081       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
   4082       //
   4083       // error 0.0000037995730, which is better than 18 bits
   4084       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4085                                getF32Constant(DAG, 0x3c5d51ce));
   4086       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
   4087                                getF32Constant(DAG, 0x3e00685a));
   4088       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4089       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4090                                getF32Constant(DAG, 0x3efb6798));
   4091       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4092       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
   4093                                getF32Constant(DAG, 0x3f88d192));
   4094       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4095       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4096                                getF32Constant(DAG, 0x3fc4316c));
   4097       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4098       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
   4099                                             getF32Constant(DAG, 0x3f57ce70));
   4100 
   4101       result = DAG.getNode(ISD::FADD, dl,
   4102                            MVT::f32, LogOfExponent, Log10ofMantissa);
   4103     }
   4104   } else {
   4105     // No special expansion.
   4106     result = DAG.getNode(ISD::FLOG10, dl,
   4107                          getValue(I.getArgOperand(0)).getValueType(),
   4108                          getValue(I.getArgOperand(0)));
   4109   }
   4110 
   4111   setValue(&I, result);
   4112 }
   4113 
   4114 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
   4115 /// limited-precision mode.
   4116 void
   4117 SelectionDAGBuilder::visitExp2(const CallInst &I) {
   4118   SDValue result;
   4119   DebugLoc dl = getCurDebugLoc();
   4120 
   4121   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
   4122       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4123     SDValue Op = getValue(I.getArgOperand(0));
   4124 
   4125     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
   4126 
   4127     //   FractionalPartOfX = x - (float)IntegerPartOfX;
   4128     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   4129     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
   4130 
   4131     //   IntegerPartOfX <<= 23;
   4132     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   4133                                  DAG.getConstant(23, TLI.getPointerTy()));
   4134 
   4135     if (LimitFloatPrecision <= 6) {
   4136       // For floating-point precision of 6:
   4137       //
   4138       //   TwoToFractionalPartOfX =
   4139       //     0.997535578f +
   4140       //       (0.735607626f + 0.252464424f * x) * x;
   4141       //
   4142       // error 0.0144103317, which is 6 bits
   4143       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4144                                getF32Constant(DAG, 0x3e814304));
   4145       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4146                                getF32Constant(DAG, 0x3f3c50c8));
   4147       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4148       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4149                                getF32Constant(DAG, 0x3f7f5e7e));
   4150       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
   4151       SDValue TwoToFractionalPartOfX =
   4152         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
   4153 
   4154       result = DAG.getNode(ISD::BITCAST, dl,
   4155                            MVT::f32, TwoToFractionalPartOfX);
   4156     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   4157       // For floating-point precision of 12:
   4158       //
   4159       //   TwoToFractionalPartOfX =
   4160       //     0.999892986f +
   4161       //       (0.696457318f +
   4162       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   4163       //
   4164       // error 0.000107046256, which is 13 to 14 bits
   4165       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4166                                getF32Constant(DAG, 0x3da235e3));
   4167       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4168                                getF32Constant(DAG, 0x3e65b8f3));
   4169       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4170       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4171                                getF32Constant(DAG, 0x3f324b07));
   4172       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4173       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4174                                getF32Constant(DAG, 0x3f7ff8fd));
   4175       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
   4176       SDValue TwoToFractionalPartOfX =
   4177         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
   4178 
   4179       result = DAG.getNode(ISD::BITCAST, dl,
   4180                            MVT::f32, TwoToFractionalPartOfX);
   4181     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   4182       // For floating-point precision of 18:
   4183       //
   4184       //   TwoToFractionalPartOfX =
   4185       //     0.999999982f +
   4186       //       (0.693148872f +
   4187       //         (0.240227044f +
   4188       //           (0.554906021e-1f +
   4189       //             (0.961591928e-2f +
   4190       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   4191       // error 2.47208000*10^(-7), which is better than 18 bits
   4192       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4193                                getF32Constant(DAG, 0x3924b03e));
   4194       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4195                                getF32Constant(DAG, 0x3ab24b87));
   4196       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4197       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4198                                getF32Constant(DAG, 0x3c1d8c17));
   4199       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4200       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4201                                getF32Constant(DAG, 0x3d634a1d));
   4202       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4203       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   4204                                getF32Constant(DAG, 0x3e75fe14));
   4205       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   4206       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   4207                                 getF32Constant(DAG, 0x3f317234));
   4208       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   4209       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   4210                                 getF32Constant(DAG, 0x3f800000));
   4211       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
   4212       SDValue TwoToFractionalPartOfX =
   4213         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
   4214 
   4215       result = DAG.getNode(ISD::BITCAST, dl,
   4216                            MVT::f32, TwoToFractionalPartOfX);
   4217     }
   4218   } else {
   4219     // No special expansion.
   4220     result = DAG.getNode(ISD::FEXP2, dl,
   4221                          getValue(I.getArgOperand(0)).getValueType(),
   4222                          getValue(I.getArgOperand(0)));
   4223   }
   4224 
   4225   setValue(&I, result);
   4226 }
   4227 
   4228 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
   4229 /// limited-precision mode with x == 10.0f.
   4230 void
   4231 SelectionDAGBuilder::visitPow(const CallInst &I) {
   4232   SDValue result;
   4233   const Value *Val = I.getArgOperand(0);
   4234   DebugLoc dl = getCurDebugLoc();
   4235   bool IsExp10 = false;
   4236 
   4237   if (getValue(Val).getValueType() == MVT::f32 &&
   4238       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
   4239       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4240     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
   4241       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
   4242         APFloat Ten(10.0f);
   4243         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
   4244       }
   4245     }
   4246   }
   4247 
   4248   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4249     SDValue Op = getValue(I.getArgOperand(1));
   4250 
   4251     // Put the exponent in the right bit position for later addition to the
   4252     // final result:
   4253     //
   4254     //   #define LOG2OF10 3.3219281f
   4255     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
   4256     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
   4257                              getF32Constant(DAG, 0x40549a78));
   4258     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
   4259 
   4260     //   FractionalPartOfX = x - (float)IntegerPartOfX;
   4261     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   4262     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
   4263 
   4264     //   IntegerPartOfX <<= 23;
   4265     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   4266                                  DAG.getConstant(23, TLI.getPointerTy()));
   4267 
   4268     if (LimitFloatPrecision <= 6) {
   4269       // For floating-point precision of 6:
   4270       //
   4271       //   twoToFractionalPartOfX =
   4272       //     0.997535578f +
   4273       //       (0.735607626f + 0.252464424f * x) * x;
   4274       //
   4275       // error 0.0144103317, which is 6 bits
   4276       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4277                                getF32Constant(DAG, 0x3e814304));
   4278       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4279                                getF32Constant(DAG, 0x3f3c50c8));
   4280       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4281       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4282                                getF32Constant(DAG, 0x3f7f5e7e));
   4283       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
   4284       SDValue TwoToFractionalPartOfX =
   4285         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
   4286 
   4287       result = DAG.getNode(ISD::BITCAST, dl,
   4288                            MVT::f32, TwoToFractionalPartOfX);
   4289     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
   4290       // For floating-point precision of 12:
   4291       //
   4292       //   TwoToFractionalPartOfX =
   4293       //     0.999892986f +
   4294       //       (0.696457318f +
   4295       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   4296       //
   4297       // error 0.000107046256, which is 13 to 14 bits
   4298       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4299                                getF32Constant(DAG, 0x3da235e3));
   4300       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4301                                getF32Constant(DAG, 0x3e65b8f3));
   4302       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4303       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4304                                getF32Constant(DAG, 0x3f324b07));
   4305       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4306       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4307                                getF32Constant(DAG, 0x3f7ff8fd));
   4308       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
   4309       SDValue TwoToFractionalPartOfX =
   4310         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
   4311 
   4312       result = DAG.getNode(ISD::BITCAST, dl,
   4313                            MVT::f32, TwoToFractionalPartOfX);
   4314     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
   4315       // For floating-point precision of 18:
   4316       //
   4317       //   TwoToFractionalPartOfX =
   4318       //     0.999999982f +
   4319       //       (0.693148872f +
   4320       //         (0.240227044f +
   4321       //           (0.554906021e-1f +
   4322       //             (0.961591928e-2f +
   4323       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   4324       // error 2.47208000*10^(-7), which is better than 18 bits
   4325       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4326                                getF32Constant(DAG, 0x3924b03e));
   4327       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4328                                getF32Constant(DAG, 0x3ab24b87));
   4329       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4330       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4331                                getF32Constant(DAG, 0x3c1d8c17));
   4332       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4333       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4334                                getF32Constant(DAG, 0x3d634a1d));
   4335       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4336       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   4337                                getF32Constant(DAG, 0x3e75fe14));
   4338       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   4339       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   4340                                 getF32Constant(DAG, 0x3f317234));
   4341       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   4342       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   4343                                 getF32Constant(DAG, 0x3f800000));
   4344       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
   4345       SDValue TwoToFractionalPartOfX =
   4346         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
   4347 
   4348       result = DAG.getNode(ISD::BITCAST, dl,
   4349                            MVT::f32, TwoToFractionalPartOfX);
   4350     }
   4351   } else {
   4352     // No special expansion.
   4353     result = DAG.getNode(ISD::FPOW, dl,
   4354                          getValue(I.getArgOperand(0)).getValueType(),
   4355                          getValue(I.getArgOperand(0)),
   4356                          getValue(I.getArgOperand(1)));
   4357   }
   4358 
   4359   setValue(&I, result);
   4360 }
   4361 
   4362 
   4363 /// ExpandPowI - Expand a llvm.powi intrinsic.
   4364 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
   4365                           SelectionDAG &DAG) {
   4366   // If RHS is a constant, we can expand this out to a multiplication tree,
   4367   // otherwise we end up lowering to a call to __powidf2 (for example).  When
   4368   // optimizing for size, we only want to do this if the expansion would produce
   4369   // a small number of multiplies, otherwise we do the full expansion.
   4370   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
   4371     // Get the exponent as a positive value.
   4372     unsigned Val = RHSC->getSExtValue();
   4373     if ((int)Val < 0) Val = -Val;
   4374 
   4375     // powi(x, 0) -> 1.0
   4376     if (Val == 0)
   4377       return DAG.getConstantFP(1.0, LHS.getValueType());
   4378 
   4379     const Function *F = DAG.getMachineFunction().getFunction();
   4380     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
   4381         // If optimizing for size, don't insert too many multiplies.  This
   4382         // inserts up to 5 multiplies.
   4383         CountPopulation_32(Val)+Log2_32(Val) < 7) {
   4384       // We use the simple binary decomposition method to generate the multiply
   4385       // sequence.  There are more optimal ways to do this (for example,
   4386       // powi(x,15) generates one more multiply than it should), but this has
   4387       // the benefit of being both really simple and much better than a libcall.
   4388       SDValue Res;  // Logically starts equal to 1.0
   4389       SDValue CurSquare = LHS;
   4390       while (Val) {
   4391         if (Val & 1) {
   4392           if (Res.getNode())
   4393             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
   4394           else
   4395             Res = CurSquare;  // 1.0*CurSquare.
   4396         }
   4397 
   4398         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
   4399                                 CurSquare, CurSquare);
   4400         Val >>= 1;
   4401       }
   4402 
   4403       // If the original was negative, invert the result, producing 1/(x*x*x).
   4404       if (RHSC->getSExtValue() < 0)
   4405         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
   4406                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
   4407       return Res;
   4408     }
   4409   }
   4410 
   4411   // Otherwise, expand to a libcall.
   4412   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
   4413 }
   4414 
   4415 // getTruncatedArgReg - Find underlying register used for an truncated
   4416 // argument.
   4417 static unsigned getTruncatedArgReg(const SDValue &N) {
   4418   if (N.getOpcode() != ISD::TRUNCATE)
   4419     return 0;
   4420 
   4421   const SDValue &Ext = N.getOperand(0);
   4422   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
   4423     const SDValue &CFR = Ext.getOperand(0);
   4424     if (CFR.getOpcode() == ISD::CopyFromReg)
   4425       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
   4426     if (CFR.getOpcode() == ISD::TRUNCATE)
   4427       return getTruncatedArgReg(CFR);
   4428   }
   4429   return 0;
   4430 }
   4431 
   4432 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
   4433 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
   4434 /// At the end of instruction selection, they will be inserted to the entry BB.
   4435 bool
   4436 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
   4437                                               int64_t Offset,
   4438                                               const SDValue &N) {
   4439   const Argument *Arg = dyn_cast<Argument>(V);
   4440   if (!Arg)
   4441     return false;
   4442 
   4443   MachineFunction &MF = DAG.getMachineFunction();
   4444   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
   4445   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
   4446 
   4447   // Ignore inlined function arguments here.
   4448   DIVariable DV(Variable);
   4449   if (DV.isInlinedFnArgument(MF.getFunction()))
   4450     return false;
   4451 
   4452   unsigned Reg = 0;
   4453   // Some arguments' frame index is recorded during argument lowering.
