Home | History | Annotate | Download | only in ARM
      1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ARMBaseInstrInfo.h"
     15 #include "ARM.h"
     16 #include "ARMBaseRegisterInfo.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMHazardRecognizer.h"
     19 #include "ARMMachineFunctionInfo.h"
     20 #include "MCTargetDesc/ARMAddressingModes.h"
     21 #include "llvm/Constants.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/GlobalValue.h"
     24 #include "llvm/CodeGen/LiveVariables.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     29 #include "llvm/CodeGen/MachineMemOperand.h"
     30 #include "llvm/CodeGen/MachineRegisterInfo.h"
     31 #include "llvm/CodeGen/SelectionDAGNodes.h"
     32 #include "llvm/MC/MCAsmInfo.h"
     33 #include "llvm/Support/BranchProbability.h"
     34 #include "llvm/Support/CommandLine.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/ADT/STLExtras.h"
     38 
     39 #define GET_INSTRINFO_CTOR
     40 #include "ARMGenInstrInfo.inc"
     41 
     42 using namespace llvm;
     43 
     44 static cl::opt<bool>
     45 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
     46                cl::desc("Enable ARM 2-addr to 3-addr conv"));
     47 
     48 static cl::opt<bool>
     49 WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
     50            cl::desc("Widen ARM vmovs to vmovd when possible"));
     51 
     52 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
     53 struct ARM_MLxEntry {
     54   uint16_t MLxOpc;     // MLA / MLS opcode
     55   uint16_t MulOpc;     // Expanded multiplication opcode
     56   uint16_t AddSubOpc;  // Expanded add / sub opcode
     57   bool NegAcc;         // True if the acc is negated before the add / sub.
     58   bool HasLane;        // True if instruction has an extra "lane" operand.
     59 };
     60 
     61 static const ARM_MLxEntry ARM_MLxTable[] = {
     62   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
     63   // fp scalar ops
     64   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
     65   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
     66   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
     67   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
     68   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
     69   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
     70   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
     71   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
     72 
     73   // fp SIMD ops
     74   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
     75   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
     76   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
     77   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
     78   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
     79   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
     80   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
     81   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
     82 };
     83 
     84 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
     85   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
     86     Subtarget(STI) {
     87   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
     88     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
     89       assert(false && "Duplicated entries?");
     90     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
     91     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
     92   }
     93 }
     94 
     95 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
     96 // currently defaults to no prepass hazard recognizer.
     97 ScheduleHazardRecognizer *ARMBaseInstrInfo::
     98 CreateTargetHazardRecognizer(const TargetMachine *TM,
     99                              const ScheduleDAG *DAG) const {
    100   if (usePreRAHazardRecognizer()) {
    101     const InstrItineraryData *II = TM->getInstrItineraryData();
    102     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
    103   }
    104   return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
    105 }
    106 
    107 ScheduleHazardRecognizer *ARMBaseInstrInfo::
    108 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
    109                                    const ScheduleDAG *DAG) const {
    110   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
    111     return (ScheduleHazardRecognizer *)
    112       new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG);
    113   return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG);
    114 }
    115 
    116 MachineInstr *
    117 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
    118                                         MachineBasicBlock::iterator &MBBI,
    119                                         LiveVariables *LV) const {
    120   // FIXME: Thumb2 support.
    121 
    122   if (!EnableARM3Addr)
    123     return NULL;
    124 
    125   MachineInstr *MI = MBBI;
    126   MachineFunction &MF = *MI->getParent()->getParent();
    127   uint64_t TSFlags = MI->getDesc().TSFlags;
    128   bool isPre = false;
    129   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
    130   default: return NULL;
    131   case ARMII::IndexModePre:
    132     isPre = true;
    133     break;
    134   case ARMII::IndexModePost:
    135     break;
    136   }
    137 
    138   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
    139   // operation.
    140   unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
    141   if (MemOpc == 0)
    142     return NULL;
    143 
    144   MachineInstr *UpdateMI = NULL;
    145   MachineInstr *MemMI = NULL;
    146   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
    147   const MCInstrDesc &MCID = MI->getDesc();
    148   unsigned NumOps = MCID.getNumOperands();
    149   bool isLoad = !MI->mayStore();
    150   const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
    151   const MachineOperand &Base = MI->getOperand(2);
    152   const MachineOperand &Offset = MI->getOperand(NumOps-3);
    153   unsigned WBReg = WB.getReg();
    154   unsigned BaseReg = Base.getReg();
    155   unsigned OffReg = Offset.getReg();
    156   unsigned OffImm = MI->getOperand(NumOps-2).getImm();
    157   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
    158   switch (AddrMode) {
    159   default: llvm_unreachable("Unknown indexed op!");
    160   case ARMII::AddrMode2: {
    161     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
    162     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
    163     if (OffReg == 0) {
    164       if (ARM_AM::getSOImmVal(Amt) == -1)
    165         // Can't encode it in a so_imm operand. This transformation will
    166         // add more than 1 instruction. Abandon!
    167         return NULL;
    168       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    169                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    170         .addReg(BaseReg).addImm(Amt)
    171         .addImm(Pred).addReg(0).addReg(0);
    172     } else if (Amt != 0) {
    173       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
    174       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
    175       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    176                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
    177         .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
    178         .addImm(Pred).addReg(0).addReg(0);
    179     } else
    180       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    181                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    182         .addReg(BaseReg).addReg(OffReg)
    183         .addImm(Pred).addReg(0).addReg(0);
    184     break;
    185   }
    186   case ARMII::AddrMode3 : {
    187     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
    188     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
    189     if (OffReg == 0)
    190       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
    191       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    192                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
    193         .addReg(BaseReg).addImm(Amt)
    194         .addImm(Pred).addReg(0).addReg(0);
    195     else
    196       UpdateMI = BuildMI(MF, MI->getDebugLoc(),
    197                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
    198         .addReg(BaseReg).addReg(OffReg)
    199         .addImm(Pred).addReg(0).addReg(0);
    200     break;
    201   }
    202   }
    203 
    204   std::vector<MachineInstr*> NewMIs;
    205   if (isPre) {
    206     if (isLoad)
    207       MemMI = BuildMI(MF, MI->getDebugLoc(),
    208                       get(MemOpc), MI->getOperand(0).getReg())
    209         .addReg(WBReg).addImm(0).addImm(Pred);
    210     else
    211       MemMI = BuildMI(MF, MI->getDebugLoc(),
    212                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
    213         .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
    214     NewMIs.push_back(MemMI);
    215     NewMIs.push_back(UpdateMI);
    216   } else {
    217     if (isLoad)
    218       MemMI = BuildMI(MF, MI->getDebugLoc(),
    219                       get(MemOpc), MI->getOperand(0).getReg())
    220         .addReg(BaseReg).addImm(0).addImm(Pred);
    221     else
    222       MemMI = BuildMI(MF, MI->getDebugLoc(),
    223                       get(MemOpc)).addReg(MI->getOperand(1).getReg())
    224         .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
    225     if (WB.isDead())
    226       UpdateMI->getOperand(0).setIsDead();
    227     NewMIs.push_back(UpdateMI);
    228     NewMIs.push_back(MemMI);
    229   }
    230 
    231   // Transfer LiveVariables states, kill / dead info.
    232   if (LV) {
    233     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    234       MachineOperand &MO = MI->getOperand(i);
    235       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
    236         unsigned Reg = MO.getReg();
    237 
    238         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
    239         if (MO.isDef()) {
    240           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
    241           if (MO.isDead())
    242             LV->addVirtualRegisterDead(Reg, NewMI);
    243         }
    244         if (MO.isUse() && MO.isKill()) {
    245           for (unsigned j = 0; j < 2; ++j) {
    246             // Look at the two new MI's in reverse order.
    247             MachineInstr *NewMI = NewMIs[j];
    248             if (!NewMI->readsRegister(Reg))
    249               continue;
    250             LV->addVirtualRegisterKilled(Reg, NewMI);
    251             if (VI.removeKill(MI))
    252               VI.Kills.push_back(NewMI);
    253             break;
    254           }
    255         }
    256       }
    257     }
    258   }
    259 
    260   MFI->insert(MBBI, NewMIs[1]);
    261   MFI->insert(MBBI, NewMIs[0]);
    262   return NewMIs[0];
    263 }
    264 
    265 // Branch analysis.
    266 bool
    267 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
    268                                 MachineBasicBlock *&FBB,
    269                                 SmallVectorImpl<MachineOperand> &Cond,
    270                                 bool AllowModify) const {
    271   // If the block has no terminators, it just falls into the block after it.
    272   MachineBasicBlock::iterator I = MBB.end();
    273   if (I == MBB.begin())
    274     return false;
    275   --I;
    276   while (I->isDebugValue()) {
    277     if (I == MBB.begin())
    278       return false;
    279     --I;
    280   }
    281   if (!isUnpredicatedTerminator(I))
    282     return false;
    283 
    284   // Get the last instruction in the block.
    285   MachineInstr *LastInst = I;
    286 
    287   // If there is only one terminator instruction, process it.
    288   unsigned LastOpc = LastInst->getOpcode();
    289   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    290     if (isUncondBranchOpcode(LastOpc)) {
    291       TBB = LastInst->getOperand(0).getMBB();
    292       return false;
    293     }
    294     if (isCondBranchOpcode(LastOpc)) {
    295       // Block ends with fall-through condbranch.
    296       TBB = LastInst->getOperand(0).getMBB();
    297       Cond.push_back(LastInst->getOperand(1));
    298       Cond.push_back(LastInst->getOperand(2));
    299       return false;
    300     }
    301     return true;  // Can't handle indirect branch.
    302   }
    303 
    304   // Get the instruction before it if it is a terminator.
    305   MachineInstr *SecondLastInst = I;
    306   unsigned SecondLastOpc = SecondLastInst->getOpcode();
    307 
    308   // If AllowModify is true and the block ends with two or more unconditional
    309   // branches, delete all but the first unconditional branch.
    310   if (AllowModify && isUncondBranchOpcode(LastOpc)) {
    311     while (isUncondBranchOpcode(SecondLastOpc)) {
    312       LastInst->eraseFromParent();
    313       LastInst = SecondLastInst;
    314       LastOpc = LastInst->getOpcode();
    315       if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    316         // Return now the only terminator is an unconditional branch.
    317         TBB = LastInst->getOperand(0).getMBB();
    318         return false;
    319       } else {
    320         SecondLastInst = I;
    321         SecondLastOpc = SecondLastInst->getOpcode();
    322       }
    323     }
    324   }
    325 
    326   // If there are three terminators, we don't know what sort of block this is.
    327   if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
    328     return true;
    329 
    330   // If the block ends with a B and a Bcc, handle it.
    331   if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    332     TBB =  SecondLastInst->getOperand(0).getMBB();
    333     Cond.push_back(SecondLastInst->getOperand(1));
    334     Cond.push_back(SecondLastInst->getOperand(2));
    335     FBB = LastInst->getOperand(0).getMBB();
    336     return false;
    337   }
    338 
    339   // If the block ends with two unconditional branches, handle it.  The second
    340   // one is not executed, so remove it.
    341   if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
    342     TBB = SecondLastInst->getOperand(0).getMBB();
    343     I = LastInst;
    344     if (AllowModify)
    345       I->eraseFromParent();
    346     return false;
    347   }
    348 
    349   // ...likewise if it ends with a branch table followed by an unconditional
    350   // branch. The branch folder can create these, and we must get rid of them for
    351   // correctness of Thumb constant islands.
    352   if ((isJumpTableBranchOpcode(SecondLastOpc) ||
    353        isIndirectBranchOpcode(SecondLastOpc)) &&
    354       isUncondBranchOpcode(LastOpc)) {
    355     I = LastInst;
    356     if (AllowModify)
    357       I->eraseFromParent();
    358     return true;
    359   }
    360 
    361   // Otherwise, can't handle this.
    362   return true;
    363 }
    364 
    365 
    366 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    367   MachineBasicBlock::iterator I = MBB.end();
    368   if (I == MBB.begin()) return 0;
    369   --I;
    370   while (I->isDebugValue()) {
    371     if (I == MBB.begin())
    372       return 0;
    373     --I;
    374   }
    375   if (!isUncondBranchOpcode(I->getOpcode()) &&
    376       !isCondBranchOpcode(I->getOpcode()))
    377     return 0;
    378 
    379   // Remove the branch.
    380   I->eraseFromParent();
    381 
    382   I = MBB.end();
    383 
    384   if (I == MBB.begin()) return 1;
    385   --I;
    386   if (!isCondBranchOpcode(I->getOpcode()))
    387     return 1;
    388 
    389   // Remove the branch.
    390   I->eraseFromParent();
    391   return 2;
    392 }
    393 
    394 unsigned
    395 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    396                                MachineBasicBlock *FBB,
    397                                const SmallVectorImpl<MachineOperand> &Cond,
    398                                DebugLoc DL) const {
    399   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
    400   int BOpc   = !AFI->isThumbFunction()
    401     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
    402   int BccOpc = !AFI->isThumbFunction()
    403     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
    404   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
    405 
    406   // Shouldn't be a fall through.
    407   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    408   assert((Cond.size() == 2 || Cond.size() == 0) &&
    409          "ARM branch conditions have two components!");
    410 
    411   if (FBB == 0) {
    412     if (Cond.empty()) { // Unconditional branch?
    413       if (isThumb)
    414         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
    415       else
    416         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    417     } else
    418       BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
    419         .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
    420     return 1;
    421   }
    422 
    423   // Two-way conditional branch.
    424   BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
    425     .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
    426   if (isThumb)
    427     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
    428   else
    429     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
    430   return 2;
    431 }
    432 
    433 bool ARMBaseInstrInfo::
    434 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    435   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
    436   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
    437   return false;
    438 }
    439 
    440 bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
    441   if (MI->isBundle()) {
    442     MachineBasicBlock::const_instr_iterator I = MI;
    443     MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
    444     while (++I != E && I->isInsideBundle()) {
    445       int PIdx = I->findFirstPredOperandIdx();
    446       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
    447         return true;
    448     }
    449     return false;
    450   }
    451 
    452   int PIdx = MI->findFirstPredOperandIdx();
    453   return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
    454 }
    455 
    456 bool ARMBaseInstrInfo::
    457 PredicateInstruction(MachineInstr *MI,
    458                      const SmallVectorImpl<MachineOperand> &Pred) const {
    459   unsigned Opc = MI->getOpcode();
    460   if (isUncondBranchOpcode(Opc)) {
    461     MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
    462     MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
    463     MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
    464     return true;
    465   }
    466 
    467   int PIdx = MI->findFirstPredOperandIdx();
    468   if (PIdx != -1) {
    469     MachineOperand &PMO = MI->getOperand(PIdx);
    470     PMO.setImm(Pred[0].getImm());
    471     MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
    472     return true;
    473   }
    474   return false;
    475 }
    476 
    477 bool ARMBaseInstrInfo::
    478 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
    479                   const SmallVectorImpl<MachineOperand> &Pred2) const {
    480   if (Pred1.size() > 2 || Pred2.size() > 2)
    481     return false;
    482 
    483   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
    484   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
    485   if (CC1 == CC2)
    486     return true;
    487 
    488   switch (CC1) {
    489   default:
    490     return false;
    491   case ARMCC::AL:
    492     return true;
    493   case ARMCC::HS:
    494     return CC2 == ARMCC::HI;
    495   case ARMCC::LS:
    496     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
    497   case ARMCC::GE:
    498     return CC2 == ARMCC::GT;
    499   case ARMCC::LE:
    500     return CC2 == ARMCC::LT;
    501   }
    502 }
    503 
    504 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
    505                                     std::vector<MachineOperand> &Pred) const {
    506   bool Found = false;
    507   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    508     const MachineOperand &MO = MI->getOperand(i);
    509     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
    510         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
    511       Pred.push_back(MO);
    512       Found = true;
    513     }
    514   }
    515 
    516   return Found;
    517 }
    518 
    519 /// isPredicable - Return true if the specified instruction can be predicated.