   4454   Offset = FuncInfo.getArgumentFrameIndex(Arg);
   4455   if (Offset)
   4456     Reg = TRI->getFrameRegister(MF);
   4457 
   4458   if (!Reg && N.getNode()) {
   4459     if (N.getOpcode() == ISD::CopyFromReg)
   4460       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
   4461     else
   4462       Reg = getTruncatedArgReg(N);
   4463     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
   4464       MachineRegisterInfo &RegInfo = MF.getRegInfo();
   4465       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
   4466       if (PR)
   4467         Reg = PR;
   4468     }
   4469   }
   4470 
   4471   if (!Reg) {
   4472     // Check if ValueMap has reg number.
   4473     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
   4474     if (VMI != FuncInfo.ValueMap.end())
   4475       Reg = VMI->second;
   4476   }
   4477 
   4478   if (!Reg && N.getNode()) {
   4479     // Check if frame index is available.
   4480     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
   4481       if (FrameIndexSDNode *FINode =
   4482           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
   4483         Reg = TRI->getFrameRegister(MF);
   4484         Offset = FINode->getIndex();
   4485       }
   4486   }
   4487 
   4488   if (!Reg)
   4489     return false;
   4490 
   4491   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
   4492                                     TII->get(TargetOpcode::DBG_VALUE))
   4493     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
   4494   FuncInfo.ArgDbgValues.push_back(&*MIB);
   4495   return true;
   4496 }
   4497 
   4498 // VisualStudio defines setjmp as _setjmp
   4499 #if defined(_MSC_VER) && defined(setjmp) && \
   4500                          !defined(setjmp_undefined_for_msvc)
   4501 #  pragma push_macro("setjmp")
   4502 #  undef setjmp
   4503 #  define setjmp_undefined_for_msvc
   4504 #endif
   4505 
   4506 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
   4507 /// we want to emit this as a call to a named external function, return the name
   4508 /// otherwise lower it and return null.
   4509 const char *
   4510 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
   4511   DebugLoc dl = getCurDebugLoc();
   4512   SDValue Res;
   4513 
   4514   switch (Intrinsic) {
   4515   default:
   4516     // By default, turn this into a target intrinsic node.
   4517     visitTargetIntrinsic(I, Intrinsic);
   4518     return 0;
   4519   case Intrinsic::vastart:  visitVAStart(I); return 0;
   4520   case Intrinsic::vaend:    visitVAEnd(I); return 0;
   4521   case Intrinsic::vacopy:   visitVACopy(I); return 0;
   4522   case Intrinsic::returnaddress:
   4523     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
   4524                              getValue(I.getArgOperand(0))));
   4525     return 0;
   4526   case Intrinsic::frameaddress:
   4527     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
   4528                              getValue(I.getArgOperand(0))));
   4529     return 0;
   4530   case Intrinsic::setjmp:
   4531     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
   4532   case Intrinsic::longjmp:
   4533     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
   4534   case Intrinsic::memcpy: {
   4535     // Assert for address < 256 since we support only user defined address
   4536     // spaces.
   4537     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4538            < 256 &&
   4539            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
   4540            < 256 &&
   4541            "Unknown address space");
   4542     SDValue Op1 = getValue(I.getArgOperand(0));
   4543     SDValue Op2 = getValue(I.getArgOperand(1));
   4544     SDValue Op3 = getValue(I.getArgOperand(2));
   4545     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4546     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4547     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
   4548                               MachinePointerInfo(I.getArgOperand(0)),
   4549                               MachinePointerInfo(I.getArgOperand(1))));
   4550     return 0;
   4551   }
   4552   case Intrinsic::memset: {
   4553     // Assert for address < 256 since we support only user defined address
   4554     // spaces.
   4555     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4556            < 256 &&
   4557            "Unknown address space");
   4558     SDValue Op1 = getValue(I.getArgOperand(0));
   4559     SDValue Op2 = getValue(I.getArgOperand(1));
   4560     SDValue Op3 = getValue(I.getArgOperand(2));
   4561     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4562     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4563     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
   4564                               MachinePointerInfo(I.getArgOperand(0))));
   4565     return 0;
   4566   }
   4567   case Intrinsic::memmove: {
   4568     // Assert for address < 256 since we support only user defined address
   4569     // spaces.
   4570     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
   4571            < 256 &&
   4572            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
   4573            < 256 &&
   4574            "Unknown address space");
   4575     SDValue Op1 = getValue(I.getArgOperand(0));
   4576     SDValue Op2 = getValue(I.getArgOperand(1));
   4577     SDValue Op3 = getValue(I.getArgOperand(2));
   4578     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4579     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4580     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
   4581                                MachinePointerInfo(I.getArgOperand(0)),
   4582                                MachinePointerInfo(I.getArgOperand(1))));
   4583     return 0;
   4584   }
   4585   case Intrinsic::dbg_declare: {
   4586     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
   4587     MDNode *Variable = DI.getVariable();
   4588     const Value *Address = DI.getAddress();
   4589     if (!Address || !DIVariable(Variable).Verify()) {
   4590       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4591       return 0;
   4592     }
   4593 
   4594     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
   4595     // but do not always have a corresponding SDNode built.  The SDNodeOrder
   4596     // absolute, but not relative, values are different depending on whether
   4597     // debug info exists.
   4598     ++SDNodeOrder;
   4599 
   4600     // Check if address has undef value.
   4601     if (isa<UndefValue>(Address) ||
   4602         (Address->use_empty() && !isa<Argument>(Address))) {
   4603       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4604       return 0;
   4605     }
   4606 
   4607     SDValue &N = NodeMap[Address];
   4608     if (!N.getNode() && isa<Argument>(Address))
   4609       // Check unused arguments map.
   4610       N = UnusedArgNodeMap[Address];
   4611     SDDbgValue *SDV;
   4612     if (N.getNode()) {
   4613       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
   4614         Address = BCI->getOperand(0);
   4615       // Parameters are handled specially.
   4616       bool isParameter =
   4617         (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
   4618          isa<Argument>(Address));
   4619 
   4620       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
   4621 
   4622       if (isParameter && !AI) {
   4623         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
   4624         if (FINode)
   4625           // Byval parameter.  We have a frame index at this point.
   4626           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
   4627                                 0, dl, SDNodeOrder);
   4628         else {
   4629           // Address is an argument, so try to emit its dbg value using
   4630           // virtual register info from the FuncInfo.ValueMap.
   4631           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
   4632           return 0;
   4633         }
   4634       } else if (AI)
   4635         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
   4636                               0, dl, SDNodeOrder);
   4637       else {
   4638         // Can't do anything with other non-AI cases yet.
   4639         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4640         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
   4641         DEBUG(Address->dump());
   4642         return 0;
   4643       }
   4644       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
   4645     } else {
   4646       // If Address is an argument then try to emit its dbg value using
   4647       // virtual register info from the FuncInfo.ValueMap.
   4648       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
   4649         // If variable is pinned by a alloca in dominating bb then
   4650         // use StaticAllocaMap.
   4651         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
   4652           if (AI->getParent() != DI.getParent()) {
   4653             DenseMap<const AllocaInst*, int>::iterator SI =
   4654               FuncInfo.StaticAllocaMap.find(AI);
   4655             if (SI != FuncInfo.StaticAllocaMap.end()) {
   4656               SDV = DAG.getDbgValue(Variable, SI->second,
   4657                                     0, dl, SDNodeOrder);
   4658               DAG.AddDbgValue(SDV, 0, false);
   4659               return 0;
   4660             }
   4661           }
   4662         }
   4663         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4664       }
   4665     }
   4666     return 0;
   4667   }
   4668   case Intrinsic::dbg_value: {
   4669     const DbgValueInst &DI = cast<DbgValueInst>(I);
   4670     if (!DIVariable(DI.getVariable()).Verify())
   4671       return 0;
   4672 
   4673     MDNode *Variable = DI.getVariable();
   4674     uint64_t Offset = DI.getOffset();
   4675     const Value *V = DI.getValue();
   4676     if (!V)
   4677       return 0;
   4678 
   4679     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
   4680     // but do not always have a corresponding SDNode built.  The SDNodeOrder
   4681     // absolute, but not relative, values are different depending on whether
   4682     // debug info exists.
   4683     ++SDNodeOrder;
   4684     SDDbgValue *SDV;
   4685     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
   4686       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
   4687       DAG.AddDbgValue(SDV, 0, false);
   4688     } else {
   4689       // Do not use getValue() in here; we don't want to generate code at
   4690       // this point if it hasn't been done yet.
   4691       SDValue N = NodeMap[V];
   4692       if (!N.getNode() && isa<Argument>(V))
   4693         // Check unused arguments map.
   4694         N = UnusedArgNodeMap[V];
   4695       if (N.getNode()) {
   4696         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
   4697           SDV = DAG.getDbgValue(Variable, N.getNode(),
   4698                                 N.getResNo(), Offset, dl, SDNodeOrder);
   4699           DAG.AddDbgValue(SDV, N.getNode(), false);
   4700         }
   4701       } else if (!V->use_empty() ) {
   4702         // Do not call getValue(V) yet, as we don't want to generate code.
   4703         // Remember it for later.
   4704         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
   4705         DanglingDebugInfoMap[V] = DDI;
   4706       } else {
   4707         // We may expand this to cover more cases.  One case where we have no
   4708         // data available is an unreferenced parameter.
   4709         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4710       }
   4711     }
   4712 
   4713     // Build a debug info table entry.
   4714     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
   4715       V = BCI->getOperand(0);
   4716     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
   4717     // Don't handle byval struct arguments or VLAs, for example.
   4718     if (!AI) {
   4719       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
   4720       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
   4721       return 0;
   4722     }
   4723     DenseMap<const AllocaInst*, int>::iterator SI =
   4724       FuncInfo.StaticAllocaMap.find(AI);
   4725     if (SI == FuncInfo.StaticAllocaMap.end())
   4726       return 0; // VLAs.
   4727     int FI = SI->second;
   4728 
   4729     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   4730     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
   4731       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
   4732     return 0;
   4733   }
   4734 
   4735   case Intrinsic::eh_typeid_for: {
   4736     // Find the type id for the given typeinfo.
   4737     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
   4738     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
   4739     Res = DAG.getConstant(TypeID, MVT::i32);
   4740     setValue(&I, Res);
   4741     return 0;
   4742   }
   4743 
   4744   case Intrinsic::eh_return_i32:
   4745   case Intrinsic::eh_return_i64:
   4746     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
   4747     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
   4748                             MVT::Other,
   4749                             getControlRoot(),
   4750                             getValue(I.getArgOperand(0)),
   4751                             getValue(I.getArgOperand(1))));
   4752     return 0;
   4753   case Intrinsic::eh_unwind_init:
   4754     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
   4755     return 0;
   4756   case Intrinsic::eh_dwarf_cfa: {
   4757     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
   4758                                         TLI.getPointerTy());
   4759     SDValue Offset = DAG.getNode(ISD::ADD, dl,
   4760                                  TLI.getPointerTy(),
   4761                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
   4762                                              TLI.getPointerTy()),
   4763                                  CfaArg);
   4764     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
   4765                              TLI.getPointerTy(),
   4766                              DAG.getConstant(0, TLI.getPointerTy()));
   4767     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
   4768                              FA, Offset));
   4769     return 0;
   4770   }
   4771   case Intrinsic::eh_sjlj_callsite: {
   4772     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   4773     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
   4774     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
   4775     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
   4776 
   4777     MMI.setCurrentCallSite(CI->getZExtValue());
   4778     return 0;
   4779   }
   4780   case Intrinsic::eh_sjlj_functioncontext: {
   4781     // Get and store the index of the function context.
   4782     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   4783     AllocaInst *FnCtx =
   4784       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
   4785     int FI = FuncInfo.StaticAllocaMap[FnCtx];
   4786     MFI->setFunctionContextIndex(FI);
   4787     return 0;
   4788   }
   4789   case Intrinsic::eh_sjlj_setjmp: {
   4790     SDValue Ops[2];
   4791     Ops[0] = getRoot();
   4792     Ops[1] = getValue(I.getArgOperand(0));
   4793     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
   4794                              DAG.getVTList(MVT::i32, MVT::Other),
   4795                              Ops, 2);
   4796     setValue(&I, Op.getValue(0));
   4797     DAG.setRoot(Op.getValue(1));
   4798     return 0;
   4799   }
   4800   case Intrinsic::eh_sjlj_longjmp: {
   4801     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
   4802                             getRoot(), getValue(I.getArgOperand(0))));
   4803     return 0;
   4804   }
   4805 
   4806   case Intrinsic::x86_mmx_pslli_w:
   4807   case Intrinsic::x86_mmx_pslli_d:
   4808   case Intrinsic::x86_mmx_pslli_q:
   4809   case Intrinsic::x86_mmx_psrli_w:
   4810   case Intrinsic::x86_mmx_psrli_d:
   4811   case Intrinsic::x86_mmx_psrli_q:
   4812   case Intrinsic::x86_mmx_psrai_w:
   4813   case Intrinsic::x86_mmx_psrai_d: {
   4814     SDValue ShAmt = getValue(I.getArgOperand(1));
   4815     if (isa<ConstantSDNode>(ShAmt)) {
   4816       visitTargetIntrinsic(I, Intrinsic);
   4817       return 0;
   4818     }
   4819     unsigned NewIntrinsic = 0;
   4820     EVT ShAmtVT = MVT::v2i32;
   4821     switch (Intrinsic) {
   4822     case Intrinsic::x86_mmx_pslli_w:
   4823       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
   4824       break;
   4825     case Intrinsic::x86_mmx_pslli_d:
   4826       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
   4827       break;
   4828     case Intrinsic::x86_mmx_pslli_q:
   4829       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
   4830       break;
   4831     case Intrinsic::x86_mmx_psrli_w:
   4832       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
   4833       break;
   4834     case Intrinsic::x86_mmx_psrli_d:
   4835       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
   4836       break;
   4837     case Intrinsic::x86_mmx_psrli_q:
   4838       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
   4839       break;
   4840     case Intrinsic::x86_mmx_psrai_w:
   4841       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
   4842       break;
   4843     case Intrinsic::x86_mmx_psrai_d:
   4844       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
   4845       break;
   4846     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   4847     }
   4848 
   4849     // The vector shift intrinsics with scalars uses 32b shift amounts but
   4850     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
   4851     // to be zero.
   4852     // We must do this early because v2i32 is not a legal type.
   4853     DebugLoc dl = getCurDebugLoc();
   4854     SDValue ShOps[2];
   4855     ShOps[0] = ShAmt;
   4856     ShOps[1] = DAG.getConstant(0, MVT::i32);
   4857     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
   4858     EVT DestVT = TLI.getValueType(I.getType());
   4859     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
   4860     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
   4861                        DAG.getConstant(NewIntrinsic, MVT::i32),
   4862                        getValue(I.getArgOperand(0)), ShAmt);
   4863     setValue(&I, Res);
   4864     return 0;
   4865   }
   4866   case Intrinsic::x86_avx_vinsertf128_pd_256:
   4867   case Intrinsic::x86_avx_vinsertf128_ps_256:
   4868   case Intrinsic::x86_avx_vinsertf128_si_256:
   4869   case Intrinsic::x86_avx2_vinserti128: {
   4870     DebugLoc dl = getCurDebugLoc();
   4871     EVT DestVT = TLI.getValueType(I.getType());
   4872     EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
   4873     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
   4874                    ElVT.getVectorNumElements();
   4875     Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
   4876                       getValue(I.getArgOperand(0)),
   4877                       getValue(I.getArgOperand(1)),
   4878                       DAG.getIntPtrConstant(Idx));
   4879     setValue(&I, Res);
   4880     return 0;
   4881   }
   4882   case Intrinsic::x86_avx_vextractf128_pd_256:
   4883   case Intrinsic::x86_avx_vextractf128_ps_256:
   4884   case Intrinsic::x86_avx_vextractf128_si_256:
   4885   case Intrinsic::x86_avx2_vextracti128: {
   4886     DebugLoc dl = getCurDebugLoc();
   4887     EVT DestVT = TLI.getValueType(I.getType());
   4888     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
   4889                    DestVT.getVectorNumElements();
   4890     Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
   4891                       getValue(I.getArgOperand(0)),
   4892                       DAG.getIntPtrConstant(Idx));
   4893     setValue(&I, Res);
   4894     return 0;
   4895   }
   4896   case Intrinsic::convertff:
   4897   case Intrinsic::convertfsi:
   4898   case Intrinsic::convertfui:
   4899   case Intrinsic::convertsif:
   4900   case Intrinsic::convertuif:
   4901   case Intrinsic::convertss:
   4902   case Intrinsic::convertsu:
   4903   case Intrinsic::convertus:
   4904   case Intrinsic::convertuu: {
   4905     ISD::CvtCode Code = ISD::CVT_INVALID;
   4906     switch (Intrinsic) {
   4907     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   4908     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
   4909     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
   4910     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
   4911     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
   4912     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
   4913     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
   4914     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
   4915     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
   4916     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
   4917     }
   4918     EVT DestVT = TLI.getValueType(I.getType());
   4919     const Value *Op1 = I.getArgOperand(0);
   4920     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
   4921                                DAG.getValueType(DestVT),
   4922                                DAG.getValueType(getValue(Op1).getValueType()),
   4923                                getValue(I.getArgOperand(1)),
   4924                                getValue(I.getArgOperand(2)),
   4925                                Code);
   4926     setValue(&I, Res);
   4927     return 0;
   4928   }
   4929   case Intrinsic::sqrt:
   4930     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
   4931                              getValue(I.getArgOperand(0)).getValueType(),
   4932                              getValue(I.getArgOperand(0))));
   4933     return 0;
   4934   case Intrinsic::powi:
   4935     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
   4936                             getValue(I.getArgOperand(1)), DAG));
   4937     return 0;
   4938   case Intrinsic::sin:
   4939     setValue(&I, DAG.getNode(ISD::FSIN, dl,
   4940                              getValue(I.getArgOperand(0)).getValueType(),
   4941                              getValue(I.getArgOperand(0))));
   4942     return 0;
   4943   case Intrinsic::cos:
   4944     setValue(&I, DAG.getNode(ISD::FCOS, dl,
   4945                              getValue(I.getArgOperand(0)).getValueType(),
   4946                              getValue(I.getArgOperand(0))));
   4947     return 0;
   4948   case Intrinsic::log:
   4949     visitLog(I);
   4950     return 0;
   4951   case Intrinsic::log2:
   4952     visitLog2(I);
   4953     return 0;
   4954   case Intrinsic::log10:
   4955     visitLog10(I);
   4956     return 0;
   4957   case Intrinsic::exp:
   4958     visitExp(I);
   4959     return 0;
   4960   case Intrinsic::exp2:
   4961     visitExp2(I);
   4962     return 0;
   4963   case Intrinsic::pow:
   4964     visitPow(I);
   4965     return 0;
   4966   case Intrinsic::fabs:
   4967     setValue(&I, DAG.getNode(ISD::FABS, dl,
   4968                              getValue(I.getArgOperand(0)).getValueType(),
   4969                              getValue(I.getArgOperand(0))));
   4970     return 0;
   4971   case Intrinsic::floor:
   4972     setValue(&I, DAG.getNode(ISD::FFLOOR, dl,
   4973                              getValue(I.getArgOperand(0)).getValueType(),
   4974                              getValue(I.getArgOperand(0))));
   4975     return 0;
   4976   case Intrinsic::fma:
   4977     setValue(&I, DAG.getNode(ISD::FMA, dl,
   4978                              getValue(I.getArgOperand(0)).getValueType(),
   4979                              getValue(I.getArgOperand(0)),
   4980                              getValue(I.getArgOperand(1)),
   4981                              getValue(I.getArgOperand(2))));
   4982     return 0;
   4983   case Intrinsic::fmuladd: {
   4984     EVT VT = TLI.getValueType(I.getType());
   4985     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
   4986         TLI.isOperationLegal(ISD::FMA, VT) &&
   4987         TLI.isFMAFasterThanMulAndAdd(VT)){
   4988       setValue(&I, DAG.getNode(ISD::FMA, dl,
   4989                                getValue(I.getArgOperand(0)).getValueType(),
   4990                                getValue(I.getArgOperand(0)),
   4991                                getValue(I.getArgOperand(1)),
   4992                                getValue(I.getArgOperand(2))));
   4993     } else {
   4994       SDValue Mul = DAG.getNode(ISD::FMUL, dl,
   4995                                 getValue(I.getArgOperand(0)).getValueType(),
   4996                                 getValue(I.getArgOperand(0)),
   4997                                 getValue(I.getArgOperand(1)));
   4998       SDValue Add = DAG.getNode(ISD::FADD, dl,
   4999                                 getValue(I.getArgOperand(0)).getValueType(),
   5000                                 Mul,
   5001                                 getValue(I.getArgOperand(2)));
   5002       setValue(&I, Add);
   5003     }
   5004     return 0;
   5005   }
   5006   case Intrinsic::convert_to_fp16:
   5007     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
   5008                              MVT::i16, getValue(I.getArgOperand(0))));
   5009     return 0;
   5010   case Intrinsic::convert_from_fp16:
   5011     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
   5012                              MVT::f32, getValue(I.getArgOperand(0))));
   5013     return 0;
   5014   case Intrinsic::pcmarker: {
   5015     SDValue Tmp = getValue(I.getArgOperand(0));
   5016     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
   5017     return 0;
   5018   }
   5019   case Intrinsic::readcyclecounter: {
   5020     SDValue Op = getRoot();
   5021     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
   5022                       DAG.getVTList(MVT::i64, MVT::Other),
   5023                       &Op, 1);
   5024     setValue(&I, Res);
   5025     DAG.setRoot(Res.getValue(1));
   5026     return 0;
   5027   }
   5028   case Intrinsic::bswap:
   5029     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
   5030                              getValue(I.getArgOperand(0)).getValueType(),
   5031                              getValue(I.getArgOperand(0))));
   5032     return 0;
   5033   case Intrinsic::cttz: {
   5034     SDValue Arg = getValue(I.getArgOperand(0));
   5035     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
   5036     EVT Ty = Arg.getValueType();
   5037     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
   5038                              dl, Ty, Arg));
   5039     return 0;
   5040   }
   5041   case Intrinsic::ctlz: {
   5042     SDValue Arg = getValue(I.getArgOperand(0));
   5043     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
   5044     EVT Ty = Arg.getValueType();
   5045     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
   5046                              dl, Ty, Arg));
   5047     return 0;
   5048   }
   5049   case Intrinsic::ctpop: {
   5050     SDValue Arg = getValue(I.getArgOperand(0));
   5051     EVT Ty = Arg.getValueType();
   5052     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
   5053     return 0;
   5054   }
   5055   case Intrinsic::stacksave: {
   5056     SDValue Op = getRoot();
   5057     Res = DAG.getNode(ISD::STACKSAVE, dl,
   5058                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
   5059     setValue(&I, Res);
   5060     DAG.setRoot(Res.getValue(1));
   5061     return 0;
   5062   }
   5063   case Intrinsic::stackrestore: {
   5064     Res = getValue(I.getArgOperand(0));
   5065     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
   5066     return 0;
   5067   }
   5068   case Intrinsic::stackprotector: {
   5069     // Emit code into the DAG to store the stack guard onto the stack.
   5070     MachineFunction &MF = DAG.getMachineFunction();
   5071     MachineFrameInfo *MFI = MF.getFrameInfo();
   5072     EVT PtrTy = TLI.getPointerTy();
   5073 
   5074     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
   5075     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
   5076 
   5077     int FI = FuncInfo.StaticAllocaMap[Slot];
   5078     MFI->setStackProtectorIndex(FI);
   5079 
   5080     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
   5081 
   5082     // Store the stack protector onto the stack.
   5083     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
   5084                        MachinePointerInfo::getFixedStack(FI),
   5085                        true, false, 0);
   5086     setValue(&I, Res);
   5087     DAG.setRoot(Res);
   5088     return 0;
   5089   }
   5090   case Intrinsic::objectsize: {
   5091     // If we don't know by now, we're never going to know.
   5092     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
   5093 
   5094     assert(CI && "Non-constant type in __builtin_object_size?");
   5095 
   5096     SDValue Arg = getValue(I.getCalledValue());
   5097     EVT Ty = Arg.getValueType();
   5098 
   5099     if (CI->isZero())
   5100       Res = DAG.getConstant(-1ULL, Ty);
   5101     else
   5102       Res = DAG.getConstant(0, Ty);
   5103 
   5104     setValue(&I, Res);
   5105     return 0;
   5106   }
   5107   case Intrinsic::var_annotation:
   5108     // Discard annotate attributes
   5109     return 0;
   5110 
   5111   case Intrinsic::init_trampoline: {
   5112     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
   5113 
   5114     SDValue Ops[6];
   5115     Ops[0] = getRoot();
   5116     Ops[1] = getValue(I.getArgOperand(0));
   5117     Ops[2] = getValue(I.getArgOperand(1));
   5118     Ops[3] = getValue(I.getArgOperand(2));
   5119     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
   5120     Ops[5] = DAG.getSrcValue(F);
   5121 
   5122     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
   5123 
   5124     DAG.setRoot(Res);
   5125     return 0;
   5126   }
   5127   case Intrinsic::adjust_trampoline: {
   5128     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
   5129                              TLI.getPointerTy(),
   5130                              getValue(I.getArgOperand(0))));
   5131     return 0;
   5132   }
   5133   case Intrinsic::gcroot:
   5134     if (GFI) {
   5135       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
   5136       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
   5137 
   5138       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
   5139       GFI->addStackRoot(FI->getIndex(), TypeMap);
   5140     }
   5141     return 0;
   5142   case Intrinsic::gcread:
   5143   case Intrinsic::gcwrite:
   5144     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
   5145   case Intrinsic::flt_rounds:
   5146     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
   5147     return 0;
   5148 
   5149   case Intrinsic::expect: {
   5150     // Just replace __builtin_expect(exp, c) with EXP.