    520 /// By default, this returns true for every instruction with a
    521 /// PredicateOperand.
    522 bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
    523   if (!MI->isPredicable())
    524     return false;
    525 
    526   if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
    527     ARMFunctionInfo *AFI =
    528       MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
    529     return AFI->isThumb2Function();
    530   }
    531   return true;
    532 }
    533 
    534 /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
    535 LLVM_ATTRIBUTE_NOINLINE
    536 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
    537                                 unsigned JTI);
    538 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
    539                                 unsigned JTI) {
    540   assert(JTI < JT.size());
    541   return JT[JTI].MBBs.size();
    542 }
    543 
    544 /// GetInstSize - Return the size of the specified MachineInstr.
    545 ///
    546 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
    547   const MachineBasicBlock &MBB = *MI->getParent();
    548   const MachineFunction *MF = MBB.getParent();
    549   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
    550 
    551   const MCInstrDesc &MCID = MI->getDesc();
    552   if (MCID.getSize())
    553     return MCID.getSize();
    554 
    555   // If this machine instr is an inline asm, measure it.
    556   if (MI->getOpcode() == ARM::INLINEASM)
    557     return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
    558   if (MI->isLabel())
    559     return 0;
    560   unsigned Opc = MI->getOpcode();
    561   switch (Opc) {
    562   case TargetOpcode::IMPLICIT_DEF:
    563   case TargetOpcode::KILL:
    564   case TargetOpcode::PROLOG_LABEL:
    565   case TargetOpcode::EH_LABEL:
    566   case TargetOpcode::DBG_VALUE:
    567     return 0;
    568   case TargetOpcode::BUNDLE:
    569     return getInstBundleLength(MI);
    570   case ARM::MOVi16_ga_pcrel:
    571   case ARM::MOVTi16_ga_pcrel:
    572   case ARM::t2MOVi16_ga_pcrel:
    573   case ARM::t2MOVTi16_ga_pcrel:
    574     return 4;
    575   case ARM::MOVi32imm:
    576   case ARM::t2MOVi32imm:
    577     return 8;
    578   case ARM::CONSTPOOL_ENTRY:
    579     // If this machine instr is a constant pool entry, its size is recorded as
    580     // operand #2.
    581     return MI->getOperand(2).getImm();
    582   case ARM::Int_eh_sjlj_longjmp:
    583     return 16;
    584   case ARM::tInt_eh_sjlj_longjmp:
    585     return 10;
    586   case ARM::Int_eh_sjlj_setjmp:
    587   case ARM::Int_eh_sjlj_setjmp_nofp:
    588     return 20;
    589   case ARM::tInt_eh_sjlj_setjmp:
    590   case ARM::t2Int_eh_sjlj_setjmp:
    591   case ARM::t2Int_eh_sjlj_setjmp_nofp:
    592     return 12;
    593   case ARM::BR_JTr:
    594   case ARM::BR_JTm:
    595   case ARM::BR_JTadd:
    596   case ARM::tBR_JTr:
    597   case ARM::t2BR_JT:
    598   case ARM::t2TBB_JT:
    599   case ARM::t2TBH_JT: {
    600     // These are jumptable branches, i.e. a branch followed by an inlined
    601     // jumptable. The size is 4 + 4 * number of entries. For TBB, each
    602     // entry is one byte; TBH two byte each.
    603     unsigned EntrySize = (Opc == ARM::t2TBB_JT)
    604       ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
    605     unsigned NumOps = MCID.getNumOperands();
    606     MachineOperand JTOP =
    607       MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
    608     unsigned JTI = JTOP.getIndex();
    609     const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
    610     assert(MJTI != 0);
    611     const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
    612     assert(JTI < JT.size());
    613     // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
    614     // 4 aligned. The assembler / linker may add 2 byte padding just before
    615     // the JT entries.  The size does not include this padding; the
    616     // constant islands pass does separate bookkeeping for it.
    617     // FIXME: If we know the size of the function is less than (1 << 16) *2
    618     // bytes, we can use 16-bit entries instead. Then there won't be an
    619     // alignment issue.
    620     unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
    621     unsigned NumEntries = getNumJTEntries(JT, JTI);
    622     if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
    623       // Make sure the instruction that follows TBB is 2-byte aligned.
    624       // FIXME: Constant island pass should insert an "ALIGN" instruction
    625       // instead.
    626       ++NumEntries;
    627     return NumEntries * EntrySize + InstSize;
    628   }
    629   default:
    630     // Otherwise, pseudo-instruction sizes are zero.
    631     return 0;
    632   }
    633 }
    634 
    635 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
    636   unsigned Size = 0;
    637   MachineBasicBlock::const_instr_iterator I = MI;
    638   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
    639   while (++I != E && I->isInsideBundle()) {
    640     assert(!I->isBundle() && "No nested bundle!");
    641     Size += GetInstSizeInBytes(&*I);
    642   }
    643   return Size;
    644 }
    645 
    646 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    647                                    MachineBasicBlock::iterator I, DebugLoc DL,
    648                                    unsigned DestReg, unsigned SrcReg,
    649                                    bool KillSrc) const {
    650   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
    651   bool GPRSrc  = ARM::GPRRegClass.contains(SrcReg);
    652 
    653   if (GPRDest && GPRSrc) {
    654     AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
    655                                   .addReg(SrcReg, getKillRegState(KillSrc))));
    656     return;
    657   }
    658 
    659   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
    660   bool SPRSrc  = ARM::SPRRegClass.contains(SrcReg);
    661 
    662   unsigned Opc = 0;
    663   if (SPRDest && SPRSrc)
    664     Opc = ARM::VMOVS;
    665   else if (GPRDest && SPRSrc)
    666     Opc = ARM::VMOVRS;
    667   else if (SPRDest && GPRSrc)
    668     Opc = ARM::VMOVSR;
    669   else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
    670     Opc = ARM::VMOVD;
    671   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
    672     Opc = ARM::VORRq;
    673 
    674   if (Opc) {
    675     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
    676     MIB.addReg(SrcReg, getKillRegState(KillSrc));
    677     if (Opc == ARM::VORRq)
    678       MIB.addReg(SrcReg, getKillRegState(KillSrc));
    679     AddDefaultPred(MIB);
    680     return;
    681   }
    682 
    683   // Handle register classes that require multiple instructions.
    684   unsigned BeginIdx = 0;
    685   unsigned SubRegs = 0;
    686   int Spacing = 1;
    687 
    688   // Use VORRq when possible.
    689   if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
    690     Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 2;
    691   else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
    692     Opc = ARM::VORRq, BeginIdx = ARM::qsub_0, SubRegs = 4;
    693   // Fall back to VMOVD.
    694   else if (ARM::DPairRegClass.contains(DestReg, SrcReg))
    695     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2;
    696   else if (ARM::DTripleRegClass.contains(DestReg, SrcReg))
    697     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3;
    698   else if (ARM::DQuadRegClass.contains(DestReg, SrcReg))
    699     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4;
    700 
    701   else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg))
    702     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 2, Spacing = 2;
    703   else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg))
    704     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 3, Spacing = 2;
    705   else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg))
    706     Opc = ARM::VMOVD, BeginIdx = ARM::dsub_0, SubRegs = 4, Spacing = 2;
    707 
    708   assert(Opc && "Impossible reg-to-reg copy");
    709 
    710   const TargetRegisterInfo *TRI = &getRegisterInfo();
    711   MachineInstrBuilder Mov;
    712 
    713   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
    714   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
    715     BeginIdx = BeginIdx + ((SubRegs-1)*Spacing);
    716     Spacing = -Spacing;
    717   }
    718 #ifndef NDEBUG
    719   SmallSet<unsigned, 4> DstRegs;
    720 #endif
    721   for (unsigned i = 0; i != SubRegs; ++i) {
    722     unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i*Spacing);
    723     unsigned Src = TRI->getSubReg(SrcReg,  BeginIdx + i*Spacing);
    724     assert(Dst && Src && "Bad sub-register");
    725 #ifndef NDEBUG
    726     assert(!DstRegs.count(Src) && "destructive vector copy");
    727     DstRegs.insert(Dst);
    728 #endif
    729     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst)
    730       .addReg(Src);
    731     // VORR takes two source operands.
    732     if (Opc == ARM::VORRq)
    733       Mov.addReg(Src);
    734     Mov = AddDefaultPred(Mov);
    735   }
    736   // Add implicit super-register defs and kills to the last instruction.
    737   Mov->addRegisterDefined(DestReg, TRI);
    738   if (KillSrc)
    739     Mov->addRegisterKilled(SrcReg, TRI);
    740 }
    741 
    742 static const
    743 MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
    744                              unsigned Reg, unsigned SubIdx, unsigned State,
    745                              const TargetRegisterInfo *TRI) {
    746   if (!SubIdx)
    747     return MIB.addReg(Reg, State);
    748 
    749   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    750     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
    751   return MIB.addReg(Reg, State, SubIdx);
    752 }
    753 
    754 void ARMBaseInstrInfo::
    755 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    756                     unsigned SrcReg, bool isKill, int FI,
    757                     const TargetRegisterClass *RC,
    758                     const TargetRegisterInfo *TRI) const {
    759   DebugLoc DL;
    760   if (I != MBB.end()) DL = I->getDebugLoc();
    761   MachineFunction &MF = *MBB.getParent();
    762   MachineFrameInfo &MFI = *MF.getFrameInfo();
    763   unsigned Align = MFI.getObjectAlignment(FI);
    764 
    765   MachineMemOperand *MMO =
    766     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
    767                             MachineMemOperand::MOStore,
    768                             MFI.getObjectSize(FI),
    769                             Align);
    770 
    771   switch (RC->getSize()) {
    772     case 4:
    773       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
    774         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
    775                    .addReg(SrcReg, getKillRegState(isKill))
    776                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    777       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
    778         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
    779                    .addReg(SrcReg, getKillRegState(isKill))
    780                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    781       } else
    782         llvm_unreachable("Unknown reg class!");
    783       break;
    784     case 8:
    785       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
    786         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
    787                    .addReg(SrcReg, getKillRegState(isKill))
    788                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    789       } else
    790         llvm_unreachable("Unknown reg class!");
    791       break;
    792     case 16:
    793       if (ARM::DPairRegClass.hasSubClassEq(RC)) {
    794         // Use aligned spills if the stack can be realigned.
    795         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    796           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
    797                      .addFrameIndex(FI).addImm(16)
    798                      .addReg(SrcReg, getKillRegState(isKill))
    799                      .addMemOperand(MMO));
    800         } else {
    801           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
    802                      .addReg(SrcReg, getKillRegState(isKill))
    803                      .addFrameIndex(FI)
    804                      .addMemOperand(MMO));
    805         }
    806       } else
    807         llvm_unreachable("Unknown reg class!");
    808       break;
    809     case 24:
    810       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
    811         // Use aligned spills if the stack can be realigned.
    812         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    813           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
    814                      .addFrameIndex(FI).addImm(16)
    815                      .addReg(SrcReg, getKillRegState(isKill))
    816                      .addMemOperand(MMO));
    817         } else {
    818           MachineInstrBuilder MIB =
    819           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    820                        .addFrameIndex(FI))
    821                        .addMemOperand(MMO);
    822           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    823           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    824           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    825         }
    826       } else
    827         llvm_unreachable("Unknown reg class!");
    828       break;
    829     case 32:
    830       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
    831         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    832           // FIXME: It's possible to only store part of the QQ register if the
    833           // spilled def has a sub-register index.
    834           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
    835                      .addFrameIndex(FI).addImm(16)
    836                      .addReg(SrcReg, getKillRegState(isKill))
    837                      .addMemOperand(MMO));
    838         } else {
    839           MachineInstrBuilder MIB =
    840           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    841                        .addFrameIndex(FI))
    842                        .addMemOperand(MMO);
    843           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    844           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    845           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    846                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
    847         }
    848       } else
    849         llvm_unreachable("Unknown reg class!");
    850       break;
    851     case 64:
    852       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
    853         MachineInstrBuilder MIB =
    854           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
    855                          .addFrameIndex(FI))
    856                          .addMemOperand(MMO);
    857         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
    858         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
    859         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
    860         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
    861         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
    862         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
    863         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
    864               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
    865       } else
    866         llvm_unreachable("Unknown reg class!");
    867       break;
    868     default:
    869       llvm_unreachable("Unknown reg class!");
    870   }
    871 }
    872 
    873 unsigned
    874 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
    875                                      int &FrameIndex) const {
    876   switch (MI->getOpcode()) {
    877   default: break;
    878   case ARM::STRrs:
    879   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
    880     if (MI->getOperand(1).isFI() &&
    881         MI->getOperand(2).isReg() &&
    882         MI->getOperand(3).isImm() &&
    883         MI->getOperand(2).getReg() == 0 &&
    884         MI->getOperand(3).getImm() == 0) {
    885       FrameIndex = MI->getOperand(1).getIndex();
    886       return MI->getOperand(0).getReg();
    887     }
    888     break;
    889   case ARM::STRi12:
    890   case ARM::t2STRi12:
    891   case ARM::tSTRspi:
    892   case ARM::VSTRD:
    893   case ARM::VSTRS:
    894     if (MI->getOperand(1).isFI() &&
    895         MI->getOperand(2).isImm() &&
    896         MI->getOperand(2).getImm() == 0) {
    897       FrameIndex = MI->getOperand(1).getIndex();
    898       return MI->getOperand(0).getReg();
    899     }
    900     break;
    901   case ARM::VST1q64:
    902   case ARM::VST1d64TPseudo:
    903   case ARM::VST1d64QPseudo:
    904     if (MI->getOperand(0).isFI() &&
    905         MI->getOperand(2).getSubReg() == 0) {
    906       FrameIndex = MI->getOperand(0).getIndex();
    907       return MI->getOperand(2).getReg();
    908     }
    909     break;
    910   case ARM::VSTMQIA:
    911     if (MI->getOperand(1).isFI() &&
    912         MI->getOperand(0).getSubReg() == 0) {
    913       FrameIndex = MI->getOperand(1).getIndex();
    914       return MI->getOperand(0).getReg();
    915     }
    916     break;
    917   }
    918 
    919   return 0;
    920 }
    921 
    922 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
    923                                                     int &FrameIndex) const {
    924   const MachineMemOperand *Dummy;
    925   return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
    926 }
    927 
    928 void ARMBaseInstrInfo::
    929 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
    930                      unsigned DestReg, int FI,
    931                      const TargetRegisterClass *RC,
    932                      const TargetRegisterInfo *TRI) const {
    933   DebugLoc DL;
    934   if (I != MBB.end()) DL = I->getDebugLoc();
    935   MachineFunction &MF = *MBB.getParent();
    936   MachineFrameInfo &MFI = *MF.getFrameInfo();
    937   unsigned Align = MFI.getObjectAlignment(FI);
    938   MachineMemOperand *MMO =
    939     MF.getMachineMemOperand(
    940                     MachinePointerInfo::getFixedStack(FI),
    941                             MachineMemOperand::MOLoad,
    942                             MFI.getObjectSize(FI),
    943                             Align);
    944 
    945   switch (RC->getSize()) {
    946   case 4:
    947     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
    948       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
    949                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    950 
    951     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
    952       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
    953                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    954     } else
    955       llvm_unreachable("Unknown reg class!");
    956     break;
    957   case 8:
    958     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
    959       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
    960                    .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
    961     } else
    962       llvm_unreachable("Unknown reg class!");
    963     break;
    964   case 16:
    965     if (ARM::DPairRegClass.hasSubClassEq(RC)) {
    966       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    967         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
    968                      .addFrameIndex(FI).addImm(16)
    969                      .addMemOperand(MMO));
    970       } else {
    971         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
    972                        .addFrameIndex(FI)
    973                        .addMemOperand(MMO));
    974       }
    975     } else
    976       llvm_unreachable("Unknown reg class!");
    977     break;
    978   case 24:
    979     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
    980       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
    981         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
    982                      .addFrameIndex(FI).addImm(16)
    983                      .addMemOperand(MMO));
    984       } else {
    985         MachineInstrBuilder MIB =
    986           AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
    987                          .addFrameIndex(FI)
    988                          .addMemOperand(MMO));
    989         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
    990         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
    991         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
    992         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
    993           MIB.addReg(DestReg, RegState::ImplicitDefine);
    994       }
    995     } else
    996       llvm_unreachable("Unknown reg class!");
    997     break;
    998    case 32:
    999     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
   1000       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
   1001         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
   1002                      .addFrameIndex(FI).addImm(16)
   1003                      .addMemOperand(MMO));
   1004       } else {
   1005         MachineInstrBuilder MIB =
   1006         AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
   1007                        .addFrameIndex(FI))
   1008                        .addMemOperand(MMO);
   1009         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
   1010         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
   1011         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
   1012         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
   1013         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1014           MIB.addReg(DestReg, RegState::ImplicitDefine);
   1015       }
   1016     } else
   1017       llvm_unreachable("Unknown reg class!");
   1018     break;
   1019   case 64:
   1020     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
   1021       MachineInstrBuilder MIB =
   1022       AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
   1023                      .addFrameIndex(FI))
   1024                      .addMemOperand(MMO);
   1025       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
   1026       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
   1027       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
   1028       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
   1029       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
   1030       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
   1031       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
   1032       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
   1033       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
   1034         MIB.addReg(DestReg, RegState::ImplicitDefine);
   1035     } else
   1036       llvm_unreachable("Unknown reg class!");
   1037     break;
   1038   default:
   1039     llvm_unreachable("Unknown regclass!");
   1040   }
   1041 }
   1042 
   1043 unsigned
   1044 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
   1045                                       int &FrameIndex) const {
   1046   switch (MI->getOpcode()) {
   1047   default: break;
   1048   case ARM::LDRrs:
   1049   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
   1050     if (MI->getOperand(1).isFI() &&
   1051         MI->getOperand(2).isReg() &&
   1052         MI->getOperand(3).isImm() &&
   1053         MI->getOperand(2).getReg() == 0 &&
   1054         MI->getOperand(3).getImm() == 0) {
   1055       FrameIndex = MI->getOperand(1).getIndex();
   1056       return MI->getOperand(0).getReg();
   1057     }
   1058     break;
   1059   case ARM::LDRi12:
   1060   case ARM::t2LDRi12:
   1061   case ARM::tLDRspi:
   1062   case ARM::VLDRD:
   1063   case ARM::VLDRS:
   1064     if (MI->getOperand(1).isFI() &&
   1065         MI->getOperand(2).isImm() &&
   1066         MI->getOperand(2).getImm() == 0) {
   1067       FrameIndex = MI->getOperand(1).getIndex();
   1068       return MI->getOperand(0).getReg();
   1069     }
   1070     break;
   1071   case ARM::VLD1q64:
   1072   case ARM::VLD1d64TPseudo:
   1073   case ARM::VLD1d64QPseudo:
   1074     if (MI->getOperand(1).isFI() &&
   1075         MI->getOperand(0).getSubReg() == 0) {
   1076       FrameIndex = MI->getOperand(1).getIndex();
   1077       return MI->getOperand(0).getReg();
   1078     }
   1079     break;
   1080   case ARM::VLDMQIA:
   1081     if (MI->getOperand(1).isFI() &&
   1082         MI->getOperand(0).getSubReg() == 0) {
   1083       FrameIndex = MI->getOperand(1).getIndex();
   1084       return MI->getOperand(0).getReg();
   1085     }
   1086     break;
   1087   }
   1088 
   1089   return 0;
   1090 }
   1091 
   1092 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
   1093                                              int &FrameIndex) const {
   1094   const MachineMemOperand *Dummy;
   1095   return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
   1096 }
   1097 
   1098 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{
   1099   // This hook gets to expand COPY instructions before they become
   1100   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
   1101   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
   1102   // changed into a VORR that can go down the NEON pipeline.
   1103   if (!WidenVMOVS || !MI->isCopy())
   1104     return false;
   1105 
   1106   // Look for a copy between even S-registers.  That is where we keep floats
   1107   // when using NEON v2f32 instructions for f32 arithmetic.
   1108   unsigned DstRegS = MI->getOperand(0).getReg();
   1109   unsigned SrcRegS = MI->getOperand(1).getReg();
   1110   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
   1111     return false;
   1112 
   1113   const TargetRegisterInfo *TRI = &getRegisterInfo();
   1114   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
   1115                                               &ARM::DPRRegClass);
   1116   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
   1117                                               &ARM::DPRRegClass);
   1118   if (!DstRegD || !SrcRegD)
   1119     return false;
   1120 
   1121   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
   1122   // legal if the COPY already defines the full DstRegD, and it isn't a
   1123   // sub-register insertion.
   1124   if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
   1125     return false;
   1126 
   1127   // A dead copy shouldn't show up here, but reject it just in case.
   1128   if (MI->getOperand(0).isDead())
   1129     return false;
   1130 
   1131   // All clear, widen the COPY.
   1132   DEBUG(dbgs() << "widening:    " << *MI);
   1133 
   1134   // Get rid of the old <imp-def> of DstRegD.  Leave it if it defines a Q-reg
   1135   // or some other super-register.
   1136   int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
   1137   if (ImpDefIdx != -1)
   1138     MI->RemoveOperand(ImpDefIdx);
   1139 
   1140   // Change the opcode and operands.
   1141   MI->setDesc(get(ARM::VMOVD));
   1142   MI->getOperand(0).setReg(DstRegD);
   1143   MI->getOperand(1).setReg(SrcRegD);
   1144   AddDefaultPred(MachineInstrBuilder(MI));
   1145 
   1146   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
   1147   // register scavenger and machine verifier, so we need to indicate that we
   1148   // are reading an undefined value from SrcRegD, but a proper value from
   1149   // SrcRegS.
   1150   MI->getOperand(1).setIsUndef();
   1151   MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit);
   1152 
   1153   // SrcRegD may actually contain an unrelated value in the ssub_1
   1154   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
   1155   if (MI->getOperand(1).isKill()) {
   1156     MI->getOperand(1).setIsKill(false);
   1157     MI->addRegisterKilled(SrcRegS, TRI, true);
   1158   }
   1159 
   1160   DEBUG(dbgs() << "replaced by: " << *MI);
   1161   return true;
   1162 }
   1163 
   1164 MachineInstr*
   1165 ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
   1166                                            int FrameIx, uint64_t Offset,
   1167                                            const MDNode *MDPtr,
   1168                                            DebugLoc DL) const {
   1169   MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
   1170     .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
   1171   return &*MIB;
   1172 }
   1173 
   1174 /// Create a copy of a const pool value. Update CPI to the new index and return
   1175 /// the label UID.
   1176 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
   1177   MachineConstantPool *MCP = MF.getConstantPool();
   1178   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1179 
   1180   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
   1181   assert(MCPE.isMachineConstantPoolEntry() &&
   1182          "Expecting a machine constantpool entry!");
   1183   ARMConstantPoolValue *ACPV =
   1184     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
   1185 
   1186   unsigned PCLabelId = AFI->createPICLabelUId();
   1187   ARMConstantPoolValue *NewCPV = 0;
   1188   // FIXME: The below assumes PIC relocation model and that the function
   1189   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
   1190   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
   1191   // instructions, so that's probably OK, but is PIC always correct when
   1192   // we get here?
   1193   if (ACPV->isGlobalValue())
   1194     NewCPV = ARMConstantPoolConstant::
   1195       Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
   1196              ARMCP::CPValue, 4);
   1197   else if (ACPV->isExtSymbol())
   1198     NewCPV = ARMConstantPoolSymbol::
   1199       Create(MF.getFunction()->getContext(),
   1200              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
   1201   else if (ACPV->isBlockAddress())
   1202     NewCPV = ARMConstantPoolConstant::
   1203       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
   1204              ARMCP::CPBlockAddress, 4);
   1205   else if (ACPV->isLSDA())
   1206     NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
   1207                                              ARMCP::CPLSDA, 4);
   1208   else if (ACPV->isMachineBasicBlock())
   1209     NewCPV = ARMConstantPoolMBB::
   1210       Create(MF.getFunction()->getContext(),
   1211              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
   1212   else
   1213     llvm_unreachable("Unexpected ARM constantpool value type!!");
   1214   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
   1215   return PCLabelId;
   1216 }
   1217 
   1218 void ARMBaseInstrInfo::
   1219 reMaterialize(MachineBasicBlock &MBB,
   1220               MachineBasicBlock::iterator I,
   1221               unsigned DestReg, unsigned SubIdx,
   1222               const MachineInstr *Orig,
   1223               const TargetRegisterInfo &TRI) const {
   1224   unsigned Opcode = Orig->getOpcode();
   1225   switch (Opcode) {
   1226   default: {
   1227     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
   1228     MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
   1229     MBB.insert(I, MI);
   1230     break;
   1231   }
   1232   case ARM::tLDRpci_pic:
   1233   case ARM::t2LDRpci_pic: {
   1234     MachineFunction &MF = *MBB.getParent();
   1235     unsigned CPI = Orig->getOperand(1).getIndex();
   1236     unsigned PCLabelId = duplicateCPV(MF, CPI);
   1237     MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
   1238                                       DestReg)
   1239       .addConstantPoolIndex(CPI).addImm(PCLabelId);
   1240     MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
   1241     break;
   1242   }
   1243   }
   1244 }
   1245 
   1246 MachineInstr *
   1247 ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
   1248   MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
   1249   switch(Orig->getOpcode()) {
   1250   case ARM::tLDRpci_pic:
   1251   case ARM::t2LDRpci_pic: {
   1252     unsigned CPI = Orig->getOperand(1).getIndex();
   1253     unsigned PCLabelId = duplicateCPV(MF, CPI);
   1254     Orig->getOperand(1).setIndex(CPI);
   1255     Orig->getOperand(2).setImm(PCLabelId);
   1256     break;
   1257   }
   1258   }
   1259   return MI;
   1260 }
   1261 
   1262 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
   1263                                         const MachineInstr *MI1,
   1264                                         const MachineRegisterInfo *MRI) const {
   1265   int Opcode = MI0->getOpcode();
   1266   if (Opcode == ARM::t2LDRpci ||
   1267       Opcode == ARM::t2LDRpci_pic ||
   1268       Opcode == ARM::tLDRpci ||
   1269       Opcode == ARM::tLDRpci_pic ||
   1270       Opcode == ARM::MOV_ga_dyn ||
   1271       Opcode == ARM::MOV_ga_pcrel ||
   1272       Opcode == ARM::MOV_ga_pcrel_ldr ||
   1273       Opcode == ARM::t2MOV_ga_dyn ||
   1274       Opcode == ARM::t2MOV_ga_pcrel) {
   1275     if (MI1->getOpcode() != Opcode)
   1276       return false;
   1277     if (MI0->getNumOperands() != MI1->getNumOperands())
   1278       return false;
   1279 
   1280     const MachineOperand &MO0 = MI0->getOperand(1);
   1281     const MachineOperand &MO1 = MI1->getOperand(1);
   1282     if (MO0.getOffset() != MO1.getOffset())
   1283       return false;
   1284 
   1285     if (Opcode == ARM::MOV_ga_dyn ||
   1286         Opcode == ARM::MOV_ga_pcrel ||
   1287         Opcode == ARM::MOV_ga_pcrel_ldr ||
   1288         Opcode == ARM::t2MOV_ga_dyn ||
   1289         Opcode == ARM::t2MOV_ga_pcrel)
   1290       // Ignore the PC labels.
   1291       return MO0.getGlobal() == MO1.getGlobal();
   1292 
   1293     const MachineFunction *MF = MI0->getParent()->getParent();
   1294     const MachineConstantPool *MCP = MF->getConstantPool();
   1295     int CPI0 = MO0.getIndex();
   1296     int CPI1 = MO1.getIndex();
   1297     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
   1298     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
   1299     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
   1300     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
   1301     if (isARMCP0 && isARMCP1) {
   1302       ARMConstantPoolValue *ACPV0 =
   1303         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
   1304       ARMConstantPoolValue *ACPV1 =
   1305         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
   1306       return ACPV0->hasSameValue(ACPV1);
   1307     } else if (!isARMCP0 && !isARMCP1) {
   1308       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
   1309     }
   1310     return false;
   1311   } else if (Opcode == ARM::PICLDR) {
   1312     if (MI1->getOpcode() != Opcode)
   1313       return false;
   1314     if (MI0->getNumOperands() != MI1->getNumOperands())
   1315       return false;
   1316 
   1317     unsigned Addr0 = MI0->getOperand(1).getReg();
   1318     unsigned Addr1 = MI1->getOperand(1).getReg();
   1319     if (Addr0 != Addr1) {
   1320       if (!MRI ||
   1321           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
   1322           !TargetRegisterInfo::isVirtualRegister(Addr1))
   1323         return false;
   1324 
   1325       // This assumes SSA form.
   1326       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
   1327       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
   1328       // Check if the loaded value, e.g. a constantpool of a global address, are
   1329       // the same.
   1330       if (!produceSameValue(Def0, Def1, MRI))
   1331         return false;
   1332     }
   1333 
   1334     for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
   1335       // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
   1336       const MachineOperand &MO0 = MI0->getOperand(i);
   1337       const MachineOperand &MO1 = MI1->getOperand(i);
   1338       if (!MO0.isIdenticalTo(MO1))
   1339         return false;
   1340     }
   1341     return true;
   1342   }
   1343 
   1344   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
   1345 }
   1346 
   1347 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
   1348 /// determine if two loads are loading from the same base address. It should
   1349 /// only return true if the base pointers are the same and the only differences
   1350 /// between the two addresses is the offset. It also returns the offsets by
   1351 /// reference.
   1352 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
   1353                                                int64_t &Offset1,
   1354                                                int64_t &Offset2) const {
   1355   // Don't worry about Thumb: just ARM and Thumb2.
   1356   if (Subtarget.isThumb1Only()) return false;
   1357 
   1358   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
   1359     return false;
   1360 
   1361   switch (Load1->getMachineOpcode()) {
   1362   default:
   1363     return false;
   1364   case ARM::LDRi12:
   1365   case ARM::LDRBi12:
   1366   case ARM::LDRD:
   1367   case ARM::LDRH:
   1368   case ARM::LDRSB:
   1369   case ARM::LDRSH:
   1370   case ARM::VLDRD:
   1371   case ARM::VLDRS:
   1372   case ARM::t2LDRi8:
   1373   case ARM::t2LDRDi8:
   1374   case ARM::t2LDRSHi8:
   1375   case ARM::t2LDRi12:
   1376   case ARM::t2LDRSHi12:
   1377     break;
   1378   }
   1379 
   1380   switch (Load2->getMachineOpcode()) {
   1381   default:
   1382     return false;
   1383   case ARM::LDRi12:
   1384   case ARM::LDRBi12:
   1385   case ARM::LDRD:
   1386   case ARM::LDRH:
   1387   case ARM::LDRSB:
   1388   case ARM::LDRSH:
   1389   case ARM::VLDRD:
   1390   case ARM::VLDRS:
   1391   case ARM::t2LDRi8:
   1392   case ARM::t2LDRDi8:
   1393   case ARM::t2LDRSHi8:
   1394   case ARM::t2LDRi12:
   1395   case ARM::t2LDRSHi12:
   1396     break;
   1397   }
   1398 
   1399   // Check if base addresses and chain operands match.