   5151     setValue(&I, getValue(I.getArgOperand(0)));
   5152     return 0;
   5153   }
   5154 
   5155   case Intrinsic::trap: {
   5156     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
   5157     if (TrapFuncName.empty()) {
   5158       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
   5159       return 0;
   5160     }
   5161     TargetLowering::ArgListTy Args;
   5162     TargetLowering::
   5163     CallLoweringInfo CLI(getRoot(), I.getType(),
   5164                  false, false, false, false, 0, CallingConv::C,
   5165                  /*isTailCall=*/false,
   5166                  /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
   5167                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
   5168                  Args, DAG, getCurDebugLoc());
   5169     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
   5170     DAG.setRoot(Result.second);
   5171     return 0;
   5172   }
   5173   case Intrinsic::debugtrap: {
   5174     DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot()));
   5175     return 0;
   5176   }
   5177   case Intrinsic::uadd_with_overflow:
   5178   case Intrinsic::sadd_with_overflow:
   5179   case Intrinsic::usub_with_overflow:
   5180   case Intrinsic::ssub_with_overflow:
   5181   case Intrinsic::umul_with_overflow:
   5182   case Intrinsic::smul_with_overflow: {
   5183     ISD::NodeType Op;
   5184     switch (Intrinsic) {
   5185     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   5186     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
   5187     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
   5188     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
   5189     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
   5190     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
   5191     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
   5192     }
   5193     SDValue Op1 = getValue(I.getArgOperand(0));
   5194     SDValue Op2 = getValue(I.getArgOperand(1));
   5195 
   5196     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
   5197     setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
   5198     return 0;
   5199   }
   5200   case Intrinsic::prefetch: {
   5201     SDValue Ops[5];
   5202     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
   5203     Ops[0] = getRoot();
   5204     Ops[1] = getValue(I.getArgOperand(0));
   5205     Ops[2] = getValue(I.getArgOperand(1));
   5206     Ops[3] = getValue(I.getArgOperand(2));
   5207     Ops[4] = getValue(I.getArgOperand(3));
   5208     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
   5209                                         DAG.getVTList(MVT::Other),
   5210                                         &Ops[0], 5,
   5211                                         EVT::getIntegerVT(*Context, 8),
   5212                                         MachinePointerInfo(I.getArgOperand(0)),
   5213                                         0, /* align */
   5214                                         false, /* volatile */
   5215                                         rw==0, /* read */
   5216                                         rw==1)); /* write */
   5217     return 0;
   5218   }
   5219   case Intrinsic::lifetime_start:
   5220   case Intrinsic::lifetime_end: {
   5221     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
   5222     // Stack coloring is not enabled in O0, discard region information.
   5223     if (TM.getOptLevel() == CodeGenOpt::None)
   5224       return 0;
   5225 
   5226     SmallVector<Value *, 4> Allocas;
   5227     GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
   5228 
   5229     for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
   5230          E = Allocas.end(); Object != E; ++Object) {
   5231       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
   5232 
   5233       // Could not find an Alloca.
   5234       if (!LifetimeObject)
   5235         continue;
   5236 
   5237       int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
   5238 
   5239       SDValue Ops[2];
   5240       Ops[0] = getRoot();
   5241       Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
   5242       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
   5243 
   5244       Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
   5245       DAG.setRoot(Res);
   5246     }
   5247   }
   5248   case Intrinsic::invariant_start:
   5249     // Discard region information.
   5250     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
   5251     return 0;
   5252   case Intrinsic::invariant_end:
   5253     // Discard region information.
   5254     return 0;
   5255   case Intrinsic::donothing:
   5256     // ignore
   5257     return 0;
   5258   }
   5259 }
   5260 
   5261 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
   5262                                       bool isTailCall,
   5263                                       MachineBasicBlock *LandingPad) {
   5264   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   5265   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   5266   Type *RetTy = FTy->getReturnType();
   5267   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   5268   MCSymbol *BeginLabel = 0;
   5269 
   5270   TargetLowering::ArgListTy Args;
   5271   TargetLowering::ArgListEntry Entry;
   5272   Args.reserve(CS.arg_size());
   5273 
   5274   // Check whether the function can return without sret-demotion.
   5275   SmallVector<ISD::OutputArg, 4> Outs;
   5276   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
   5277                 Outs, TLI);
   5278 
   5279   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
   5280                                            DAG.getMachineFunction(),
   5281                                            FTy->isVarArg(), Outs,
   5282                                            FTy->getContext());
   5283 
   5284   SDValue DemoteStackSlot;
   5285   int DemoteStackIdx = -100;
   5286 
   5287   if (!CanLowerReturn) {
   5288     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
   5289                       FTy->getReturnType());
   5290     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
   5291                       FTy->getReturnType());
   5292     MachineFunction &MF = DAG.getMachineFunction();
   5293     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
   5294     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
   5295 
   5296     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
   5297     Entry.Node = DemoteStackSlot;
   5298     Entry.Ty = StackSlotPtrType;
   5299     Entry.isSExt = false;
   5300     Entry.isZExt = false;
   5301     Entry.isInReg = false;
   5302     Entry.isSRet = true;
   5303     Entry.isNest = false;
   5304     Entry.isByVal = false;
   5305     Entry.Alignment = Align;
   5306     Args.push_back(Entry);
   5307     RetTy = Type::getVoidTy(FTy->getContext());
   5308   }
   5309 
   5310   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   5311        i != e; ++i) {
   5312     const Value *V = *i;
   5313 
   5314     // Skip empty types
   5315     if (V->getType()->isEmptyTy())
   5316       continue;
   5317 
   5318     SDValue ArgNode = getValue(V);
   5319     Entry.Node = ArgNode; Entry.Ty = V->getType();
   5320 
   5321     unsigned attrInd = i - CS.arg_begin() + 1;
   5322     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
   5323     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
   5324     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
   5325     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
   5326     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
   5327     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
   5328     Entry.Alignment = CS.getParamAlignment(attrInd);
   5329     Args.push_back(Entry);
   5330   }
   5331 
   5332   if (LandingPad) {
   5333     // Insert a label before the invoke call to mark the try range.  This can be
   5334     // used to detect deletion of the invoke via the MachineModuleInfo.
   5335     BeginLabel = MMI.getContext().CreateTempSymbol();
   5336 
   5337     // For SjLj, keep track of which landing pads go with which invokes
   5338     // so as to maintain the ordering of pads in the LSDA.
   5339     unsigned CallSiteIndex = MMI.getCurrentCallSite();
   5340     if (CallSiteIndex) {
   5341       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
   5342       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
   5343 
   5344       // Now that the call site is handled, stop tracking it.
   5345       MMI.setCurrentCallSite(0);
   5346     }
   5347 
   5348     // Both PendingLoads and PendingExports must be flushed here;
   5349     // this call might not return.
   5350     (void)getRoot();
   5351     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
   5352   }
   5353 
   5354   // Check if target-independent constraints permit a tail call here.
   5355   // Target-dependent constraints are checked within TLI.LowerCallTo.
   5356   if (isTailCall &&
   5357       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
   5358     isTailCall = false;
   5359 
   5360   // If there's a possibility that fast-isel has already selected some amount
   5361   // of the current basic block, don't emit a tail call.
   5362   if (isTailCall && TM.Options.EnableFastISel)
   5363     isTailCall = false;
   5364 
   5365   TargetLowering::
   5366   CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
   5367                        getCurDebugLoc(), CS);
   5368   std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
   5369   assert((isTailCall || Result.second.getNode()) &&
   5370          "Non-null chain expected with non-tail call!");
   5371   assert((Result.second.getNode() || !Result.first.getNode()) &&
   5372          "Null value expected with tail call!");
   5373   if (Result.first.getNode()) {
   5374     setValue(CS.getInstruction(), Result.first);
   5375   } else if (!CanLowerReturn && Result.second.getNode()) {
   5376     // The instruction result is the result of loading from the
   5377     // hidden sret parameter.
   5378     SmallVector<EVT, 1> PVTs;
   5379     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
   5380 
   5381     ComputeValueVTs(TLI, PtrRetTy, PVTs);
   5382     assert(PVTs.size() == 1 && "Pointers should fit in one register");
   5383     EVT PtrVT = PVTs[0];
   5384 
   5385     SmallVector<EVT, 4> RetTys;
   5386     SmallVector<uint64_t, 4> Offsets;
   5387     RetTy = FTy->getReturnType();
   5388     ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
   5389 
   5390     unsigned NumValues = RetTys.size();
   5391     SmallVector<SDValue, 4> Values(NumValues);
   5392     SmallVector<SDValue, 4> Chains(NumValues);
   5393 
   5394     for (unsigned i = 0; i < NumValues; ++i) {
   5395       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
   5396                                 DemoteStackSlot,
   5397                                 DAG.getConstant(Offsets[i], PtrVT));
   5398       SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
   5399                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
   5400                               false, false, false, 1);
   5401       Values[i] = L;
   5402       Chains[i] = L.getValue(1);
   5403     }
   5404 
   5405     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
   5406                                 MVT::Other, &Chains[0], NumValues);
   5407     PendingLoads.push_back(Chain);
   5408 
   5409     setValue(CS.getInstruction(),
   5410              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
   5411                          DAG.getVTList(&RetTys[0], RetTys.size()),
   5412                          &Values[0], Values.size()));
   5413   }
   5414 
   5415   // Assign order to nodes here. If the call does not produce a result, it won't
   5416   // be mapped to a SDNode and visit() will not assign it an order number.
   5417   if (!Result.second.getNode()) {
   5418     // As a special case, a null chain means that a tail call has been emitted and
   5419     // the DAG root is already updated.
   5420     HasTailCall = true;
   5421     ++SDNodeOrder;
   5422     AssignOrderingToNode(DAG.getRoot().getNode());
   5423   } else {
   5424     DAG.setRoot(Result.second);
   5425     ++SDNodeOrder;
   5426     AssignOrderingToNode(Result.second.getNode());
   5427   }
   5428 
   5429   if (LandingPad) {
   5430     // Insert a label at the end of the invoke call to mark the try range.  This
   5431     // can be used to detect deletion of the invoke via the MachineModuleInfo.
   5432     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
   5433     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
   5434 
   5435     // Inform MachineModuleInfo of range.
   5436     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
   5437   }
   5438 }
   5439 
   5440 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
   5441 /// value is equal or not-equal to zero.
   5442 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
   5443   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
   5444        UI != E; ++UI) {
   5445     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
   5446       if (IC->isEquality())
   5447         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
   5448           if (C->isNullValue())
   5449             continue;
   5450     // Unknown instruction.
   5451     return false;
   5452   }
   5453   return true;
   5454 }
   5455 
   5456 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
   5457                              Type *LoadTy,
   5458                              SelectionDAGBuilder &Builder) {
   5459 
   5460   // Check to see if this load can be trivially constant folded, e.g. if the
   5461   // input is from a string literal.
   5462   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
   5463     // Cast pointer to the type we really want to load.
   5464     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
   5465                                          PointerType::getUnqual(LoadTy));
   5466 
   5467     if (const Constant *LoadCst =
   5468           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
   5469                                        Builder.TD))
   5470       return Builder.getValue(LoadCst);
   5471   }
   5472 
   5473   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
   5474   // still constant memory, the input chain can be the entry node.
   5475   SDValue Root;
   5476   bool ConstantMemory = false;
   5477 
   5478   // Do not serialize (non-volatile) loads of constant memory with anything.
   5479   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
   5480     Root = Builder.DAG.getEntryNode();
   5481     ConstantMemory = true;
   5482   } else {
   5483     // Do not serialize non-volatile loads against each other.
   5484     Root = Builder.DAG.getRoot();
   5485   }
   5486 
   5487   SDValue Ptr = Builder.getValue(PtrVal);
   5488   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
   5489                                         Ptr, MachinePointerInfo(PtrVal),
   5490                                         false /*volatile*/,
   5491                                         false /*nontemporal*/,
   5492                                         false /*isinvariant*/, 1 /* align=1 */);
   5493 
   5494   if (!ConstantMemory)
   5495     Builder.PendingLoads.push_back(LoadVal.getValue(1));
   5496   return LoadVal;
   5497 }
   5498 
   5499 
   5500 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
   5501 /// If so, return true and lower it, otherwise return false and it will be
   5502 /// lowered like a normal call.
   5503 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
   5504   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
   5505   if (I.getNumArgOperands() != 3)
   5506     return false;
   5507 
   5508   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
   5509   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
   5510       !I.getArgOperand(2)->getType()->isIntegerTy() ||
   5511       !I.getType()->isIntegerTy())
   5512     return false;
   5513 
   5514   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
   5515 
   5516   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
   5517   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
   5518   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
   5519     bool ActuallyDoIt = true;
   5520     MVT LoadVT;
   5521     Type *LoadTy;
   5522     switch (Size->getZExtValue()) {
   5523     default:
   5524       LoadVT = MVT::Other;
   5525       LoadTy = 0;
   5526       ActuallyDoIt = false;
   5527       break;
   5528     case 2:
   5529       LoadVT = MVT::i16;
   5530       LoadTy = Type::getInt16Ty(Size->getContext());
   5531       break;
   5532     case 4:
   5533       LoadVT = MVT::i32;
   5534       LoadTy = Type::getInt32Ty(Size->getContext());
   5535       break;
   5536     case 8:
   5537       LoadVT = MVT::i64;
   5538       LoadTy = Type::getInt64Ty(Size->getContext());
   5539       break;
   5540         /*
   5541     case 16:
   5542       LoadVT = MVT::v4i32;
   5543       LoadTy = Type::getInt32Ty(Size->getContext());
   5544       LoadTy = VectorType::get(LoadTy, 4);
   5545       break;
   5546          */
   5547     }
   5548 
   5549     // This turns into unaligned loads.  We only do this if the target natively
   5550     // supports the MVT we'll be loading or if it is small enough (<= 4) that
   5551     // we'll only produce a small number of byte loads.
   5552 
   5553     // Require that we can find a legal MVT, and only do this if the target
   5554     // supports unaligned loads of that type.  Expanding into byte loads would
   5555     // bloat the code.
   5556     if (ActuallyDoIt && Size->getZExtValue() > 4) {
   5557       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
   5558       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
   5559       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
   5560         ActuallyDoIt = false;
   5561     }
   5562 
   5563     if (ActuallyDoIt) {
   5564       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
   5565       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
   5566 
   5567       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
   5568                                  ISD::SETNE);
   5569       EVT CallVT = TLI.getValueType(I.getType(), true);
   5570       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
   5571       return true;
   5572     }
   5573   }
   5574 
   5575 
   5576   return false;
   5577 }
   5578 
   5579 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
   5580 /// operation (as expected), translate it to an SDNode with the specified opcode
   5581 /// and return true.
   5582 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
   5583                                               unsigned Opcode) {
   5584   // Sanity check that it really is a unary floating-point call.
   5585   if (I.getNumArgOperands() != 1 ||
   5586       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
   5587       I.getType() != I.getArgOperand(0)->getType() ||
   5588       !I.onlyReadsMemory())
   5589     return false;
   5590 
   5591   SDValue Tmp = getValue(I.getArgOperand(0));
   5592   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
   5593   return true;
   5594 }
   5595 
   5596 void SelectionDAGBuilder::visitCall(const CallInst &I) {
   5597   // Handle inline assembly differently.
   5598   if (isa<InlineAsm>(I.getCalledValue())) {
   5599     visitInlineAsm(&I);
   5600     return;
   5601   }
   5602 
   5603   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   5604   ComputeUsesVAFloatArgument(I, &MMI);
   5605 
   5606   const char *RenameFn = 0;
   5607   if (Function *F = I.getCalledFunction()) {
   5608     if (F->isDeclaration()) {
   5609       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
   5610         if (unsigned IID = II->getIntrinsicID(F)) {
   5611           RenameFn = visitIntrinsicCall(I, IID);
   5612           if (!RenameFn)
   5613             return;
   5614         }
   5615       }
   5616       if (unsigned IID = F->getIntrinsicID()) {
   5617         RenameFn = visitIntrinsicCall(I, IID);
   5618         if (!RenameFn)
   5619           return;
   5620       }
   5621     }
   5622 
   5623     // Check for well-known libc/libm calls.  If the function is internal, it
   5624     // can't be a library call.
   5625     LibFunc::Func Func;
   5626     if (!F->hasLocalLinkage() && F->hasName() &&
   5627         LibInfo->getLibFunc(F->getName(), Func) &&
   5628         LibInfo->hasOptimizedCodeGen(Func)) {
   5629       switch (Func) {
   5630       default: break;
   5631       case LibFunc::copysign:
   5632       case LibFunc::copysignf:
   5633       case LibFunc::copysignl:
   5634         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
   5635             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5636             I.getType() == I.getArgOperand(0)->getType() &&
   5637             I.getType() == I.getArgOperand(1)->getType() &&
   5638             I.onlyReadsMemory()) {
   5639           SDValue LHS = getValue(I.getArgOperand(0));
   5640           SDValue RHS = getValue(I.getArgOperand(1));
   5641           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
   5642                                    LHS.getValueType(), LHS, RHS));
   5643           return;
   5644         }
   5645         break;
   5646       case LibFunc::fabs:
   5647       case LibFunc::fabsf:
   5648       case LibFunc::fabsl:
   5649         if (visitUnaryFloatCall(I, ISD::FABS))
   5650           return;
   5651         break;
   5652       case LibFunc::sin:
   5653       case LibFunc::sinf:
   5654       case LibFunc::sinl:
   5655         if (visitUnaryFloatCall(I, ISD::FSIN))
   5656           return;
   5657         break;
   5658       case LibFunc::cos:
   5659       case LibFunc::cosf:
   5660       case LibFunc::cosl:
   5661         if (visitUnaryFloatCall(I, ISD::FCOS))
   5662           return;
   5663         break;
   5664       case LibFunc::sqrt:
   5665       case LibFunc::sqrtf:
   5666       case LibFunc::sqrtl:
   5667         if (visitUnaryFloatCall(I, ISD::FSQRT))
   5668           return;
   5669         break;
   5670       case LibFunc::floor:
   5671       case LibFunc::floorf:
   5672       case LibFunc::floorl:
   5673         if (visitUnaryFloatCall(I, ISD::FFLOOR))
   5674           return;
   5675         break;
   5676       case LibFunc::nearbyint:
   5677       case LibFunc::nearbyintf:
   5678       case LibFunc::nearbyintl:
   5679         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
   5680           return;
   5681         break;
   5682       case LibFunc::ceil:
   5683       case LibFunc::ceilf:
   5684       case LibFunc::ceill:
   5685         if (visitUnaryFloatCall(I, ISD::FCEIL))
   5686           return;
   5687         break;
   5688       case LibFunc::rint:
   5689       case LibFunc::rintf:
   5690       case LibFunc::rintl:
   5691         if (visitUnaryFloatCall(I, ISD::FRINT))
   5692           return;
   5693         break;
   5694       case LibFunc::trunc:
   5695       case LibFunc::truncf:
   5696       case LibFunc::truncl:
   5697         if (visitUnaryFloatCall(I, ISD::FTRUNC))
   5698           return;
   5699         break;
   5700       case LibFunc::log2:
   5701       case LibFunc::log2f:
   5702       case LibFunc::log2l:
   5703         if (visitUnaryFloatCall(I, ISD::FLOG2))
   5704           return;
   5705         break;
   5706       case LibFunc::exp2:
   5707       case LibFunc::exp2f:
   5708       case LibFunc::exp2l:
   5709         if (visitUnaryFloatCall(I, ISD::FEXP2))
   5710           return;
   5711         break;
   5712       case LibFunc::memcmp:
   5713         if (visitMemCmpCall(I))
   5714           return;
   5715         break;
   5716       }
   5717     }
   5718   }
   5719 
   5720   SDValue Callee;
   5721   if (!RenameFn)
   5722     Callee = getValue(I.getCalledValue());
   5723   else
   5724     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
   5725 
   5726   // Check if we can potentially perform a tail call. More detailed checking is
   5727   // be done within LowerCallTo, after more information about the call is known.
   5728   LowerCallTo(&I, Callee, I.isTailCall());
   5729 }
   5730 
   5731 namespace {
   5732 
   5733 /// AsmOperandInfo - This contains information for each constraint that we are
   5734 /// lowering.
   5735 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
   5736 public:
   5737   /// CallOperand - If this is the result output operand or a clobber
   5738   /// this is null, otherwise it is the incoming operand to the CallInst.
   5739   /// This gets modified as the asm is processed.
   5740   SDValue CallOperand;
   5741 
   5742   /// AssignedRegs - If this is a register or register class operand, this
   5743   /// contains the set of register corresponding to the operand.
   5744   RegsForValue AssignedRegs;
   5745 
   5746   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
   5747     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
   5748   }
   5749 
   5750   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
   5751   /// corresponds to.  If there is no Value* for this operand, it returns
   5752   /// MVT::Other.
   5753   EVT getCallOperandValEVT(LLVMContext &Context,
   5754                            const TargetLowering &TLI,
   5755                            const TargetData *TD) const {
   5756     if (CallOperandVal == 0) return MVT::Other;
   5757 
   5758     if (isa<BasicBlock>(CallOperandVal))
   5759       return TLI.getPointerTy();
   5760 
   5761     llvm::Type *OpTy = CallOperandVal->getType();
   5762 
   5763     // FIXME: code duplicated from TargetLowering::ParseConstraints().
   5764     // If this is an indirect operand, the operand is a pointer to the
   5765     // accessed type.
   5766     if (isIndirect) {
   5767       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   5768       if (!PtrTy)
   5769         report_fatal_error("Indirect operand for inline asm not a pointer!");
   5770       OpTy = PtrTy->getElementType();
   5771     }
   5772 
   5773     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   5774     if (StructType *STy = dyn_cast<StructType>(OpTy))
   5775       if (STy->getNumElements() == 1)
   5776         OpTy = STy->getElementType(0);
   5777 
   5778     // If OpTy is not a single value, it may be a struct/union that we
   5779     // can tile with integers.
   5780     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   5781       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
   5782       switch (BitSize) {
   5783       default: break;
   5784       case 1:
   5785       case 8:
   5786       case 16:
   5787       case 32:
   5788       case 64:
   5789       case 128:
   5790         OpTy = IntegerType::get(Context, BitSize);
   5791         break;
   5792       }
   5793     }
   5794 
   5795     return TLI.getValueType(OpTy, true);
   5796   }
   5797 };
   5798 
   5799 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
   5800 
   5801 } // end anonymous namespace
   5802 
   5803 /// GetRegistersForValue - Assign registers (virtual or physical) for the
   5804 /// specified operand.  We prefer to assign virtual registers, to allow the
   5805 /// register allocator to handle the assignment process.  However, if the asm
   5806 /// uses features that we can't model on machineinstrs, we have SDISel do the
   5807 /// allocation.  This produces generally horrible, but correct, code.
   5808 ///
   5809 ///   OpInfo describes the operand.
   5810 ///
   5811 static void GetRegistersForValue(SelectionDAG &DAG,
   5812                                  const TargetLowering &TLI,
   5813                                  DebugLoc DL,
   5814                                  SDISelAsmOperandInfo &OpInfo) {
   5815   LLVMContext &Context = *DAG.getContext();
   5816 
   5817   MachineFunction &MF = DAG.getMachineFunction();
   5818   SmallVector<unsigned, 4> Regs;
   5819 
   5820   // If this is a constraint for a single physreg, or a constraint for a
   5821   // register class, find it.
   5822   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
   5823     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
   5824                                      OpInfo.ConstraintVT);
   5825 
   5826   unsigned NumRegs = 1;
   5827   if (OpInfo.ConstraintVT != MVT::Other) {
   5828     // If this is a FP input in an integer register (or visa versa) insert a bit
   5829     // cast of the input value.  More generally, handle any case where the input
   5830     // value disagrees with the register class we plan to stick this in.
   5831     if (OpInfo.Type == InlineAsm::isInput &&
   5832         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
   5833       // Try to convert to the first EVT that the reg class contains.  If the
   5834       // types are identical size, use a bitcast to convert (e.g. two differing
   5835       // vector types).
   5836       EVT RegVT = *PhysReg.second->vt_begin();
   5837       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
   5838         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
   5839                                          RegVT, OpInfo.CallOperand);
   5840         OpInfo.ConstraintVT = RegVT;
   5841       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
   5842         // If the input is a FP value and we want it in FP registers, do a
   5843         // bitcast to the corresponding integer type.  This turns an f64 value
   5844         // into i64, which can be passed with two i32 values on a 32-bit
   5845         // machine.
   5846         RegVT = EVT::getIntegerVT(Context,
   5847                                   OpInfo.ConstraintVT.getSizeInBits());
   5848         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
   5849                                          RegVT, OpInfo.CallOperand);
   5850         OpInfo.ConstraintVT = RegVT;
   5851       }
   5852     }
   5853 
   5854     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
   5855   }
   5856 
   5857   EVT RegVT;
   5858   EVT ValueVT = OpInfo.ConstraintVT;
   5859 
   5860   // If this is a constraint for a specific physical register, like {r17},
   5861   // assign it now.