   1400   if (Load1->getOperand(0) != Load2->getOperand(0) ||
   1401       Load1->getOperand(4) != Load2->getOperand(4))
   1402     return false;
   1403 
   1404   // Index should be Reg0.
   1405   if (Load1->getOperand(3) != Load2->getOperand(3))
   1406     return false;
   1407 
   1408   // Determine the offsets.
   1409   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
   1410       isa<ConstantSDNode>(Load2->getOperand(1))) {
   1411     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
   1412     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
   1413     return true;
   1414   }
   1415 
   1416   return false;
   1417 }
   1418 
   1419 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
   1420 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
   1421 /// be scheduled togther. On some targets if two loads are loading from
   1422 /// addresses in the same cache line, it's better if they are scheduled
   1423 /// together. This function takes two integers that represent the load offsets
   1424 /// from the common base address. It returns true if it decides it's desirable
   1425 /// to schedule the two loads together. "NumLoads" is the number of loads that
   1426 /// have already been scheduled after Load1.
   1427 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
   1428                                                int64_t Offset1, int64_t Offset2,
   1429                                                unsigned NumLoads) const {
   1430   // Don't worry about Thumb: just ARM and Thumb2.
   1431   if (Subtarget.isThumb1Only()) return false;
   1432 
   1433   assert(Offset2 > Offset1);
   1434 
   1435   if ((Offset2 - Offset1) / 8 > 64)
   1436     return false;
   1437 
   1438   if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
   1439     return false;  // FIXME: overly conservative?
   1440 
   1441   // Four loads in a row should be sufficient.
   1442   if (NumLoads >= 3)
   1443     return false;
   1444 
   1445   return true;
   1446 }
   1447 
   1448 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
   1449                                             const MachineBasicBlock *MBB,
   1450                                             const MachineFunction &MF) const {
   1451   // Debug info is never a scheduling boundary. It's necessary to be explicit
   1452   // due to the special treatment of IT instructions below, otherwise a
   1453   // dbg_value followed by an IT will result in the IT instruction being
   1454   // considered a scheduling hazard, which is wrong. It should be the actual
   1455   // instruction preceding the dbg_value instruction(s), just like it is
   1456   // when debug info is not present.
   1457   if (MI->isDebugValue())
   1458     return false;
   1459 
   1460   // Terminators and labels can't be scheduled around.
   1461   if (MI->isTerminator() || MI->isLabel())
   1462     return true;
   1463 
   1464   // Treat the start of the IT block as a scheduling boundary, but schedule
   1465   // t2IT along with all instructions following it.
   1466   // FIXME: This is a big hammer. But the alternative is to add all potential
   1467   // true and anti dependencies to IT block instructions as implicit operands
   1468   // to the t2IT instruction. The added compile time and complexity does not
   1469   // seem worth it.
   1470   MachineBasicBlock::const_iterator I = MI;
   1471   // Make sure to skip any dbg_value instructions
   1472   while (++I != MBB->end() && I->isDebugValue())
   1473     ;
   1474   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
   1475     return true;
   1476 
   1477   // Don't attempt to schedule around any instruction that defines
   1478   // a stack-oriented pointer, as it's unlikely to be profitable. This
   1479   // saves compile time, because it doesn't require every single
   1480   // stack slot reference to depend on the instruction that does the
   1481   // modification.
   1482   // Calls don't actually change the stack pointer, even if they have imp-defs.
   1483   // No ARM calling conventions change the stack pointer. (X86 calling
   1484   // conventions sometimes do).
   1485   if (!MI->isCall() && MI->definesRegister(ARM::SP))
   1486     return true;
   1487 
   1488   return false;
   1489 }
   1490 
   1491 bool ARMBaseInstrInfo::
   1492 isProfitableToIfCvt(MachineBasicBlock &MBB,
   1493                     unsigned NumCycles, unsigned ExtraPredCycles,
   1494                     const BranchProbability &Probability) const {
   1495   if (!NumCycles)
   1496     return false;
   1497 
   1498   // Attempt to estimate the relative costs of predication versus branching.
   1499   unsigned UnpredCost = Probability.getNumerator() * NumCycles;
   1500   UnpredCost /= Probability.getDenominator();
   1501   UnpredCost += 1; // The branch itself
   1502   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
   1503 
   1504   return (NumCycles + ExtraPredCycles) <= UnpredCost;
   1505 }
   1506 
   1507 bool ARMBaseInstrInfo::
   1508 isProfitableToIfCvt(MachineBasicBlock &TMBB,
   1509                     unsigned TCycles, unsigned TExtra,
   1510                     MachineBasicBlock &FMBB,
   1511                     unsigned FCycles, unsigned FExtra,
   1512                     const BranchProbability &Probability) const {
   1513   if (!TCycles || !FCycles)
   1514     return false;
   1515 
   1516   // Attempt to estimate the relative costs of predication versus branching.
   1517   unsigned TUnpredCost = Probability.getNumerator() * TCycles;
   1518   TUnpredCost /= Probability.getDenominator();
   1519 
   1520   uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
   1521   unsigned FUnpredCost = Comp * FCycles;
   1522   FUnpredCost /= Probability.getDenominator();
   1523 
   1524   unsigned UnpredCost = TUnpredCost + FUnpredCost;
   1525   UnpredCost += 1; // The branch itself
   1526   UnpredCost += Subtarget.getMispredictionPenalty() / 10;
   1527 
   1528   return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
   1529 }
   1530 
   1531 /// getInstrPredicate - If instruction is predicated, returns its predicate
   1532 /// condition, otherwise returns AL. It also returns the condition code
   1533 /// register by reference.
   1534 ARMCC::CondCodes
   1535 llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
   1536   int PIdx = MI->findFirstPredOperandIdx();
   1537   if (PIdx == -1) {
   1538     PredReg = 0;
   1539     return ARMCC::AL;
   1540   }
   1541 
   1542   PredReg = MI->getOperand(PIdx+1).getReg();
   1543   return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
   1544 }
   1545 
   1546 
   1547 int llvm::getMatchingCondBranchOpcode(int Opc) {
   1548   if (Opc == ARM::B)
   1549     return ARM::Bcc;
   1550   if (Opc == ARM::tB)
   1551     return ARM::tBcc;
   1552   if (Opc == ARM::t2B)
   1553     return ARM::t2Bcc;
   1554 
   1555   llvm_unreachable("Unknown unconditional branch opcode!");
   1556 }
   1557 
   1558 /// commuteInstruction - Handle commutable instructions.
   1559 MachineInstr *
   1560 ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
   1561   switch (MI->getOpcode()) {
   1562   case ARM::MOVCCr:
   1563   case ARM::t2MOVCCr: {
   1564     // MOVCC can be commuted by inverting the condition.
   1565     unsigned PredReg = 0;
   1566     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
   1567     // MOVCC AL can't be inverted. Shouldn't happen.
   1568     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
   1569       return NULL;
   1570     MI = TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
   1571     if (!MI)
   1572       return NULL;
   1573     // After swapping the MOVCC operands, also invert the condition.
   1574     MI->getOperand(MI->findFirstPredOperandIdx())
   1575       .setImm(ARMCC::getOppositeCondition(CC));
   1576     return MI;
   1577   }
   1578   }
   1579   return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
   1580 }
   1581 
   1582 /// Identify instructions that can be folded into a MOVCC instruction, and
   1583 /// return the defining instruction.
   1584 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
   1585                                       const MachineRegisterInfo &MRI,
   1586                                       const TargetInstrInfo *TII) {
   1587   if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1588     return 0;
   1589   if (!MRI.hasOneNonDBGUse(Reg))
   1590     return 0;
   1591   MachineInstr *MI = MRI.getVRegDef(Reg);
   1592   if (!MI)
   1593     return 0;
   1594   // MI is folded into the MOVCC by predicating it.
   1595   if (!MI->isPredicable())
   1596     return 0;
   1597   // Check if MI has any non-dead defs or physreg uses. This also detects
   1598   // predicated instructions which will be reading CPSR.
   1599   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
   1600     const MachineOperand &MO = MI->getOperand(i);
   1601     // Reject frame index operands, PEI can't handle the predicated pseudos.
   1602     if (MO.isFI() || MO.isCPI() || MO.isJTI())
   1603       return 0;
   1604     if (!MO.isReg())
   1605       continue;
   1606     // MI can't have any tied operands, that would conflict with predication.
   1607     if (MO.isTied())
   1608       return 0;
   1609     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
   1610       return 0;
   1611     if (MO.isDef() && !MO.isDead())
   1612       return 0;
   1613   }
   1614   bool DontMoveAcrossStores = true;
   1615   if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ 0, DontMoveAcrossStores))
   1616     return 0;
   1617   return MI;
   1618 }
   1619 
   1620 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
   1621                                      SmallVectorImpl<MachineOperand> &Cond,
   1622                                      unsigned &TrueOp, unsigned &FalseOp,
   1623                                      bool &Optimizable) const {
   1624   assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
   1625          "Unknown select instruction");
   1626   // MOVCC operands:
   1627   // 0: Def.
   1628   // 1: True use.
   1629   // 2: False use.
   1630   // 3: Condition code.
   1631   // 4: CPSR use.
   1632   TrueOp = 1;
   1633   FalseOp = 2;
   1634   Cond.push_back(MI->getOperand(3));
   1635   Cond.push_back(MI->getOperand(4));
   1636   // We can always fold a def.
   1637   Optimizable = true;
   1638   return false;
   1639 }
   1640 
   1641 MachineInstr *ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
   1642                                                bool PreferFalse) const {
   1643   assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
   1644          "Unknown select instruction");
   1645   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
   1646   MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
   1647   bool Invert = !DefMI;
   1648   if (!DefMI)
   1649     DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
   1650   if (!DefMI)
   1651     return 0;
   1652 
   1653   // Create a new predicated version of DefMI.
   1654   // Rfalse is the first use.
   1655   MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   1656                                       DefMI->getDesc(),
   1657                                       MI->getOperand(0).getReg());
   1658 
   1659   // Copy all the DefMI operands, excluding its (null) predicate.
   1660   const MCInstrDesc &DefDesc = DefMI->getDesc();
   1661   for (unsigned i = 1, e = DefDesc.getNumOperands();
   1662        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
   1663     NewMI.addOperand(DefMI->getOperand(i));
   1664 
   1665   unsigned CondCode = MI->getOperand(3).getImm();
   1666   if (Invert)
   1667     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
   1668   else
   1669     NewMI.addImm(CondCode);
   1670   NewMI.addOperand(MI->getOperand(4));
   1671 
   1672   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
   1673   if (NewMI->hasOptionalDef())
   1674     AddDefaultCC(NewMI);
   1675 
   1676   // The output register value when the predicate is false is an implicit
   1677   // register operand tied to the first def.
   1678   // The tie makes the register allocator ensure the FalseReg is allocated the
   1679   // same register as operand 0.
   1680   MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
   1681   FalseReg.setImplicit();
   1682   NewMI->addOperand(FalseReg);
   1683   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
   1684 
   1685   // The caller will erase MI, but not DefMI.
   1686   DefMI->eraseFromParent();
   1687   return NewMI;
   1688 }
   1689 
   1690 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
   1691 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
   1692 /// def operand.
   1693 ///
   1694 /// This will go away once we can teach tblgen how to set the optional CPSR def
   1695 /// operand itself.
   1696 struct AddSubFlagsOpcodePair {
   1697   uint16_t PseudoOpc;
   1698   uint16_t MachineOpc;
   1699 };
   1700 
   1701 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
   1702   {ARM::ADDSri, ARM::ADDri},
   1703   {ARM::ADDSrr, ARM::ADDrr},
   1704   {ARM::ADDSrsi, ARM::ADDrsi},
   1705   {ARM::ADDSrsr, ARM::ADDrsr},
   1706 
   1707   {ARM::SUBSri, ARM::SUBri},
   1708   {ARM::SUBSrr, ARM::SUBrr},
   1709   {ARM::SUBSrsi, ARM::SUBrsi},
   1710   {ARM::SUBSrsr, ARM::SUBrsr},
   1711 
   1712   {ARM::RSBSri, ARM::RSBri},
   1713   {ARM::RSBSrsi, ARM::RSBrsi},
   1714   {ARM::RSBSrsr, ARM::RSBrsr},
   1715 
   1716   {ARM::t2ADDSri, ARM::t2ADDri},
   1717   {ARM::t2ADDSrr, ARM::t2ADDrr},
   1718   {ARM::t2ADDSrs, ARM::t2ADDrs},
   1719 
   1720   {ARM::t2SUBSri, ARM::t2SUBri},
   1721   {ARM::t2SUBSrr, ARM::t2SUBrr},
   1722   {ARM::t2SUBSrs, ARM::t2SUBrs},
   1723 
   1724   {ARM::t2RSBSri, ARM::t2RSBri},
   1725   {ARM::t2RSBSrs, ARM::t2RSBrs},
   1726 };
   1727 
   1728 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
   1729   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
   1730     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
   1731       return AddSubFlagsOpcodeMap[i].MachineOpc;
   1732   return 0;
   1733 }
   1734 
   1735 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
   1736                                MachineBasicBlock::iterator &MBBI, DebugLoc dl,
   1737                                unsigned DestReg, unsigned BaseReg, int NumBytes,
   1738                                ARMCC::CondCodes Pred, unsigned PredReg,
   1739                                const ARMBaseInstrInfo &TII, unsigned MIFlags) {
   1740   bool isSub = NumBytes < 0;
   1741   if (isSub) NumBytes = -NumBytes;
   1742 
   1743   while (NumBytes) {
   1744     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
   1745     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
   1746     assert(ThisVal && "Didn't extract field correctly");
   1747 
   1748     // We will handle these bits from offset, clear them.
   1749     NumBytes &= ~ThisVal;
   1750 
   1751     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
   1752 
   1753     // Build the new ADD / SUB.
   1754     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
   1755     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
   1756       .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
   1757       .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
   1758       .setMIFlags(MIFlags);
   1759     BaseReg = DestReg;
   1760   }
   1761 }
   1762 
   1763 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
   1764                                 unsigned FrameReg, int &Offset,
   1765                                 const ARMBaseInstrInfo &TII) {
   1766   unsigned Opcode = MI.getOpcode();
   1767   const MCInstrDesc &Desc = MI.getDesc();
   1768   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
   1769   bool isSub = false;
   1770 
   1771   // Memory operands in inline assembly always use AddrMode2.
   1772   if (Opcode == ARM::INLINEASM)
   1773     AddrMode = ARMII::AddrMode2;
   1774 
   1775   if (Opcode == ARM::ADDri) {
   1776     Offset += MI.getOperand(FrameRegIdx+1).getImm();
   1777     if (Offset == 0) {
   1778       // Turn it into a move.
   1779       MI.setDesc(TII.get(ARM::MOVr));
   1780       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   1781       MI.RemoveOperand(FrameRegIdx+1);
   1782       Offset = 0;
   1783       return true;
   1784     } else if (Offset < 0) {
   1785       Offset = -Offset;
   1786       isSub = true;
   1787       MI.setDesc(TII.get(ARM::SUBri));
   1788     }
   1789 
   1790     // Common case: small offset, fits into instruction.
   1791     if (ARM_AM::getSOImmVal(Offset) != -1) {
   1792       // Replace the FrameIndex with sp / fp
   1793       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   1794       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
   1795       Offset = 0;
   1796       return true;
   1797     }
   1798 
   1799     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
   1800     // as possible.