   5862   if (unsigned AssignedReg = PhysReg.first) {
   5863     const TargetRegisterClass *RC = PhysReg.second;
   5864     if (OpInfo.ConstraintVT == MVT::Other)
   5865       ValueVT = *RC->vt_begin();
   5866 
   5867     // Get the actual register value type.  This is important, because the user
   5868     // may have asked for (e.g.) the AX register in i32 type.  We need to
   5869     // remember that AX is actually i16 to get the right extension.
   5870     RegVT = *RC->vt_begin();
   5871 
   5872     // This is a explicit reference to a physical register.
   5873     Regs.push_back(AssignedReg);
   5874 
   5875     // If this is an expanded reference, add the rest of the regs to Regs.
   5876     if (NumRegs != 1) {
   5877       TargetRegisterClass::iterator I = RC->begin();
   5878       for (; *I != AssignedReg; ++I)
   5879         assert(I != RC->end() && "Didn't find reg!");
   5880 
   5881       // Already added the first reg.
   5882       --NumRegs; ++I;
   5883       for (; NumRegs; --NumRegs, ++I) {
   5884         assert(I != RC->end() && "Ran out of registers to allocate!");
   5885         Regs.push_back(*I);
   5886       }
   5887     }
   5888 
   5889     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
   5890     return;
   5891   }
   5892 
   5893   // Otherwise, if this was a reference to an LLVM register class, create vregs
   5894   // for this reference.
   5895   if (const TargetRegisterClass *RC = PhysReg.second) {
   5896     RegVT = *RC->vt_begin();
   5897     if (OpInfo.ConstraintVT == MVT::Other)
   5898       ValueVT = RegVT;
   5899 
   5900     // Create the appropriate number of virtual registers.
   5901     MachineRegisterInfo &RegInfo = MF.getRegInfo();
   5902     for (; NumRegs; --NumRegs)
   5903       Regs.push_back(RegInfo.createVirtualRegister(RC));
   5904 
   5905     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
   5906     return;
   5907   }
   5908 
   5909   // Otherwise, we couldn't allocate enough registers for this.
   5910 }
   5911 
   5912 /// visitInlineAsm - Handle a call to an InlineAsm object.
   5913 ///
   5914 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
   5915   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   5916 
   5917   /// ConstraintOperands - Information about all of the constraints.
   5918   SDISelAsmOperandInfoVector ConstraintOperands;
   5919 
   5920   TargetLowering::AsmOperandInfoVector
   5921     TargetConstraints = TLI.ParseConstraints(CS);
   5922 
   5923   bool hasMemory = false;
   5924 
   5925   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   5926   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   5927   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   5928     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
   5929     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
   5930 
   5931     EVT OpVT = MVT::Other;
   5932 
   5933     // Compute the value type for each operand.
   5934     switch (OpInfo.Type) {
   5935     case InlineAsm::isOutput:
   5936       // Indirect outputs just consume an argument.
   5937       if (OpInfo.isIndirect) {
   5938         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   5939         break;
   5940       }
   5941 
   5942       // The return value of the call is this value.  As such, there is no
   5943       // corresponding argument.
   5944       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
   5945       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   5946         OpVT = TLI.getValueType(STy->getElementType(ResNo));
   5947       } else {
   5948         assert(ResNo == 0 && "Asm only has one result!");
   5949         OpVT = TLI.getValueType(CS.getType());
   5950       }
   5951       ++ResNo;
   5952       break;
   5953     case InlineAsm::isInput:
   5954       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   5955       break;
   5956     case InlineAsm::isClobber:
   5957       // Nothing to do.
   5958       break;
   5959     }
   5960 
   5961     // If this is an input or an indirect output, process the call argument.
   5962     // BasicBlocks are labels, currently appearing only in asm's.
   5963     if (OpInfo.CallOperandVal) {
   5964       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
   5965         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
   5966       } else {
   5967         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
   5968       }
   5969 
   5970       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
   5971     }
   5972 
   5973     OpInfo.ConstraintVT = OpVT;
   5974 
   5975     // Indirect operand accesses access memory.
   5976     if (OpInfo.isIndirect)
   5977       hasMemory = true;
   5978     else {
   5979       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
   5980         TargetLowering::ConstraintType
   5981           CType = TLI.getConstraintType(OpInfo.Codes[j]);
   5982         if (CType == TargetLowering::C_Memory) {
   5983           hasMemory = true;
   5984           break;
   5985         }
   5986       }
   5987     }
   5988   }
   5989 
   5990   SDValue Chain, Flag;
   5991 
   5992   // We won't need to flush pending loads if this asm doesn't touch
   5993   // memory and is nonvolatile.
   5994   if (hasMemory || IA->hasSideEffects())
   5995     Chain = getRoot();
   5996   else
   5997     Chain = DAG.getRoot();
   5998 
   5999   // Second pass over the constraints: compute which constraint option to use
   6000   // and assign registers to constraints that want a specific physreg.
   6001   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   6002     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   6003 
   6004     // If this is an output operand with a matching input operand, look up the
   6005     // matching input. If their types mismatch, e.g. one is an integer, the
   6006     // other is floating point, or their sizes are different, flag it as an
   6007     // error.
   6008     if (OpInfo.hasMatchingInput()) {
   6009       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   6010 
   6011       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   6012         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
   6013           TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
   6014                                            OpInfo.ConstraintVT);
   6015         std::pair<unsigned, const TargetRegisterClass*> InputRC =
   6016           TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
   6017                                            Input.ConstraintVT);
   6018         if ((OpInfo.ConstraintVT.isInteger() !=
   6019              Input.ConstraintVT.isInteger()) ||
   6020             (MatchRC.second != InputRC.second)) {
   6021           report_fatal_error("Unsupported asm: input constraint"
   6022                              " with a matching output constraint of"
   6023                              " incompatible type!");
   6024         }
   6025         Input.ConstraintVT = OpInfo.ConstraintVT;
   6026       }
   6027     }
   6028 
   6029     // Compute the constraint code and ConstraintType to use.
   6030     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
   6031 
   6032     // If this is a memory input, and if the operand is not indirect, do what we
   6033     // need to to provide an address for the memory input.
   6034     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
   6035         !OpInfo.isIndirect) {
   6036       assert((OpInfo.isMultipleAlternative ||
   6037               (OpInfo.Type == InlineAsm::isInput)) &&
   6038              "Can only indirectify direct input operands!");
   6039 
   6040       // Memory operands really want the address of the value.  If we don't have
   6041       // an indirect input, put it in the constpool if we can, otherwise spill
   6042       // it to a stack slot.
   6043       // TODO: This isn't quite right. We need to handle these according to
   6044       // the addressing mode that the constraint wants. Also, this may take
   6045       // an additional register for the computation and we don't want that
   6046       // either.
   6047 
   6048       // If the operand is a float, integer, or vector constant, spill to a
   6049       // constant pool entry to get its address.
   6050       const Value *OpVal = OpInfo.CallOperandVal;
   6051       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
   6052           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
   6053         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
   6054                                                  TLI.getPointerTy());
   6055       } else {
   6056         // Otherwise, create a stack slot and emit a store to it before the
   6057         // asm.
   6058         Type *Ty = OpVal->getType();
   6059         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
   6060         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
   6061         MachineFunction &MF = DAG.getMachineFunction();
   6062         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
   6063         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
   6064         Chain = DAG.getStore(Chain, getCurDebugLoc(),
   6065                              OpInfo.CallOperand, StackSlot,
   6066                              MachinePointerInfo::getFixedStack(SSFI),
   6067                              false, false, 0);
   6068         OpInfo.CallOperand = StackSlot;
   6069       }
   6070 
   6071       // There is no longer a Value* corresponding to this operand.
   6072       OpInfo.CallOperandVal = 0;
   6073 
   6074       // It is now an indirect operand.
   6075       OpInfo.isIndirect = true;
   6076     }
   6077 
   6078     // If this constraint is for a specific register, allocate it before
   6079     // anything else.
   6080     if (OpInfo.ConstraintType == TargetLowering::C_Register)
   6081       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
   6082   }
   6083 
   6084   // Second pass - Loop over all of the operands, assigning virtual or physregs
   6085   // to register class operands.
   6086   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   6087     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   6088 
   6089     // C_Register operands have already been allocated, Other/Memory don't need
   6090     // to be.
   6091     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
   6092       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
   6093   }
   6094 
   6095   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
   6096   std::vector<SDValue> AsmNodeOperands;
   6097   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
   6098   AsmNodeOperands.push_back(
   6099           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
   6100                                       TLI.getPointerTy()));
   6101 
   6102   // If we have a !srcloc metadata node associated with it, we want to attach
   6103   // this to the ultimately generated inline asm machineinstr.  To do this, we
   6104   // pass in the third operand as this (potentially null) inline asm MDNode.
   6105   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
   6106   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
   6107 
   6108   // Remember the HasSideEffect, AlignStack and AsmDialect bits as operand 3.
   6109   unsigned ExtraInfo = 0;
   6110   if (IA->hasSideEffects())
   6111     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
   6112   if (IA->isAlignStack())
   6113     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
   6114   // Set the asm dialect.
   6115   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
   6116   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
   6117                                                   TLI.getPointerTy()));
   6118 
   6119   // Loop over all of the inputs, copying the operand values into the
   6120   // appropriate registers and processing the output regs.
   6121   RegsForValue RetValRegs;
   6122 
   6123   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
   6124   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
   6125 
   6126   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   6127     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   6128 
   6129     switch (OpInfo.Type) {
   6130     case InlineAsm::isOutput: {
   6131       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
   6132           OpInfo.ConstraintType != TargetLowering::C_Register) {
   6133         // Memory output, or 'other' output (e.g. 'X' constraint).
   6134         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
   6135 
   6136         // Add information to the INLINEASM node to know about this output.
   6137         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
   6138         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
   6139                                                         TLI.getPointerTy()));
   6140         AsmNodeOperands.push_back(OpInfo.CallOperand);
   6141         break;
   6142       }
   6143 
   6144       // Otherwise, this is a register or register class output.
   6145 
   6146       // Copy the output from the appropriate register.  Find a register that
   6147       // we can use.
   6148       if (OpInfo.AssignedRegs.Regs.empty()) {
   6149         LLVMContext &Ctx = *DAG.getContext();
   6150         Ctx.emitError(CS.getInstruction(),
   6151                       "couldn't allocate output register for constraint '" +
   6152                            Twine(OpInfo.ConstraintCode) + "'");
   6153         break;
   6154       }
   6155 
   6156       // If this is an indirect operand, store through the pointer after the
   6157       // asm.
   6158       if (OpInfo.isIndirect) {
   6159         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
   6160                                                       OpInfo.CallOperandVal));
   6161       } else {
   6162         // This is the result value of the call.
   6163         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
   6164         // Concatenate this output onto the outputs list.
   6165         RetValRegs.append(OpInfo.AssignedRegs);
   6166       }
   6167 
   6168       // Add information to the INLINEASM node to know that this register is
   6169       // set.
   6170       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
   6171                                            InlineAsm::Kind_RegDefEarlyClobber :
   6172                                                InlineAsm::Kind_RegDef,
   6173                                                false,
   6174                                                0,
   6175                                                DAG,
   6176                                                AsmNodeOperands);
   6177       break;
   6178     }
   6179     case InlineAsm::isInput: {
   6180       SDValue InOperandVal = OpInfo.CallOperand;
   6181 
   6182       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
   6183         // If this is required to match an output register we have already set,
   6184         // just use its register.
   6185         unsigned OperandNo = OpInfo.getMatchedOperand();
   6186 
   6187         // Scan until we find the definition we already emitted of this operand.
   6188         // When we find it, create a RegsForValue operand.
   6189         unsigned CurOp = InlineAsm::Op_FirstOperand;
   6190         for (; OperandNo; --OperandNo) {
   6191           // Advance to the next operand.
   6192           unsigned OpFlag =
   6193             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
   6194           assert((InlineAsm::isRegDefKind(OpFlag) ||
   6195                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
   6196                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
   6197           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
   6198         }
   6199 
   6200         unsigned OpFlag =
   6201           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
   6202         if (InlineAsm::isRegDefKind(OpFlag) ||
   6203             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
   6204           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
   6205           if (OpInfo.isIndirect) {
   6206             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
   6207             LLVMContext &Ctx = *DAG.getContext();
   6208             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
   6209                           " don't know how to handle tied "
   6210                           "indirect register inputs");
   6211           }
   6212 
   6213           RegsForValue MatchedRegs;
   6214           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
   6215           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
   6216           MatchedRegs.RegVTs.push_back(RegVT);
   6217           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
   6218           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
   6219                i != e; ++i)
   6220             MatchedRegs.Regs.push_back
   6221               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
   6222 
   6223           // Use the produced MatchedRegs object to
   6224           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
   6225                                     Chain, &Flag);
   6226           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
   6227                                            true, OpInfo.getMatchedOperand(),
   6228                                            DAG, AsmNodeOperands);
   6229           break;
   6230         }
   6231 
   6232         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
   6233         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
   6234                "Unexpected number of operands");
   6235         // Add information to the INLINEASM node to know about this input.
   6236         // See InlineAsm.h isUseOperandTiedToDef.
   6237         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
   6238                                                     OpInfo.getMatchedOperand());
   6239         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
   6240                                                         TLI.getPointerTy()));
   6241         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
   6242         break;
   6243       }
   6244 
   6245       // Treat indirect 'X' constraint as memory.
   6246       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
   6247           OpInfo.isIndirect)
   6248         OpInfo.ConstraintType = TargetLowering::C_Memory;
   6249 
   6250       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
   6251         std::vector<SDValue> Ops;
   6252         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
   6253                                          Ops, DAG);
   6254         if (Ops.empty()) {
   6255           LLVMContext &Ctx = *DAG.getContext();
   6256           Ctx.emitError(CS.getInstruction(),
   6257                         "invalid operand for inline asm constraint '" +
   6258                         Twine(OpInfo.ConstraintCode) + "'");
   6259           break;
   6260         }
   6261 
   6262         // Add information to the INLINEASM node to know about this input.
   6263         unsigned ResOpType =
   6264           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
   6265         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
   6266                                                         TLI.getPointerTy()));
   6267         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
   6268         break;
   6269       }
   6270 
   6271       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
   6272         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
   6273         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
   6274                "Memory operands expect pointer values");
   6275 
   6276         // Add information to the INLINEASM node to know about this input.
   6277         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
   6278         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
   6279                                                         TLI.getPointerTy()));
   6280         AsmNodeOperands.push_back(InOperandVal);
   6281         break;
   6282       }
   6283 
   6284       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
   6285               OpInfo.ConstraintType == TargetLowering::C_Register) &&
   6286              "Unknown constraint type!");
   6287 
   6288       // TODO: Support this.
   6289       if (OpInfo.isIndirect) {
   6290         LLVMContext &Ctx = *DAG.getContext();
   6291         Ctx.emitError(CS.getInstruction(),
   6292                       "Don't know how to handle indirect register inputs yet "
   6293                       "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
   6294         break;
   6295       }
   6296 
   6297       // Copy the input into the appropriate registers.
   6298       if (OpInfo.AssignedRegs.Regs.empty()) {
   6299         LLVMContext &Ctx = *DAG.getContext();
   6300         Ctx.emitError(CS.getInstruction(),
   6301                       "couldn't allocate input reg for constraint '" +
   6302                            Twine(OpInfo.ConstraintCode) + "'");
   6303         break;
   6304       }
   6305 
   6306       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
   6307                                         Chain, &Flag);
   6308 
   6309       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
   6310                                                DAG, AsmNodeOperands);
   6311       break;
   6312     }
   6313     case InlineAsm::isClobber: {
   6314       // Add the clobbered value to the operand list, so that the register
   6315       // allocator is aware that the physreg got clobbered.
   6316       if (!OpInfo.AssignedRegs.Regs.empty())
   6317         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
   6318                                                  false, 0, DAG,
   6319                                                  AsmNodeOperands);
   6320       break;
   6321     }
   6322     }
   6323   }
   6324 
   6325   // Finish up input operands.  Set the input chain and add the flag last.
   6326   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
   6327   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
   6328 
   6329   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
   6330                       DAG.getVTList(MVT::Other, MVT::Glue),
   6331                       &AsmNodeOperands[0], AsmNodeOperands.size());
   6332   Flag = Chain.getValue(1);
   6333 
   6334   // If this asm returns a register value, copy the result from that register
   6335   // and set it as the value of the call.
   6336   if (!RetValRegs.Regs.empty()) {
   6337     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
   6338                                              Chain, &Flag);
   6339 
   6340     // FIXME: Why don't we do this for inline asms with MRVs?
   6341     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
   6342       EVT ResultType = TLI.getValueType(CS.getType());
   6343 
   6344       // If any of the results of the inline asm is a vector, it may have the
   6345       // wrong width/num elts.  This can happen for register classes that can
   6346       // contain multiple different value types.  The preg or vreg allocated may
   6347       // not have the same VT as was expected.  Convert it to the right type
   6348       // with bit_convert.
   6349       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
   6350         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
   6351                           ResultType, Val);
   6352 
   6353       } else if (ResultType != Val.getValueType() &&
   6354                  ResultType.isInteger() && Val.getValueType().isInteger()) {
   6355         // If a result value was tied to an input value, the computed result may
   6356         // have a wider width than the expected result.  Extract the relevant
   6357         // portion.
   6358         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
   6359       }
   6360 
   6361       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
   6362     }
   6363 
   6364     setValue(CS.getInstruction(), Val);
   6365     // Don't need to use this as a chain in this case.
   6366     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
   6367       return;
   6368   }
   6369 
   6370   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
   6371 
   6372   // Process indirect outputs, first output all of the flagged copies out of
   6373   // physregs.
   6374   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
   6375     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
   6376     const Value *Ptr = IndirectStoresToEmit[i].second;
   6377     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
   6378                                              Chain, &Flag);
   6379     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
   6380   }
   6381 
   6382   // Emit the non-flagged stores from the physregs.
   6383   SmallVector<SDValue, 8> OutChains;
   6384   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
   6385     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
   6386                                StoresToEmit[i].first,
   6387                                getValue(StoresToEmit[i].second),
   6388                                MachinePointerInfo(StoresToEmit[i].second),
   6389                                false, false, 0);
   6390     OutChains.push_back(Val);
   6391   }
   6392 
   6393   if (!OutChains.empty())
   6394     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
   6395                         &OutChains[0], OutChains.size());
   6396 
   6397   DAG.setRoot(Chain);
   6398 }
   6399 
   6400 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
   6401   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
   6402                           MVT::Other, getRoot(),
   6403                           getValue(I.getArgOperand(0)),
   6404                           DAG.getSrcValue(I.getArgOperand(0))));
   6405 }
   6406 
   6407 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
   6408   const TargetData &TD = *TLI.getTargetData();
   6409   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
   6410                            getRoot(), getValue(I.getOperand(0)),
   6411                            DAG.getSrcValue(I.getOperand(0)),
   6412                            TD.getABITypeAlignment(I.getType()));
   6413   setValue(&I, V);
   6414   DAG.setRoot(V.getValue(1));
   6415 }
   6416 
   6417 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
   6418   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
   6419                           MVT::Other, getRoot(),
   6420                           getValue(I.getArgOperand(0)),
   6421                           DAG.getSrcValue(I.getArgOperand(0))));
   6422 }
   6423 
   6424 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
   6425   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
   6426                           MVT::Other, getRoot(),
   6427                           getValue(I.getArgOperand(0)),
   6428                           getValue(I.getArgOperand(1)),
   6429                           DAG.getSrcValue(I.getArgOperand(0)),
   6430                           DAG.getSrcValue(I.getArgOperand(1))));
   6431 }
   6432 
   6433 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
   6434 /// implementation, which just calls LowerCall.
   6435 /// FIXME: When all targets are
   6436 /// migrated to using LowerCall, this hook should be integrated into SDISel.
   6437 std::pair<SDValue, SDValue>
   6438 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
   6439   // Handle all of the outgoing arguments.
   6440   CLI.Outs.clear();
   6441   CLI.OutVals.clear();
   6442   ArgListTy &Args = CLI.Args;
   6443   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   6444     SmallVector<EVT, 4> ValueVTs;
   6445     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
   6446     for (unsigned Value = 0, NumValues = ValueVTs.size();
   6447          Value != NumValues; ++Value) {
   6448       EVT VT = ValueVTs[Value];
   6449       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
   6450       SDValue Op = SDValue(Args[i].Node.getNode(),
   6451                            Args[i].Node.getResNo() + Value);
   6452       ISD::ArgFlagsTy Flags;
   6453       unsigned OriginalAlignment =
   6454         getTargetData()->getABITypeAlignment(ArgTy);
   6455 
   6456       if (Args[i].isZExt)
   6457         Flags.setZExt();
   6458       if (Args[i].isSExt)
   6459         Flags.setSExt();
   6460       if (Args[i].isInReg)
   6461         Flags.setInReg();
   6462       if (Args[i].isSRet)
   6463         Flags.setSRet();
   6464       if (Args[i].isByVal) {
   6465         Flags.setByVal();
   6466         PointerType *Ty = cast<PointerType>(Args[i].Ty);
   6467         Type *ElementTy = Ty->getElementType();
   6468         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
   6469         // For ByVal, alignment should come from FE.  BE will guess if this
   6470         // info is not there but there are cases it cannot get right.
   6471         unsigned FrameAlign;
   6472         if (Args[i].Alignment)
   6473           FrameAlign = Args[i].Alignment;
   6474         else
   6475           FrameAlign = getByValTypeAlignment(ElementTy);
   6476         Flags.setByValAlign(FrameAlign);
   6477       }
   6478       if (Args[i].isNest)
   6479         Flags.setNest();
   6480       Flags.setOrigAlign(OriginalAlignment);
   6481 
   6482       EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
   6483       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
   6484       SmallVector<SDValue, 4> Parts(NumParts);
   6485       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   6486 
   6487       if (Args[i].isSExt)
   6488         ExtendKind = ISD::SIGN_EXTEND;
   6489       else if (Args[i].isZExt)
   6490         ExtendKind = ISD::ZERO_EXTEND;
   6491 
   6492       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
   6493                      PartVT, ExtendKind);
   6494 
   6495       for (unsigned j = 0; j != NumParts; ++j) {
   6496         // if it isn't first piece, alignment must be 1
   6497         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
   6498                                i < CLI.NumFixedArgs);
   6499         if (NumParts > 1 && j == 0)
   6500           MyFlags.Flags.setSplit();
   6501         else if (j != 0)
   6502           MyFlags.Flags.setOrigAlign(1);
   6503 
   6504         CLI.Outs.push_back(MyFlags);
   6505         CLI.OutVals.push_back(Parts[j]);
   6506       }
   6507     }
   6508   }
   6509 
   6510   // Handle the incoming return values from the call.
   6511   CLI.Ins.clear();
   6512   SmallVector<EVT, 4> RetTys;
   6513   ComputeValueVTs(*this, CLI.RetTy, RetTys);
   6514   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   6515     EVT VT = RetTys[I];
   6516     EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
   6517     unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
   6518     for (unsigned i = 0; i != NumRegs; ++i) {
   6519       ISD::InputArg MyFlags;
   6520       MyFlags.VT = RegisterVT.getSimpleVT();
   6521       MyFlags.Used = CLI.IsReturnValueUsed;
   6522       if (CLI.RetSExt)
   6523         MyFlags.Flags.setSExt();
   6524       if (CLI.RetZExt)
   6525         MyFlags.Flags.setZExt();
   6526       if (CLI.IsInReg)
   6527         MyFlags.Flags.setInReg();
   6528       CLI.Ins.push_back(MyFlags);
   6529     }
   6530   }
   6531 
   6532   SmallVector<SDValue, 4> InVals;
   6533   CLI.Chain = LowerCall(CLI, InVals);
   6534 
   6535   // Verify that the target's LowerCall behaved as expected.
   6536   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
   6537          "LowerCall didn't return a valid chain!");
   6538   assert((!CLI.IsTailCall || InVals.empty()) &&
   6539          "LowerCall emitted a return value for a tail call!");
   6540   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
   6541          "LowerCall didn't emit the correct number of values!");
   6542 
   6543   // For a tail call, the return value is merely live-out and there aren't
   6544   // any nodes in the DAG representing it. Return a special value to
   6545   // indicate that a tail call has been emitted and no more Instructions
   6546   // should be processed in the current block.
   6547   if (CLI.IsTailCall) {
   6548     CLI.DAG.setRoot(CLI.Chain);
   6549     return std::make_pair(SDValue(), SDValue());
   6550   }
   6551 
   6552   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
   6553           assert(InVals[i].getNode() &&
   6554                  "LowerCall emitted a null value!");
   6555           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
   6556                  "LowerCall emitted a value with the wrong type!");
   6557         });
   6558 
   6559   // Collect the legal value parts into potentially illegal values
   6560   // that correspond to the original function's return values.
   6561   ISD::NodeType AssertOp = ISD::DELETED_NODE;
   6562   if (CLI.RetSExt)
   6563     AssertOp = ISD::AssertSext;
   6564   else if (CLI.RetZExt)
   6565     AssertOp = ISD::AssertZext;
   6566   SmallVector<SDValue, 4> ReturnValues;
   6567   unsigned CurReg = 0;
   6568   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   6569     EVT VT = RetTys[I];
   6570     EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
   6571     unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
   6572 
   6573     ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
   6574                                             NumRegs, RegisterVT, VT,
   6575                                             AssertOp));
   6576     CurReg += NumRegs;
   6577   }
   6578 
   6579   // For a function returning void, there is no return value. We can't create
   6580   // such a node, so we just return a null return value in that case. In
   6581   // that case, nothing will actually look at the value.