   1801     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
   1802     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
   1803 
   1804     // We will handle these bits from offset, clear them.
   1805     Offset &= ~ThisImmVal;
   1806 
   1807     // Get the properly encoded SOImmVal field.
   1808     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
   1809            "Bit extraction didn't work?");
   1810     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
   1811  } else {
   1812     unsigned ImmIdx = 0;
   1813     int InstrOffs = 0;
   1814     unsigned NumBits = 0;
   1815     unsigned Scale = 1;
   1816     switch (AddrMode) {
   1817     case ARMII::AddrMode_i12: {
   1818       ImmIdx = FrameRegIdx + 1;
   1819       InstrOffs = MI.getOperand(ImmIdx).getImm();
   1820       NumBits = 12;
   1821       break;
   1822     }
   1823     case ARMII::AddrMode2: {
   1824       ImmIdx = FrameRegIdx+2;
   1825       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
   1826       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   1827         InstrOffs *= -1;
   1828       NumBits = 12;
   1829       break;
   1830     }
   1831     case ARMII::AddrMode3: {
   1832       ImmIdx = FrameRegIdx+2;
   1833       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
   1834       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   1835         InstrOffs *= -1;
   1836       NumBits = 8;
   1837       break;
   1838     }
   1839     case ARMII::AddrMode4:
   1840     case ARMII::AddrMode6:
   1841       // Can't fold any offset even if it's zero.
   1842       return false;
   1843     case ARMII::AddrMode5: {
   1844       ImmIdx = FrameRegIdx+1;
   1845       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
   1846       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
   1847         InstrOffs *= -1;
   1848       NumBits = 8;
   1849       Scale = 4;
   1850       break;
   1851     }
   1852     default:
   1853       llvm_unreachable("Unsupported addressing mode!");
   1854     }
   1855 
   1856     Offset += InstrOffs * Scale;
   1857     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
   1858     if (Offset < 0) {
   1859       Offset = -Offset;
   1860       isSub = true;
   1861     }
   1862 
   1863     // Attempt to fold address comp. if opcode has offset bits
   1864     if (NumBits > 0) {
   1865       // Common case: small offset, fits into instruction.
   1866       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
   1867       int ImmedOffset = Offset / Scale;
   1868       unsigned Mask = (1 << NumBits) - 1;
   1869       if ((unsigned)Offset <= Mask * Scale) {
   1870         // Replace the FrameIndex with sp
   1871         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
   1872         // FIXME: When addrmode2 goes away, this will simplify (like the
   1873         // T2 version), as the LDR.i12 versions don't need the encoding
   1874         // tricks for the offset value.
   1875         if (isSub) {
   1876           if (AddrMode == ARMII::AddrMode_i12)
   1877             ImmedOffset = -ImmedOffset;
   1878           else
   1879             ImmedOffset |= 1 << NumBits;
   1880         }
   1881         ImmOp.ChangeToImmediate(ImmedOffset);
   1882         Offset = 0;
   1883         return true;
   1884       }
   1885 
   1886       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
   1887       ImmedOffset = ImmedOffset & Mask;
   1888       if (isSub) {
   1889         if (AddrMode == ARMII::AddrMode_i12)
   1890           ImmedOffset = -ImmedOffset;
   1891         else
   1892           ImmedOffset |= 1 << NumBits;
   1893       }
   1894       ImmOp.ChangeToImmediate(ImmedOffset);
   1895       Offset &= ~(Mask*Scale);
   1896     }
   1897   }
   1898 
   1899   Offset = (isSub) ? -Offset : Offset;
   1900   return Offset == 0;
   1901 }
   1902 
   1903 /// analyzeCompare - For a comparison instruction, return the source registers
   1904 /// in SrcReg and SrcReg2 if having two register operands, and the value it
   1905 /// compares against in CmpValue. Return true if the comparison instruction
   1906 /// can be analyzed.
   1907 bool ARMBaseInstrInfo::
   1908 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
   1909                int &CmpMask, int &CmpValue) const {
   1910   switch (MI->getOpcode()) {
   1911   default: break;
   1912   case ARM::CMPri:
   1913   case ARM::t2CMPri:
   1914     SrcReg = MI->getOperand(0).getReg();
   1915     SrcReg2 = 0;
   1916     CmpMask = ~0;
   1917     CmpValue = MI->getOperand(1).getImm();
   1918     return true;
   1919   case ARM::CMPrr:
   1920   case ARM::t2CMPrr:
   1921     SrcReg = MI->getOperand(0).getReg();
   1922     SrcReg2 = MI->getOperand(1).getReg();
   1923     CmpMask = ~0;
   1924     CmpValue = 0;
   1925     return true;
   1926   case ARM::TSTri:
   1927   case ARM::t2TSTri:
   1928     SrcReg = MI->getOperand(0).getReg();
   1929     SrcReg2 = 0;
   1930     CmpMask = MI->getOperand(1).getImm();
   1931     CmpValue = 0;
   1932     return true;
   1933   }
   1934 
   1935   return false;
   1936 }
   1937 
   1938 /// isSuitableForMask - Identify a suitable 'and' instruction that
   1939 /// operates on the given source register and applies the same mask
   1940 /// as a 'tst' instruction. Provide a limited look-through for copies.
   1941 /// When successful, MI will hold the found instruction.
   1942 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
   1943                               int CmpMask, bool CommonUse) {
   1944   switch (MI->getOpcode()) {
   1945     case ARM::ANDri:
   1946     case ARM::t2ANDri:
   1947       if (CmpMask != MI->getOperand(2).getImm())
   1948         return false;
   1949       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
   1950         return true;
   1951       break;
   1952     case ARM::COPY: {
   1953       // Walk down one instruction which is potentially an 'and'.
   1954       const MachineInstr &Copy = *MI;
   1955       MachineBasicBlock::iterator AND(
   1956         llvm::next(MachineBasicBlock::iterator(MI)));
   1957       if (AND == MI->getParent()->end()) return false;
   1958       MI = AND;
   1959       return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
   1960                                CmpMask, true);
   1961     }
   1962   }
   1963 
   1964   return false;
   1965 }
   1966 
   1967 /// getSwappedCondition - assume the flags are set by MI(a,b), return
   1968 /// the condition code if we modify the instructions such that flags are
   1969 /// set by MI(b,a).
   1970 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
   1971   switch (CC) {
   1972   default: return ARMCC::AL;
   1973   case ARMCC::EQ: return ARMCC::EQ;
   1974   case ARMCC::NE: return ARMCC::NE;
   1975   case ARMCC::HS: return ARMCC::LS;
   1976   case ARMCC::LO: return ARMCC::HI;
   1977   case ARMCC::HI: return ARMCC::LO;
   1978   case ARMCC::LS: return ARMCC::HS;
   1979   case ARMCC::GE: return ARMCC::LE;
   1980   case ARMCC::LT: return ARMCC::GT;
   1981   case ARMCC::GT: return ARMCC::LT;
   1982   case ARMCC::LE: return ARMCC::GE;
   1983   }
   1984 }
   1985 
   1986 /// isRedundantFlagInstr - check whether the first instruction, whose only
   1987 /// purpose is to update flags, can be made redundant.
   1988 /// CMPrr can be made redundant by SUBrr if the operands are the same.
   1989 /// CMPri can be made redundant by SUBri if the operands are the same.
   1990 /// This function can be extended later on.
   1991 inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
   1992                                         unsigned SrcReg2, int ImmValue,
   1993                                         MachineInstr *OI) {
   1994   if ((CmpI->getOpcode() == ARM::CMPrr ||
   1995        CmpI->getOpcode() == ARM::t2CMPrr) &&
   1996       (OI->getOpcode() == ARM::SUBrr ||
   1997        OI->getOpcode() == ARM::t2SUBrr) &&
   1998       ((OI->getOperand(1).getReg() == SrcReg &&
   1999         OI->getOperand(2).getReg() == SrcReg2) ||
   2000        (OI->getOperand(1).getReg() == SrcReg2 &&
   2001         OI->getOperand(2).getReg() == SrcReg)))
   2002     return true;
   2003 
   2004   if ((CmpI->getOpcode() == ARM::CMPri ||
   2005        CmpI->getOpcode() == ARM::t2CMPri) &&
   2006       (OI->getOpcode() == ARM::SUBri ||
   2007        OI->getOpcode() == ARM::t2SUBri) &&
   2008       OI->getOperand(1).getReg() == SrcReg &&
   2009       OI->getOperand(2).getImm() == ImmValue)
   2010     return true;
   2011   return false;
   2012 }
   2013 
   2014 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
   2015 /// comparison into one that sets the zero bit in the flags register;
   2016 /// Remove a redundant Compare instruction if an earlier instruction can set the
   2017 /// flags in the same way as Compare.
   2018 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
   2019 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
   2020 /// condition code of instructions which use the flags.
   2021 bool ARMBaseInstrInfo::
   2022 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
   2023                      int CmpMask, int CmpValue,
   2024                      const MachineRegisterInfo *MRI) const {
   2025   // Get the unique definition of SrcReg.
   2026   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   2027   if (!MI) return false;
   2028 
   2029   // Masked compares sometimes use the same register as the corresponding 'and'.
   2030   if (CmpMask != ~0) {
   2031     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
   2032       MI = 0;
   2033       for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg),
   2034            UE = MRI->use_end(); UI != UE; ++UI) {
   2035         if (UI->getParent() != CmpInstr->getParent()) continue;
   2036         MachineInstr *PotentialAND = &*UI;
   2037         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
   2038             isPredicated(PotentialAND))
   2039           continue;
   2040         MI = PotentialAND;
   2041         break;
   2042       }
   2043       if (!MI) return false;
   2044     }
   2045   }
   2046 
   2047   // Get ready to iterate backward from CmpInstr.
   2048   MachineBasicBlock::iterator I = CmpInstr, E = MI,
   2049                               B = CmpInstr->getParent()->begin();
   2050 
   2051   // Early exit if CmpInstr is at the beginning of the BB.
   2052   if (I == B) return false;
   2053 
   2054   // There are two possible candidates which can be changed to set CPSR:
   2055   // One is MI, the other is a SUB instruction.
   2056   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
   2057   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
   2058   MachineInstr *Sub = NULL;
   2059   if (SrcReg2 != 0)
   2060     // MI is not a candidate for CMPrr.
   2061     MI = NULL;
   2062   else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
   2063     // Conservatively refuse to convert an instruction which isn't in the same
   2064     // BB as the comparison.
   2065     // For CMPri, we need to check Sub, thus we can't return here.
   2066     if (CmpInstr->getOpcode() == ARM::CMPri ||
   2067        CmpInstr->getOpcode() == ARM::t2CMPri)
   2068       MI = NULL;
   2069     else
   2070       return false;
   2071   }
   2072 
   2073   // Check that CPSR isn't set between the comparison instruction and the one we
   2074   // want to change. At the same time, search for Sub.
   2075   const TargetRegisterInfo *TRI = &getRegisterInfo();
   2076   --I;
   2077   for (; I != E; --I) {
   2078     const MachineInstr &Instr = *I;
   2079 
   2080     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
   2081         Instr.readsRegister(ARM::CPSR, TRI))
   2082       // This instruction modifies or uses CPSR after the one we want to
   2083       // change. We can't do this transformation.
   2084       return false;
   2085 
   2086     // Check whether CmpInstr can be made redundant by the current instruction.
   2087     if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
   2088       Sub = &*I;
   2089       break;
   2090     }
   2091 
   2092     if (I == B)
   2093       // The 'and' is below the comparison instruction.
   2094       return false;
   2095   }
   2096 
   2097   // Return false if no candidates exist.
   2098   if (!MI && !Sub)
   2099     return false;
   2100 
   2101   // The single candidate is called MI.
   2102   if (!MI) MI = Sub;
   2103 
   2104   // We can't use a predicated instruction - it doesn't always write the flags.
   2105   if (isPredicated(MI))
   2106     return false;
   2107 
   2108   switch (MI->getOpcode()) {
   2109   default: break;
   2110   case ARM::RSBrr:
   2111   case ARM::RSBri:
   2112   case ARM::RSCrr:
   2113   case ARM::RSCri:
   2114   case ARM::ADDrr:
   2115   case ARM::ADDri:
   2116   case ARM::ADCrr:
   2117   case ARM::ADCri:
   2118   case ARM::SUBrr:
   2119   case ARM::SUBri:
   2120   case ARM::SBCrr:
   2121   case ARM::SBCri:
   2122   case ARM::t2RSBri:
   2123   case ARM::t2ADDrr:
   2124   case ARM::t2ADDri:
   2125   case ARM::t2ADCrr:
   2126   case ARM::t2ADCri:
   2127   case ARM::t2SUBrr:
   2128   case ARM::t2SUBri:
   2129   case ARM::t2SBCrr:
   2130   case ARM::t2SBCri:
   2131   case ARM::ANDrr:
   2132   case ARM::ANDri:
   2133   case ARM::t2ANDrr:
   2134   case ARM::t2ANDri:
   2135   case ARM::ORRrr:
   2136   case ARM::ORRri:
   2137   case ARM::t2ORRrr:
   2138   case ARM::t2ORRri:
   2139   case ARM::EORrr:
   2140   case ARM::EORri:
   2141   case ARM::t2EORrr:
   2142   case ARM::t2EORri: {
   2143     // Scan forward for the use of CPSR
   2144     // When checking against MI: if it's a conditional code requires
   2145     // checking of V bit, then this is not safe to do.
   2146     // It is safe to remove CmpInstr if CPSR is redefined or killed.
   2147     // If we are done with the basic block, we need to check whether CPSR is
   2148     // live-out.
   2149     SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
   2150         OperandsToUpdate;
   2151     bool isSafe = false;
   2152     I = CmpInstr;
   2153     E = CmpInstr->getParent()->end();
   2154     while (!isSafe && ++I != E) {
   2155       const MachineInstr &Instr = *I;
   2156       for (unsigned IO = 0, EO = Instr.getNumOperands();
   2157            !isSafe && IO != EO; ++IO) {
   2158         const MachineOperand &MO = Instr.getOperand(IO);
   2159         if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
   2160           isSafe = true;
   2161           break;
   2162         }
   2163         if (!MO.isReg() || MO.getReg() != ARM::CPSR)
   2164           continue;
   2165         if (MO.isDef()) {
   2166           isSafe = true;
   2167           break;
   2168         }
   2169         // Condition code is after the operand before CPSR.
   2170         ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm();
   2171         if (Sub) {
   2172           ARMCC::CondCodes NewCC = getSwappedCondition(CC);
   2173           if (NewCC == ARMCC::AL)
   2174             return false;
   2175           // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
   2176           // on CMP needs to be updated to be based on SUB.
   2177           // Push the condition code operands to OperandsToUpdate.
   2178           // If it is safe to remove CmpInstr, the condition code of these
   2179           // operands will be modified.
   2180           if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   2181               Sub->getOperand(2).getReg() == SrcReg)
   2182             OperandsToUpdate.push_back(std::make_pair(&((*I).getOperand(IO-1)),
   2183                                                       NewCC));
   2184         }
   2185         else
   2186           switch (CC) {
   2187           default:
   2188             // CPSR can be used multiple times, we should continue.
   2189             break;
   2190           case ARMCC::VS:
   2191           case ARMCC::VC:
   2192           case ARMCC::GE:
   2193           case ARMCC::LT:
   2194           case ARMCC::GT:
   2195           case ARMCC::LE:
   2196             return false;
   2197           }
   2198       }
   2199     }
   2200 
   2201     // If CPSR is not killed nor re-defined, we should check whether it is
   2202     // live-out. If it is live-out, do not optimize.
   2203     if (!isSafe) {
   2204       MachineBasicBlock *MBB = CmpInstr->getParent();
   2205       for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
   2206                SE = MBB->succ_end(); SI != SE; ++SI)
   2207         if ((*SI)->isLiveIn(ARM::CPSR))
   2208           return false;
   2209     }
   2210 
   2211     // Toggle the optional operand to CPSR.
   2212     MI->getOperand(5).setReg(ARM::CPSR);
   2213     MI->getOperand(5).setIsDef(true);
   2214     assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
   2215     CmpInstr->eraseFromParent();
   2216 
   2217     // Modify the condition code of operands in OperandsToUpdate.
   2218     // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
   2219     // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   2220     for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
   2221       OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
   2222     return true;
   2223   }
   2224   }
   2225 
   2226   return false;
   2227 }
   2228 
   2229 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
   2230                                      MachineInstr *DefMI, unsigned Reg,
   2231                                      MachineRegisterInfo *MRI) const {
   2232   // Fold large immediates into add, sub, or, xor.
   2233   unsigned DefOpc = DefMI->getOpcode();
   2234   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
   2235     return false;
   2236   if (!DefMI->getOperand(1).isImm())
   2237     // Could be t2MOVi32imm <ga:xx>
   2238     return false;
   2239 
   2240   if (!MRI->hasOneNonDBGUse(Reg))
   2241     return false;
   2242 
   2243   const MCInstrDesc &DefMCID = DefMI->getDesc();
   2244   if (DefMCID.hasOptionalDef()) {
   2245     unsigned NumOps = DefMCID.getNumOperands();
   2246     const MachineOperand &MO = DefMI->getOperand(NumOps-1);
   2247     if (MO.getReg() == ARM::CPSR && !MO.isDead())
   2248       // If DefMI defines CPSR and it is not dead, it's obviously not safe
   2249       // to delete DefMI.
   2250       return false;
   2251   }
   2252 
   2253   const MCInstrDesc &UseMCID = UseMI->getDesc();
   2254   if (UseMCID.hasOptionalDef()) {
   2255     unsigned NumOps = UseMCID.getNumOperands();
   2256     if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
   2257       // If the instruction sets the flag, do not attempt this optimization
   2258       // since it may change the semantics of the code.
   2259       return false;
   2260   }
   2261 
   2262   unsigned UseOpc = UseMI->getOpcode();
   2263   unsigned NewUseOpc = 0;
   2264   uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
   2265   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
   2266   bool Commute = false;
   2267   switch (UseOpc) {
   2268   default: return false;
   2269   case ARM::SUBrr:
   2270   case ARM::ADDrr:
   2271   case ARM::ORRrr:
   2272   case ARM::EORrr:
   2273   case ARM::t2SUBrr:
   2274   case ARM::t2ADDrr:
   2275   case ARM::t2ORRrr:
   2276   case ARM::t2EORrr: {
   2277     Commute = UseMI->getOperand(2).getReg() != Reg;
   2278     switch (UseOpc) {
   2279     default: break;
   2280     case ARM::SUBrr: {
   2281       if (Commute)
   2282         return false;
   2283       ImmVal = -ImmVal;
   2284       NewUseOpc = ARM::SUBri;
   2285       // Fallthrough
   2286     }
   2287     case ARM::ADDrr:
   2288     case ARM::ORRrr:
   2289     case ARM::EORrr: {
   2290       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
   2291         return false;
   2292       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
   2293       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
   2294       switch (UseOpc) {
   2295       default: break;
   2296       case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
   2297       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
   2298       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
   2299       }
   2300       break;
   2301     }
   2302     case ARM::t2SUBrr: {
   2303       if (Commute)
   2304         return false;
   2305       ImmVal = -ImmVal;
   2306       NewUseOpc = ARM::t2SUBri;
   2307       // Fallthrough
   2308     }
   2309     case ARM::t2ADDrr:
   2310     case ARM::t2ORRrr:
   2311     case ARM::t2EORrr: {
   2312       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
   2313         return false;
   2314       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
   2315       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
   2316       switch (UseOpc) {
   2317       default: break;
   2318       case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
   2319       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
   2320       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
   2321       }
   2322       break;
   2323     }
   2324     }
   2325   }
   2326   }
   2327 
   2328   unsigned OpIdx = Commute ? 2 : 1;
   2329   unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
   2330   bool isKill = UseMI->getOperand(OpIdx).isKill();
   2331   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
   2332   AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
   2333                                       UseMI, UseMI->getDebugLoc(),
   2334                                       get(NewUseOpc), NewReg)
   2335                               .addReg(Reg1, getKillRegState(isKill))
   2336                               .addImm(SOImmValV1)));
   2337   UseMI->setDesc(get(NewUseOpc));
   2338   UseMI->getOperand(1).setReg(NewReg);
   2339   UseMI->getOperand(1).setIsKill();
   2340   UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
   2341   DefMI->eraseFromParent();
   2342   return true;
   2343 }
   2344 
   2345 unsigned
   2346 ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
   2347                                  const MachineInstr *MI) const {
   2348   if (!ItinData || ItinData->isEmpty())
   2349     return 1;
   2350 
   2351   const MCInstrDesc &Desc = MI->getDesc();
   2352   unsigned Class = Desc.getSchedClass();
   2353   int ItinUOps = ItinData->getNumMicroOps(Class);
   2354   if (ItinUOps >= 0)
   2355     return ItinUOps;
   2356 
   2357   unsigned Opc = MI->getOpcode();
   2358   switch (Opc) {
   2359   default:
   2360     llvm_unreachable("Unexpected multi-uops instruction!");
   2361   case ARM::VLDMQIA:
   2362   case ARM::VSTMQIA:
   2363     return 2;
   2364 
   2365   // The number of uOps for load / store multiple are determined by the number
   2366   // registers.
   2367   //
   2368   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
   2369   // same cycle. The scheduling for the first load / store must be done
   2370   // separately by assuming the address is not 64-bit aligned.
   2371   //
   2372   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
   2373   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
   2374   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
   2375   case ARM::VLDMDIA:
   2376   case ARM::VLDMDIA_UPD:
   2377   case ARM::VLDMDDB_UPD:
   2378   case ARM::VLDMSIA:
   2379   case ARM::VLDMSIA_UPD:
   2380   case ARM::VLDMSDB_UPD:
   2381   case ARM::VSTMDIA:
   2382   case ARM::VSTMDIA_UPD:
   2383   case ARM::VSTMDDB_UPD:
   2384   case ARM::VSTMSIA:
   2385   case ARM::VSTMSIA_UPD:
   2386   case ARM::VSTMSDB_UPD: {
   2387     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
   2388     return (NumRegs / 2) + (NumRegs % 2) + 1;
   2389   }
   2390 
   2391   case ARM::LDMIA_RET:
   2392   case ARM::LDMIA:
   2393   case ARM::LDMDA:
   2394   case ARM::LDMDB:
   2395   case ARM::LDMIB:
   2396   case ARM::LDMIA_UPD:
   2397   case ARM::LDMDA_UPD:
   2398   case ARM::LDMDB_UPD:
   2399   case ARM::LDMIB_UPD:
   2400   case ARM::STMIA:
   2401   case ARM::STMDA:
   2402   case ARM::STMDB:
   2403   case ARM::STMIB:
   2404   case ARM::STMIA_UPD:
   2405   case ARM::STMDA_UPD:
   2406   case ARM::STMDB_UPD:
   2407   case ARM::STMIB_UPD:
   2408   case ARM::tLDMIA:
   2409   case ARM::tLDMIA_UPD:
   2410   case ARM::tSTMIA_UPD:
   2411   case ARM::tPOP_RET:
   2412   case ARM::tPOP:
   2413   case ARM::tPUSH:
   2414   case ARM::t2LDMIA_RET:
   2415   case ARM::t2LDMIA:
   2416   case ARM::t2LDMDB:
   2417   case ARM::t2LDMIA_UPD:
   2418   case ARM::t2LDMDB_UPD:
   2419   case ARM::t2STMIA:
   2420   case ARM::t2STMDB:
   2421   case ARM::t2STMIA_UPD:
   2422   case ARM::t2STMDB_UPD: {
   2423     unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
   2424     if (Subtarget.isCortexA8()) {
   2425       if (NumRegs < 4)
   2426         return 2;
   2427       // 4 registers would be issued: 2, 2.
   2428       // 5 registers would be issued: 2, 2, 1.
   2429       int A8UOps = (NumRegs / 2);
   2430       if (NumRegs % 2)
   2431         ++A8UOps;
   2432       return A8UOps;
   2433     } else if (Subtarget.isCortexA9()) {
   2434       int A9UOps = (NumRegs / 2);
   2435       // If there are odd number of registers or if it's not 64-bit aligned,
   2436       // then it takes an extra AGU (Address Generation Unit) cycle.
   2437       if ((NumRegs % 2) ||
   2438           !MI->hasOneMemOperand() ||
   2439           (*MI->memoperands_begin())->getAlignment() < 8)
   2440         ++A9UOps;
   2441       return A9UOps;
   2442     } else {
   2443       // Assume the worst.
   2444       return NumRegs;
   2445     }
   2446   }
   2447   }
   2448 }
   2449 
   2450 int
   2451 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
   2452                                   const MCInstrDesc &DefMCID,
   2453                                   unsigned DefClass,
   2454                                   unsigned DefIdx, unsigned DefAlign) const {
   2455   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   2456   if (RegNo <= 0)
   2457     // Def is the address writeback.
   2458     return ItinData->getOperandCycle(DefClass, DefIdx);
   2459 
   2460   int DefCycle;
   2461   if (Subtarget.isCortexA8()) {
   2462     // (regno / 2) + (regno % 2) + 1
   2463     DefCycle = RegNo / 2 + 1;
   2464     if (RegNo % 2)
   2465       ++DefCycle;
   2466   } else if (Subtarget.isCortexA9()) {
   2467     DefCycle = RegNo;
   2468     bool isSLoad = false;
   2469 
   2470     switch (DefMCID.getOpcode()) {
   2471     default: break;
   2472     case ARM::VLDMSIA:
   2473     case ARM::VLDMSIA_UPD:
   2474     case ARM::VLDMSDB_UPD:
   2475       isSLoad = true;
   2476       break;
   2477     }
   2478 
   2479     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   2480     // then it takes an extra cycle.
   2481     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
   2482       ++DefCycle;
   2483   } else {
   2484     // Assume the worst.
   2485     DefCycle = RegNo + 2;
   2486   }
   2487 
   2488   return DefCycle;
   2489 }
   2490 
   2491 int
   2492 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
   2493                                  const MCInstrDesc &DefMCID,
   2494                                  unsigned DefClass,
   2495                                  unsigned DefIdx, unsigned DefAlign) const {
   2496   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
   2497   if (RegNo <= 0)
   2498     // Def is the address writeback.
   2499     return ItinData->getOperandCycle(DefClass, DefIdx);
   2500 
   2501   int DefCycle;
   2502   if (Subtarget.isCortexA8()) {
   2503     // 4 registers would be issued: 1, 2, 1.
   2504     // 5 registers would be issued: 1, 2, 2.
   2505     DefCycle = RegNo / 2;
   2506     if (DefCycle < 1)
   2507       DefCycle = 1;
   2508     // Result latency is issue cycle + 2: E2.
   2509     DefCycle += 2;
   2510   } else if (Subtarget.isCortexA9()) {
   2511     DefCycle = (RegNo / 2);
   2512     // If there are odd number of registers or if it's not 64-bit aligned,
   2513     // then it takes an extra AGU (Address Generation Unit) cycle.
   2514     if ((RegNo % 2) || DefAlign < 8)
   2515       ++DefCycle;
   2516     // Result latency is AGU cycles + 2.
   2517     DefCycle += 2;
   2518   } else {
   2519     // Assume the worst.
   2520     DefCycle = RegNo + 2;
   2521   }
   2522 
   2523   return DefCycle;
   2524 }
   2525 
   2526 int
   2527 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
   2528                                   const MCInstrDesc &UseMCID,
   2529                                   unsigned UseClass,
   2530                                   unsigned UseIdx, unsigned UseAlign) const {
   2531   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   2532   if (RegNo <= 0)
   2533     return ItinData->getOperandCycle(UseClass, UseIdx);
   2534 
   2535   int UseCycle;
   2536   if (Subtarget.isCortexA8()) {
   2537     // (regno / 2) + (regno % 2) + 1
   2538     UseCycle = RegNo / 2 + 1;
   2539     if (RegNo % 2)
   2540       ++UseCycle;
   2541   } else if (Subtarget.isCortexA9()) {
   2542     UseCycle = RegNo;
   2543     bool isSStore = false;
   2544 
   2545     switch (UseMCID.getOpcode()) {
   2546     default: break;
   2547     case ARM::VSTMSIA:
   2548     case ARM::VSTMSIA_UPD:
   2549     case ARM::VSTMSDB_UPD:
   2550       isSStore = true;
   2551       break;
   2552     }
   2553 
   2554     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
   2555     // then it takes an extra cycle.
   2556     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
   2557       ++UseCycle;
   2558   } else {
   2559     // Assume the worst.
   2560     UseCycle = RegNo + 2;
   2561   }
   2562 
   2563   return UseCycle;
   2564 }
   2565 
   2566 int
   2567 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
   2568                                  const MCInstrDesc &UseMCID,
   2569                                  unsigned UseClass,
   2570                                  unsigned UseIdx, unsigned UseAlign) const {
   2571   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
   2572   if (RegNo <= 0)
   2573     return ItinData->getOperandCycle(UseClass, UseIdx);
   2574 
   2575   int UseCycle;
   2576   if (Subtarget.isCortexA8()) {
   2577     UseCycle = RegNo / 2;
   2578     if (UseCycle < 2)
   2579       UseCycle = 2;
   2580     // Read in E3.
   2581     UseCycle += 2;
   2582   } else if (Subtarget.isCortexA9()) {
   2583     UseCycle = (RegNo / 2);
   2584     // If there are odd number of registers or if it's not 64-bit aligned,
   2585     // then it takes an extra AGU (Address Generation Unit) cycle.
   2586     if ((RegNo % 2) || UseAlign < 8)
   2587       ++UseCycle;
   2588   } else {
   2589     // Assume the worst.
   2590     UseCycle = 1;
   2591   }
   2592   return UseCycle;
   2593 }
   2594 
   2595 int
   2596 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   2597                                     const MCInstrDesc &DefMCID,
   2598                                     unsigned DefIdx, unsigned DefAlign,
   2599                                     const MCInstrDesc &UseMCID,
   2600                                     unsigned UseIdx, unsigned UseAlign) const {
   2601   unsigned DefClass = DefMCID.getSchedClass();
   2602   unsigned UseClass = UseMCID.getSchedClass();
   2603 
   2604   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
   2605     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
   2606 
   2607   // This may be a def / use of a variable_ops instruction, the operand
   2608   // latency might be determinable dynamically. Let the target try to
   2609   // figure it out.