   6582   if (ReturnValues.empty())
   6583     return std::make_pair(SDValue(), CLI.Chain);
   6584 
   6585   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
   6586                                 CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
   6587                             &ReturnValues[0], ReturnValues.size());
   6588   return std::make_pair(Res, CLI.Chain);
   6589 }
   6590 
   6591 void TargetLowering::LowerOperationWrapper(SDNode *N,
   6592                                            SmallVectorImpl<SDValue> &Results,
   6593                                            SelectionDAG &DAG) const {
   6594   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
   6595   if (Res.getNode())
   6596     Results.push_back(Res);
   6597 }
   6598 
   6599 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   6600   llvm_unreachable("LowerOperation not implemented for this target!");
   6601 }
   6602 
   6603 void
   6604 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
   6605   SDValue Op = getNonRegisterValue(V);
   6606   assert((Op.getOpcode() != ISD::CopyFromReg ||
   6607           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
   6608          "Copy from a reg to the same reg!");
   6609   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
   6610 
   6611   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
   6612   SDValue Chain = DAG.getEntryNode();
   6613   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
   6614   PendingExports.push_back(Chain);
   6615 }
   6616 
   6617 #include "llvm/CodeGen/SelectionDAGISel.h"
   6618 
   6619 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
   6620 /// entry block, return true.  This includes arguments used by switches, since
   6621 /// the switch may expand into multiple basic blocks.
   6622 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
   6623   // With FastISel active, we may be splitting blocks, so force creation
   6624   // of virtual registers for all non-dead arguments.
   6625   if (FastISel)
   6626     return A->use_empty();
   6627 
   6628   const BasicBlock *Entry = A->getParent()->begin();
   6629   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
   6630        UI != E; ++UI) {
   6631     const User *U = *UI;
   6632     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
   6633       return false;  // Use not in entry block.
   6634   }
   6635   return true;
   6636 }
   6637 
   6638 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
   6639   // If this is the entry block, emit arguments.
   6640   const Function &F = *LLVMBB->getParent();
   6641   SelectionDAG &DAG = SDB->DAG;
   6642   DebugLoc dl = SDB->getCurDebugLoc();
   6643   const TargetData *TD = TLI.getTargetData();
   6644   SmallVector<ISD::InputArg, 16> Ins;
   6645 
   6646   // Check whether the function can return without sret-demotion.
   6647   SmallVector<ISD::OutputArg, 4> Outs;
   6648   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
   6649                 Outs, TLI);
   6650 
   6651   if (!FuncInfo->CanLowerReturn) {
   6652     // Put in an sret pointer parameter before all the other parameters.
   6653     SmallVector<EVT, 1> ValueVTs;
   6654     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
   6655 
   6656     // NOTE: Assuming that a pointer will never break down to more than one VT
   6657     // or one register.
   6658     ISD::ArgFlagsTy Flags;
   6659     Flags.setSRet();
   6660     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
   6661     ISD::InputArg RetArg(Flags, RegisterVT, true);
   6662     Ins.push_back(RetArg);
   6663   }
   6664 
   6665   // Set up the incoming argument description vector.
   6666   unsigned Idx = 1;
   6667   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
   6668        I != E; ++I, ++Idx) {
   6669     SmallVector<EVT, 4> ValueVTs;
   6670     ComputeValueVTs(TLI, I->getType(), ValueVTs);
   6671     bool isArgValueUsed = !I->use_empty();
   6672     for (unsigned Value = 0, NumValues = ValueVTs.size();
   6673          Value != NumValues; ++Value) {
   6674       EVT VT = ValueVTs[Value];
   6675       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
   6676       ISD::ArgFlagsTy Flags;
   6677       unsigned OriginalAlignment =
   6678         TD->getABITypeAlignment(ArgTy);
   6679 
   6680       if (F.paramHasAttr(Idx, Attribute::ZExt))
   6681         Flags.setZExt();
   6682       if (F.paramHasAttr(Idx, Attribute::SExt))
   6683         Flags.setSExt();
   6684       if (F.paramHasAttr(Idx, Attribute::InReg))
   6685         Flags.setInReg();
   6686       if (F.paramHasAttr(Idx, Attribute::StructRet))
   6687         Flags.setSRet();
   6688       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
   6689         Flags.setByVal();
   6690         PointerType *Ty = cast<PointerType>(I->getType());
   6691         Type *ElementTy = Ty->getElementType();
   6692         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
   6693         // For ByVal, alignment should be passed from FE.  BE will guess if
   6694         // this info is not there but there are cases it cannot get right.
   6695         unsigned FrameAlign;
   6696         if (F.getParamAlignment(Idx))
   6697           FrameAlign = F.getParamAlignment(Idx);
   6698         else
   6699           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
   6700         Flags.setByValAlign(FrameAlign);
   6701       }
   6702       if (F.paramHasAttr(Idx, Attribute::Nest))
   6703         Flags.setNest();
   6704       Flags.setOrigAlign(OriginalAlignment);
   6705 
   6706       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
   6707       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
   6708       for (unsigned i = 0; i != NumRegs; ++i) {
   6709         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
   6710         if (NumRegs > 1 && i == 0)
   6711           MyFlags.Flags.setSplit();
   6712         // if it isn't first piece, alignment must be 1
   6713         else if (i > 0)
   6714           MyFlags.Flags.setOrigAlign(1);
   6715         Ins.push_back(MyFlags);
   6716       }
   6717     }
   6718   }
   6719 
   6720   // Call the target to set up the argument values.
   6721   SmallVector<SDValue, 8> InVals;
   6722   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
   6723                                              F.isVarArg(), Ins,
   6724                                              dl, DAG, InVals);
   6725 
   6726   // Verify that the target's LowerFormalArguments behaved as expected.
   6727   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
   6728          "LowerFormalArguments didn't return a valid chain!");
   6729   assert(InVals.size() == Ins.size() &&
   6730          "LowerFormalArguments didn't emit the correct number of values!");
   6731   DEBUG({
   6732       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   6733         assert(InVals[i].getNode() &&
   6734                "LowerFormalArguments emitted a null value!");
   6735         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
   6736                "LowerFormalArguments emitted a value with the wrong type!");
   6737       }
   6738     });
   6739 
   6740   // Update the DAG with the new chain value resulting from argument lowering.
   6741   DAG.setRoot(NewRoot);
   6742 
   6743   // Set up the argument values.
   6744   unsigned i = 0;
   6745   Idx = 1;
   6746   if (!FuncInfo->CanLowerReturn) {
   6747     // Create a virtual register for the sret pointer, and put in a copy
   6748     // from the sret argument into it.
   6749     SmallVector<EVT, 1> ValueVTs;
   6750     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
   6751     EVT VT = ValueVTs[0];
   6752     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
   6753     ISD::NodeType AssertOp = ISD::DELETED_NODE;
   6754     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
   6755                                         RegVT, VT, AssertOp);
   6756 
   6757     MachineFunction& MF = SDB->DAG.getMachineFunction();
   6758     MachineRegisterInfo& RegInfo = MF.getRegInfo();
   6759     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
   6760     FuncInfo->DemoteRegister = SRetReg;
   6761     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
   6762                                     SRetReg, ArgValue);
   6763     DAG.setRoot(NewRoot);
   6764 
   6765     // i indexes lowered arguments.  Bump it past the hidden sret argument.
   6766     // Idx indexes LLVM arguments.  Don't touch it.
   6767     ++i;
   6768   }
   6769 
   6770   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
   6771       ++I, ++Idx) {
   6772     SmallVector<SDValue, 4> ArgValues;
   6773     SmallVector<EVT, 4> ValueVTs;
   6774     ComputeValueVTs(TLI, I->getType(), ValueVTs);
   6775     unsigned NumValues = ValueVTs.size();
   6776 
   6777     // If this argument is unused then remember its value. It is used to generate
   6778     // debugging information.
   6779     if (I->use_empty() && NumValues)
   6780       SDB->setUnusedArgValue(I, InVals[i]);
   6781 
   6782     for (unsigned Val = 0; Val != NumValues; ++Val) {
   6783       EVT VT = ValueVTs[Val];
   6784       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
   6785       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
   6786 
   6787       if (!I->use_empty()) {
   6788         ISD::NodeType AssertOp = ISD::DELETED_NODE;
   6789         if (F.paramHasAttr(Idx, Attribute::SExt))
   6790           AssertOp = ISD::AssertSext;
   6791         else if (F.paramHasAttr(Idx, Attribute::ZExt))
   6792           AssertOp = ISD::AssertZext;
   6793 
   6794         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
   6795                                              NumParts, PartVT, VT,
   6796                                              AssertOp));
   6797       }
   6798 
   6799       i += NumParts;
   6800     }
   6801 
   6802     // We don't need to do anything else for unused arguments.
   6803     if (ArgValues.empty())
   6804       continue;
   6805 
   6806     // Note down frame index.
   6807     if (FrameIndexSDNode *FI =
   6808         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
   6809       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
   6810 
   6811     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
   6812                                      SDB->getCurDebugLoc());
   6813 
   6814     SDB->setValue(I, Res);
   6815     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
   6816       if (LoadSDNode *LNode =
   6817           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
   6818         if (FrameIndexSDNode *FI =
   6819             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
   6820         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
   6821     }
   6822 
   6823     // If this argument is live outside of the entry block, insert a copy from
   6824     // wherever we got it to the vreg that other BB's will reference it as.
   6825     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
   6826       // If we can, though, try to skip creating an unnecessary vreg.
   6827       // FIXME: This isn't very clean... it would be nice to make this more
   6828       // general.  It's also subtly incompatible with the hacks FastISel
   6829       // uses with vregs.
   6830       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
   6831       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   6832         FuncInfo->ValueMap[I] = Reg;
   6833         continue;
   6834       }
   6835     }
   6836     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
   6837       FuncInfo->InitializeRegForValue(I);
   6838       SDB->CopyToExportRegsIfNeeded(I);
   6839     }
   6840   }
   6841 
   6842   assert(i == InVals.size() && "Argument register count mismatch!");
   6843 
   6844   // Finally, if the target has anything special to do, allow it to do so.
   6845   // FIXME: this should insert code into the DAG!
   6846   EmitFunctionEntryCode();
   6847 }
   6848 
   6849 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
   6850 /// ensure constants are generated when needed.  Remember the virtual registers
   6851 /// that need to be added to the Machine PHI nodes as input.  We cannot just
   6852 /// directly add them, because expansion might result in multiple MBB's for one
   6853 /// BB.  As such, the start of the BB might correspond to a different MBB than
   6854 /// the end.
   6855 ///
   6856 void
   6857 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
   6858   const TerminatorInst *TI = LLVMBB->getTerminator();
   6859 
   6860   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
   6861 
   6862   // Check successor nodes' PHI nodes that expect a constant to be available
   6863   // from this block.
   6864   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
   6865     const BasicBlock *SuccBB = TI->getSuccessor(succ);
   6866     if (!isa<PHINode>(SuccBB->begin())) continue;
   6867     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
   6868 
   6869     // If this terminator has multiple identical successors (common for
   6870     // switches), only handle each succ once.
   6871     if (!SuccsHandled.insert(SuccMBB)) continue;
   6872 
   6873     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
   6874 
   6875     // At this point we know that there is a 1-1 correspondence between LLVM PHI
   6876     // nodes and Machine PHI nodes, but the incoming operands have not been
   6877     // emitted yet.
   6878     for (BasicBlock::const_iterator I = SuccBB->begin();
   6879          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   6880       // Ignore dead phi's.
   6881       if (PN->use_empty()) continue;
   6882 
   6883       // Skip empty types
   6884       if (PN->getType()->isEmptyTy())
   6885         continue;
   6886 
   6887       unsigned Reg;
   6888       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
   6889 
   6890       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
   6891         unsigned &RegOut = ConstantsOut[C];
   6892         if (RegOut == 0) {
   6893           RegOut = FuncInfo.CreateRegs(C->getType());
   6894           CopyValueToVirtualRegister(C, RegOut);
   6895         }
   6896         Reg = RegOut;
   6897       } else {
   6898         DenseMap<const Value *, unsigned>::iterator I =
   6899           FuncInfo.ValueMap.find(PHIOp);
   6900         if (I != FuncInfo.ValueMap.end())
   6901           Reg = I->second;
   6902         else {
   6903           assert(isa<AllocaInst>(PHIOp) &&
   6904                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
   6905                  "Didn't codegen value into a register!??");
   6906           Reg = FuncInfo.CreateRegs(PHIOp->getType());
   6907           CopyValueToVirtualRegister(PHIOp, Reg);
   6908         }
   6909       }
   6910 
   6911       // Remember that this register needs to added to the machine PHI node as
   6912       // the input for this MBB.
   6913       SmallVector<EVT, 4> ValueVTs;
   6914       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
   6915       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
   6916         EVT VT = ValueVTs[vti];
   6917         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
   6918         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
   6919           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
   6920         Reg += NumRegisters;
   6921       }
   6922     }
   6923   }
   6924   ConstantsOut.clear();
   6925 }
   6926