   2610   int DefCycle = -1;
   2611   bool LdmBypass = false;
   2612   switch (DefMCID.getOpcode()) {
   2613   default:
   2614     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   2615     break;
   2616 
   2617   case ARM::VLDMDIA:
   2618   case ARM::VLDMDIA_UPD:
   2619   case ARM::VLDMDDB_UPD:
   2620   case ARM::VLDMSIA:
   2621   case ARM::VLDMSIA_UPD:
   2622   case ARM::VLDMSDB_UPD:
   2623     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   2624     break;
   2625 
   2626   case ARM::LDMIA_RET:
   2627   case ARM::LDMIA:
   2628   case ARM::LDMDA:
   2629   case ARM::LDMDB:
   2630   case ARM::LDMIB:
   2631   case ARM::LDMIA_UPD:
   2632   case ARM::LDMDA_UPD:
   2633   case ARM::LDMDB_UPD:
   2634   case ARM::LDMIB_UPD:
   2635   case ARM::tLDMIA:
   2636   case ARM::tLDMIA_UPD:
   2637   case ARM::tPUSH:
   2638   case ARM::t2LDMIA_RET:
   2639   case ARM::t2LDMIA:
   2640   case ARM::t2LDMDB:
   2641   case ARM::t2LDMIA_UPD:
   2642   case ARM::t2LDMDB_UPD:
   2643     LdmBypass = 1;
   2644     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
   2645     break;
   2646   }
   2647 
   2648   if (DefCycle == -1)
   2649     // We can't seem to determine the result latency of the def, assume it's 2.
   2650     DefCycle = 2;
   2651 
   2652   int UseCycle = -1;
   2653   switch (UseMCID.getOpcode()) {
   2654   default:
   2655     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
   2656     break;
   2657 
   2658   case ARM::VSTMDIA:
   2659   case ARM::VSTMDIA_UPD:
   2660   case ARM::VSTMDDB_UPD:
   2661   case ARM::VSTMSIA:
   2662   case ARM::VSTMSIA_UPD:
   2663   case ARM::VSTMSDB_UPD:
   2664     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   2665     break;
   2666 
   2667   case ARM::STMIA:
   2668   case ARM::STMDA:
   2669   case ARM::STMDB:
   2670   case ARM::STMIB:
   2671   case ARM::STMIA_UPD:
   2672   case ARM::STMDA_UPD:
   2673   case ARM::STMDB_UPD:
   2674   case ARM::STMIB_UPD:
   2675   case ARM::tSTMIA_UPD:
   2676   case ARM::tPOP_RET:
   2677   case ARM::tPOP:
   2678   case ARM::t2STMIA:
   2679   case ARM::t2STMDB:
   2680   case ARM::t2STMIA_UPD:
   2681   case ARM::t2STMDB_UPD:
   2682     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
   2683     break;
   2684   }
   2685 
   2686   if (UseCycle == -1)
   2687     // Assume it's read in the first stage.
   2688     UseCycle = 1;
   2689 
   2690   UseCycle = DefCycle - UseCycle + 1;
   2691   if (UseCycle > 0) {
   2692     if (LdmBypass) {
   2693       // It's a variable_ops instruction so we can't use DefIdx here. Just use
   2694       // first def operand.
   2695       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
   2696                                           UseClass, UseIdx))
   2697         --UseCycle;
   2698     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
   2699                                                UseClass, UseIdx)) {
   2700       --UseCycle;
   2701     }
   2702   }
   2703 
   2704   return UseCycle;
   2705 }
   2706 
   2707 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
   2708                                            const MachineInstr *MI, unsigned Reg,
   2709                                            unsigned &DefIdx, unsigned &Dist) {
   2710   Dist = 0;
   2711 
   2712   MachineBasicBlock::const_iterator I = MI; ++I;
   2713   MachineBasicBlock::const_instr_iterator II =
   2714     llvm::prior(I.getInstrIterator());
   2715   assert(II->isInsideBundle() && "Empty bundle?");
   2716 
   2717   int Idx = -1;
   2718   while (II->isInsideBundle()) {
   2719     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
   2720     if (Idx != -1)
   2721       break;
   2722     --II;
   2723     ++Dist;
   2724   }
   2725 
   2726   assert(Idx != -1 && "Cannot find bundled definition!");
   2727   DefIdx = Idx;
   2728   return II;
   2729 }
   2730 
   2731 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
   2732                                            const MachineInstr *MI, unsigned Reg,
   2733                                            unsigned &UseIdx, unsigned &Dist) {
   2734   Dist = 0;
   2735 
   2736   MachineBasicBlock::const_instr_iterator II = MI; ++II;
   2737   assert(II->isInsideBundle() && "Empty bundle?");
   2738   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
   2739 
   2740   // FIXME: This doesn't properly handle multiple uses.
   2741   int Idx = -1;
   2742   while (II != E && II->isInsideBundle()) {
   2743     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
   2744     if (Idx != -1)
   2745       break;
   2746     if (II->getOpcode() != ARM::t2IT)
   2747       ++Dist;
   2748     ++II;
   2749   }
   2750 
   2751   if (Idx == -1) {
   2752     Dist = 0;
   2753     return 0;
   2754   }
   2755 
   2756   UseIdx = Idx;
   2757   return II;
   2758 }
   2759 
   2760 /// Return the number of cycles to add to (or subtract from) the static
   2761 /// itinerary based on the def opcode and alignment. The caller will ensure that
   2762 /// adjusted latency is at least one cycle.
   2763 static int adjustDefLatency(const ARMSubtarget &Subtarget,
   2764                             const MachineInstr *DefMI,
   2765                             const MCInstrDesc *DefMCID, unsigned DefAlign) {
   2766   int Adjust = 0;
   2767   if (Subtarget.isCortexA8() || Subtarget.isCortexA9()) {
   2768     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   2769     // variants are one cycle cheaper.
   2770     switch (DefMCID->getOpcode()) {
   2771     default: break;
   2772     case ARM::LDRrs:
   2773     case ARM::LDRBrs: {
   2774       unsigned ShOpVal = DefMI->getOperand(3).getImm();
   2775       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   2776       if (ShImm == 0 ||
   2777           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   2778         --Adjust;
   2779       break;
   2780     }
   2781     case ARM::t2LDRs:
   2782     case ARM::t2LDRBs:
   2783     case ARM::t2LDRHs:
   2784     case ARM::t2LDRSHs: {
   2785       // Thumb2 mode: lsl only.
   2786       unsigned ShAmt = DefMI->getOperand(3).getImm();
   2787       if (ShAmt == 0 || ShAmt == 2)
   2788         --Adjust;
   2789       break;
   2790     }
   2791     }
   2792   }
   2793 
   2794   if (DefAlign < 8 && Subtarget.isCortexA9()) {
   2795     switch (DefMCID->getOpcode()) {
   2796     default: break;
   2797     case ARM::VLD1q8:
   2798     case ARM::VLD1q16:
   2799     case ARM::VLD1q32:
   2800     case ARM::VLD1q64:
   2801     case ARM::VLD1q8wb_fixed:
   2802     case ARM::VLD1q16wb_fixed:
   2803     case ARM::VLD1q32wb_fixed:
   2804     case ARM::VLD1q64wb_fixed:
   2805     case ARM::VLD1q8wb_register:
   2806     case ARM::VLD1q16wb_register:
   2807     case ARM::VLD1q32wb_register:
   2808     case ARM::VLD1q64wb_register:
   2809     case ARM::VLD2d8:
   2810     case ARM::VLD2d16:
   2811     case ARM::VLD2d32:
   2812     case ARM::VLD2q8:
   2813     case ARM::VLD2q16:
   2814     case ARM::VLD2q32:
   2815     case ARM::VLD2d8wb_fixed:
   2816     case ARM::VLD2d16wb_fixed:
   2817     case ARM::VLD2d32wb_fixed:
   2818     case ARM::VLD2q8wb_fixed:
   2819     case ARM::VLD2q16wb_fixed:
   2820     case ARM::VLD2q32wb_fixed:
   2821     case ARM::VLD2d8wb_register:
   2822     case ARM::VLD2d16wb_register:
   2823     case ARM::VLD2d32wb_register:
   2824     case ARM::VLD2q8wb_register:
   2825     case ARM::VLD2q16wb_register:
   2826     case ARM::VLD2q32wb_register:
   2827     case ARM::VLD3d8:
   2828     case ARM::VLD3d16:
   2829     case ARM::VLD3d32:
   2830     case ARM::VLD1d64T:
   2831     case ARM::VLD3d8_UPD:
   2832     case ARM::VLD3d16_UPD:
   2833     case ARM::VLD3d32_UPD:
   2834     case ARM::VLD1d64Twb_fixed:
   2835     case ARM::VLD1d64Twb_register:
   2836     case ARM::VLD3q8_UPD:
   2837     case ARM::VLD3q16_UPD:
   2838     case ARM::VLD3q32_UPD:
   2839     case ARM::VLD4d8:
   2840     case ARM::VLD4d16:
   2841     case ARM::VLD4d32:
   2842     case ARM::VLD1d64Q:
   2843     case ARM::VLD4d8_UPD:
   2844     case ARM::VLD4d16_UPD:
   2845     case ARM::VLD4d32_UPD:
   2846     case ARM::VLD1d64Qwb_fixed:
   2847     case ARM::VLD1d64Qwb_register:
   2848     case ARM::VLD4q8_UPD:
   2849     case ARM::VLD4q16_UPD:
   2850     case ARM::VLD4q32_UPD:
   2851     case ARM::VLD1DUPq8:
   2852     case ARM::VLD1DUPq16:
   2853     case ARM::VLD1DUPq32:
   2854     case ARM::VLD1DUPq8wb_fixed:
   2855     case ARM::VLD1DUPq16wb_fixed:
   2856     case ARM::VLD1DUPq32wb_fixed:
   2857     case ARM::VLD1DUPq8wb_register:
   2858     case ARM::VLD1DUPq16wb_register:
   2859     case ARM::VLD1DUPq32wb_register:
   2860     case ARM::VLD2DUPd8:
   2861     case ARM::VLD2DUPd16:
   2862     case ARM::VLD2DUPd32:
   2863     case ARM::VLD2DUPd8wb_fixed:
   2864     case ARM::VLD2DUPd16wb_fixed:
   2865     case ARM::VLD2DUPd32wb_fixed:
   2866     case ARM::VLD2DUPd8wb_register:
   2867     case ARM::VLD2DUPd16wb_register:
   2868     case ARM::VLD2DUPd32wb_register:
   2869     case ARM::VLD4DUPd8:
   2870     case ARM::VLD4DUPd16:
   2871     case ARM::VLD4DUPd32:
   2872     case ARM::VLD4DUPd8_UPD:
   2873     case ARM::VLD4DUPd16_UPD:
   2874     case ARM::VLD4DUPd32_UPD:
   2875     case ARM::VLD1LNd8:
   2876     case ARM::VLD1LNd16:
   2877     case ARM::VLD1LNd32:
   2878     case ARM::VLD1LNd8_UPD:
   2879     case ARM::VLD1LNd16_UPD:
   2880     case ARM::VLD1LNd32_UPD:
   2881     case ARM::VLD2LNd8:
   2882     case ARM::VLD2LNd16:
   2883     case ARM::VLD2LNd32:
   2884     case ARM::VLD2LNq16:
   2885     case ARM::VLD2LNq32:
   2886     case ARM::VLD2LNd8_UPD:
   2887     case ARM::VLD2LNd16_UPD:
   2888     case ARM::VLD2LNd32_UPD:
   2889     case ARM::VLD2LNq16_UPD:
   2890     case ARM::VLD2LNq32_UPD:
   2891     case ARM::VLD4LNd8:
   2892     case ARM::VLD4LNd16:
   2893     case ARM::VLD4LNd32:
   2894     case ARM::VLD4LNq16:
   2895     case ARM::VLD4LNq32:
   2896     case ARM::VLD4LNd8_UPD:
   2897     case ARM::VLD4LNd16_UPD:
   2898     case ARM::VLD4LNd32_UPD:
   2899     case ARM::VLD4LNq16_UPD:
   2900     case ARM::VLD4LNq32_UPD:
   2901       // If the address is not 64-bit aligned, the latencies of these
   2902       // instructions increases by one.
   2903       ++Adjust;
   2904       break;
   2905     }
   2906   }
   2907   return Adjust;
   2908 }
   2909 
   2910 
   2911 
   2912 int
   2913 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   2914                                     const MachineInstr *DefMI, unsigned DefIdx,
   2915                                     const MachineInstr *UseMI,
   2916                                     unsigned UseIdx) const {
   2917   // No operand latency. The caller may fall back to getInstrLatency.
   2918   if (!ItinData || ItinData->isEmpty())
   2919     return -1;
   2920 
   2921   const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
   2922   unsigned Reg = DefMO.getReg();
   2923   const MCInstrDesc *DefMCID = &DefMI->getDesc();
   2924   const MCInstrDesc *UseMCID = &UseMI->getDesc();
   2925 
   2926   unsigned DefAdj = 0;
   2927   if (DefMI->isBundle()) {
   2928     DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
   2929     DefMCID = &DefMI->getDesc();
   2930   }
   2931   if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
   2932       DefMI->isRegSequence() || DefMI->isImplicitDef()) {
   2933     return 1;
   2934   }
   2935 
   2936   unsigned UseAdj = 0;
   2937   if (UseMI->isBundle()) {
   2938     unsigned NewUseIdx;
   2939     const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
   2940                                                    Reg, NewUseIdx, UseAdj);
   2941     if (!NewUseMI)
   2942       return -1;
   2943 
   2944     UseMI = NewUseMI;
   2945     UseIdx = NewUseIdx;
   2946     UseMCID = &UseMI->getDesc();
   2947   }
   2948 
   2949   if (Reg == ARM::CPSR) {
   2950     if (DefMI->getOpcode() == ARM::FMSTAT) {
   2951       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
   2952       return Subtarget.isCortexA9() ? 1 : 20;
   2953     }
   2954 
   2955     // CPSR set and branch can be paired in the same cycle.
   2956     if (UseMI->isBranch())
   2957       return 0;
   2958 
   2959     // Otherwise it takes the instruction latency (generally one).
   2960     unsigned Latency = getInstrLatency(ItinData, DefMI);
   2961 
   2962     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
   2963     // its uses. Instructions which are otherwise scheduled between them may
   2964     // incur a code size penalty (not able to use the CPSR setting 16-bit
   2965     // instructions).
   2966     if (Latency > 0 && Subtarget.isThumb2()) {
   2967       const MachineFunction *MF = DefMI->getParent()->getParent();
   2968       if (MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize))
   2969         --Latency;
   2970     }
   2971     return Latency;
   2972   }
   2973 
   2974   if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
   2975     return -1;
   2976 
   2977   unsigned DefAlign = DefMI->hasOneMemOperand()
   2978     ? (*DefMI->memoperands_begin())->getAlignment() : 0;
   2979   unsigned UseAlign = UseMI->hasOneMemOperand()
   2980     ? (*UseMI->memoperands_begin())->getAlignment() : 0;
   2981 
   2982   // Get the itinerary's latency if possible, and handle variable_ops.
   2983   int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
   2984                                   *UseMCID, UseIdx, UseAlign);
   2985   // Unable to find operand latency. The caller may resort to getInstrLatency.
   2986   if (Latency < 0)
   2987     return Latency;
   2988 
   2989   // Adjust for IT block position.
   2990   int Adj = DefAdj + UseAdj;
   2991 
   2992   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
   2993   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
   2994   if (Adj >= 0 || (int)Latency > -Adj) {
   2995     return Latency + Adj;
   2996   }
   2997   // Return the itinerary latency, which may be zero but not less than zero.
   2998   return Latency;
   2999 }
   3000 
   3001 int
   3002 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
   3003                                     SDNode *DefNode, unsigned DefIdx,
   3004                                     SDNode *UseNode, unsigned UseIdx) const {
   3005   if (!DefNode->isMachineOpcode())
   3006     return 1;
   3007 
   3008   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
   3009 
   3010   if (isZeroCost(DefMCID.Opcode))
   3011     return 0;
   3012 
   3013   if (!ItinData || ItinData->isEmpty())
   3014     return DefMCID.mayLoad() ? 3 : 1;
   3015 
   3016   if (!UseNode->isMachineOpcode()) {
   3017     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
   3018     if (Subtarget.isCortexA9())
   3019       return Latency <= 2 ? 1 : Latency - 1;
   3020     else
   3021       return Latency <= 3 ? 1 : Latency - 2;
   3022   }
   3023 
   3024   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
   3025   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
   3026   unsigned DefAlign = !DefMN->memoperands_empty()
   3027     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
   3028   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
   3029   unsigned UseAlign = !UseMN->memoperands_empty()
   3030     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
   3031   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
   3032                                   UseMCID, UseIdx, UseAlign);
   3033 
   3034   if (Latency > 1 &&
   3035       (Subtarget.isCortexA8() || Subtarget.isCortexA9())) {
   3036     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
   3037     // variants are one cycle cheaper.
   3038     switch (DefMCID.getOpcode()) {
   3039     default: break;
   3040     case ARM::LDRrs:
   3041     case ARM::LDRBrs: {
   3042       unsigned ShOpVal =
   3043         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   3044       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
   3045       if (ShImm == 0 ||
   3046           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
   3047         --Latency;
   3048       break;
   3049     }
   3050     case ARM::t2LDRs:
   3051     case ARM::t2LDRBs:
   3052     case ARM::t2LDRHs:
   3053     case ARM::t2LDRSHs: {
   3054       // Thumb2 mode: lsl only.
   3055       unsigned ShAmt =
   3056         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
   3057       if (ShAmt == 0 || ShAmt == 2)
   3058         --Latency;
   3059       break;
   3060     }
   3061     }
   3062   }
   3063 
   3064   if (DefAlign < 8 && Subtarget.isCortexA9())
   3065     switch (DefMCID.getOpcode()) {
   3066     default: break;
   3067     case ARM::VLD1q8:
   3068     case ARM::VLD1q16:
   3069     case ARM::VLD1q32:
   3070     case ARM::VLD1q64:
   3071     case ARM::VLD1q8wb_register:
   3072     case ARM::VLD1q16wb_register:
   3073     case ARM::VLD1q32wb_register:
   3074     case ARM::VLD1q64wb_register:
   3075     case ARM::VLD1q8wb_fixed:
   3076     case ARM::VLD1q16wb_fixed:
   3077     case ARM::VLD1q32wb_fixed:
   3078     case ARM::VLD1q64wb_fixed:
   3079     case ARM::VLD2d8:
   3080     case ARM::VLD2d16:
   3081     case ARM::VLD2d32:
   3082     case ARM::VLD2q8Pseudo:
   3083     case ARM::VLD2q16Pseudo:
   3084     case ARM::VLD2q32Pseudo:
   3085     case ARM::VLD2d8wb_fixed:
   3086     case ARM::VLD2d16wb_fixed:
   3087     case ARM::VLD2d32wb_fixed:
   3088     case ARM::VLD2q8PseudoWB_fixed:
   3089     case ARM::VLD2q16PseudoWB_fixed:
   3090     case ARM::VLD2q32PseudoWB_fixed:
   3091     case ARM::VLD2d8wb_register:
   3092     case ARM::VLD2d16wb_register:
   3093     case ARM::VLD2d32wb_register:
   3094     case ARM::VLD2q8PseudoWB_register:
   3095     case ARM::VLD2q16PseudoWB_register:
   3096     case ARM::VLD2q32PseudoWB_register:
   3097     case ARM::VLD3d8Pseudo:
   3098     case ARM::VLD3d16Pseudo:
   3099     case ARM::VLD3d32Pseudo:
   3100     case ARM::VLD1d64TPseudo:
   3101     case ARM::VLD3d8Pseudo_UPD:
   3102     case ARM::VLD3d16Pseudo_UPD:
   3103     case ARM::VLD3d32Pseudo_UPD:
   3104     case ARM::VLD3q8Pseudo_UPD:
   3105     case ARM::VLD3q16Pseudo_UPD:
   3106     case ARM::VLD3q32Pseudo_UPD:
   3107     case ARM::VLD3q8oddPseudo:
   3108     case ARM::VLD3q16oddPseudo:
   3109     case ARM::VLD3q32oddPseudo:
   3110     case ARM::VLD3q8oddPseudo_UPD:
   3111     case ARM::VLD3q16oddPseudo_UPD:
   3112     case ARM::VLD3q32oddPseudo_UPD:
   3113     case ARM::VLD4d8Pseudo:
   3114     case ARM::VLD4d16Pseudo:
   3115     case ARM::VLD4d32Pseudo:
   3116     case ARM::VLD1d64QPseudo:
   3117     case ARM::VLD4d8Pseudo_UPD:
   3118     case ARM::VLD4d16Pseudo_UPD:
   3119     case ARM::VLD4d32Pseudo_UPD:
   3120     case ARM::VLD4q8Pseudo_UPD:
   3121     case ARM::VLD4q16Pseudo_UPD:
   3122     case ARM::VLD4q32Pseudo_UPD:
   3123     case ARM::VLD4q8oddPseudo:
   3124     case ARM::VLD4q16oddPseudo:
   3125     case ARM::VLD4q32oddPseudo:
   3126     case ARM::VLD4q8oddPseudo_UPD:
   3127     case ARM::VLD4q16oddPseudo_UPD:
   3128     case ARM::VLD4q32oddPseudo_UPD:
   3129     case ARM::VLD1DUPq8:
   3130     case ARM::VLD1DUPq16:
   3131     case ARM::VLD1DUPq32:
   3132     case ARM::VLD1DUPq8wb_fixed:
   3133     case ARM::VLD1DUPq16wb_fixed:
   3134     case ARM::VLD1DUPq32wb_fixed:
   3135     case ARM::VLD1DUPq8wb_register:
   3136     case ARM::VLD1DUPq16wb_register:
   3137     case ARM::VLD1DUPq32wb_register:
   3138     case ARM::VLD2DUPd8:
   3139     case ARM::VLD2DUPd16:
   3140     case ARM::VLD2DUPd32:
   3141     case ARM::VLD2DUPd8wb_fixed:
   3142     case ARM::VLD2DUPd16wb_fixed:
   3143     case ARM::VLD2DUPd32wb_fixed:
   3144     case ARM::VLD2DUPd8wb_register:
   3145     case ARM::VLD2DUPd16wb_register:
   3146     case ARM::VLD2DUPd32wb_register:
   3147     case ARM::VLD4DUPd8Pseudo:
   3148     case ARM::VLD4DUPd16Pseudo:
   3149     case ARM::VLD4DUPd32Pseudo:
   3150     case ARM::VLD4DUPd8Pseudo_UPD:
   3151     case ARM::VLD4DUPd16Pseudo_UPD:
   3152     case ARM::VLD4DUPd32Pseudo_UPD:
   3153     case ARM::VLD1LNq8Pseudo:
   3154     case ARM::VLD1LNq16Pseudo:
   3155     case ARM::VLD1LNq32Pseudo:
   3156     case ARM::VLD1LNq8Pseudo_UPD:
   3157     case ARM::VLD1LNq16Pseudo_UPD:
   3158     case ARM::VLD1LNq32Pseudo_UPD:
   3159     case ARM::VLD2LNd8Pseudo:
   3160     case ARM::VLD2LNd16Pseudo:
   3161     case ARM::VLD2LNd32Pseudo:
   3162     case ARM::VLD2LNq16Pseudo:
   3163     case ARM::VLD2LNq32Pseudo:
   3164     case ARM::VLD2LNd8Pseudo_UPD:
   3165     case ARM::VLD2LNd16Pseudo_UPD:
   3166     case ARM::VLD2LNd32Pseudo_UPD:
   3167     case ARM::VLD2LNq16Pseudo_UPD:
   3168     case ARM::VLD2LNq32Pseudo_UPD:
   3169     case ARM::VLD4LNd8Pseudo:
   3170     case ARM::VLD4LNd16Pseudo:
   3171     case ARM::VLD4LNd32Pseudo:
   3172     case ARM::VLD4LNq16Pseudo:
   3173     case ARM::VLD4LNq32Pseudo:
   3174     case ARM::VLD4LNd8Pseudo_UPD:
   3175     case ARM::VLD4LNd16Pseudo_UPD:
   3176     case ARM::VLD4LNd32Pseudo_UPD:
   3177     case ARM::VLD4LNq16Pseudo_UPD:
   3178     case ARM::VLD4LNq32Pseudo_UPD:
   3179       // If the address is not 64-bit aligned, the latencies of these
   3180       // instructions increases by one.
   3181       ++Latency;
   3182       break;
   3183     }
   3184 
   3185   return Latency;
   3186 }
   3187 
   3188 unsigned
   3189 ARMBaseInstrInfo::getOutputLatency(const InstrItineraryData *ItinData,
   3190                                    const MachineInstr *DefMI, unsigned DefIdx,
   3191                                    const MachineInstr *DepMI) const {
   3192   unsigned Reg = DefMI->getOperand(DefIdx).getReg();
   3193   if (DepMI->readsRegister(Reg, &getRegisterInfo()) || !isPredicated(DepMI))
   3194     return 1;
   3195 
   3196   // If the second MI is predicated, then there is an implicit use dependency.
   3197   return getInstrLatency(ItinData, DefMI);
   3198 }
   3199 
   3200 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   3201                                            const MachineInstr *MI,
   3202                                            unsigned *PredCost) const {
   3203   if (MI->isCopyLike() || MI->isInsertSubreg() ||
   3204       MI->isRegSequence() || MI->isImplicitDef())
   3205     return 1;
   3206 
   3207   // An instruction scheduler typically runs on unbundled instructions, however
   3208   // other passes may query the latency of a bundled instruction.
   3209   if (MI->isBundle()) {
   3210     unsigned Latency = 0;
   3211     MachineBasicBlock::const_instr_iterator I = MI;
   3212     MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
   3213     while (++I != E && I->isInsideBundle()) {
   3214       if (I->getOpcode() != ARM::t2IT)
   3215         Latency += getInstrLatency(ItinData, I, PredCost);
   3216     }
   3217     return Latency;
   3218   }
   3219 
   3220   const MCInstrDesc &MCID = MI->getDesc();
   3221   if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
   3222     // When predicated, CPSR is an additional source operand for CPSR updating
   3223     // instructions, this apparently increases their latencies.
   3224     *PredCost = 1;
   3225   }
   3226   // Be sure to call getStageLatency for an empty itinerary in case it has a
   3227   // valid MinLatency property.
   3228   if (!ItinData)
   3229     return MI->mayLoad() ? 3 : 1;
   3230 
   3231   unsigned Class = MCID.getSchedClass();
   3232 
   3233   // For instructions with variable uops, use uops as latency.
   3234   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
   3235     return getNumMicroOps(ItinData, MI);
   3236 
   3237   // For the common case, fall back on the itinerary's latency.
   3238   unsigned Latency = ItinData->getStageLatency(Class);
   3239 
   3240   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
   3241   unsigned DefAlign = MI->hasOneMemOperand()
   3242     ? (*MI->memoperands_begin())->getAlignment() : 0;
   3243   int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
   3244   if (Adj >= 0 || (int)Latency > -Adj) {
   3245     return Latency + Adj;
   3246   }
   3247   return Latency;
   3248 }
   3249 
   3250 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
   3251                                       SDNode *Node) const {
   3252   if (!Node->isMachineOpcode())
   3253     return 1;
   3254 
   3255   if (!ItinData || ItinData->isEmpty())
   3256     return 1;
   3257 
   3258   unsigned Opcode = Node->getMachineOpcode();
   3259   switch (Opcode) {
   3260   default:
   3261     return ItinData->getStageLatency(get(Opcode).getSchedClass());
   3262   case ARM::VLDMQIA:
   3263   case ARM::VSTMQIA:
   3264     return 2;
   3265   }
   3266 }
   3267 
   3268 bool ARMBaseInstrInfo::
   3269 hasHighOperandLatency(const InstrItineraryData *ItinData,
   3270                       const MachineRegisterInfo *MRI,
   3271                       const MachineInstr *DefMI, unsigned DefIdx,
   3272                       const MachineInstr *UseMI, unsigned UseIdx) const {
   3273   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
   3274   unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
   3275   if (Subtarget.isCortexA8() &&
   3276       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
   3277     // CortexA8 VFP instructions are not pipelined.
   3278     return true;
   3279 
   3280   // Hoist VFP / NEON instructions with 4 or higher latency.
   3281   int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx,
   3282                                       /*FindMin=*/false);
   3283   if (Latency < 0)
   3284     Latency = getInstrLatency(ItinData, DefMI);
   3285   if (Latency <= 3)
   3286     return false;
   3287   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
   3288          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
   3289 }
   3290 
   3291 bool ARMBaseInstrInfo::
   3292 hasLowDefLatency(const InstrItineraryData *ItinData,
   3293                  const MachineInstr *DefMI, unsigned DefIdx) const {
   3294   if (!ItinData || ItinData->isEmpty())
   3295     return false;
   3296 
   3297   unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
   3298   if (DDomain == ARMII::DomainGeneral) {
   3299     unsigned DefClass = DefMI->getDesc().getSchedClass();
   3300     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
   3301     return (DefCycle != -1 && DefCycle <= 2);
   3302   }
   3303   return false;
   3304 }
   3305 
   3306 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
   3307                                          StringRef &ErrInfo) const {
   3308   if (convertAddSubFlagsOpcode(MI->getOpcode())) {
   3309     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
   3310     return false;
   3311   }
   3312   return true;
   3313 }
   3314 
   3315 bool
   3316 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
   3317                                      unsigned &AddSubOpc,
   3318                                      bool &NegAcc, bool &HasLane) const {
   3319   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
   3320   if (I == MLxEntryMap.end())
   3321     return false;
   3322 
   3323   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
   3324   MulOpc = Entry.MulOpc;
   3325   AddSubOpc = Entry.AddSubOpc;
   3326   NegAcc = Entry.NegAcc;
   3327   HasLane = Entry.HasLane;
   3328   return true;
   3329 }
   3330 
   3331 //===----------------------------------------------------------------------===//
   3332 // Execution domains.
   3333 //===----------------------------------------------------------------------===//
   3334 //
   3335 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
   3336 // and some can go down both.  The vmov instructions go down the VFP pipeline,
   3337 // but they can be changed to vorr equivalents that are executed by the NEON
   3338 // pipeline.
   3339 //
   3340 // We use the following execution domain numbering:
   3341 //
   3342 enum ARMExeDomain {
   3343   ExeGeneric = 0,
   3344   ExeVFP = 1,
   3345   ExeNEON = 2
   3346 };
   3347 //
   3348 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
   3349 //
   3350 std::pair<uint16_t, uint16_t>
   3351 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
   3352   // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
   3353   // if they are not predicated.
   3354   if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
   3355     return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
   3356 
   3357   // Cortex-A9 is particularly picky about mixing the two and wants these
   3358   // converted.
   3359   if (Subtarget.isCortexA9() && !isPredicated(MI) &&
   3360       (MI->getOpcode() == ARM::VMOVRS ||
   3361        MI->getOpcode() == ARM::VMOVSR ||
   3362        MI->getOpcode() == ARM::VMOVS))
   3363     return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON));
   3364 
   3365   // No other instructions can be swizzled, so just determine their domain.
   3366   unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
   3367 
   3368   if (Domain & ARMII::DomainNEON)
   3369     return std::make_pair(ExeNEON, 0);
   3370 
   3371   // Certain instructions can go either way on Cortex-A8.
   3372   // Treat them as NEON instructions.
   3373   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
   3374     return std::make_pair(ExeNEON, 0);
   3375 
   3376   if (Domain & ARMII::DomainVFP)
   3377     return std::make_pair(ExeVFP, 0);
   3378 
   3379   return std::make_pair(ExeGeneric, 0);
   3380 }
   3381 
   3382 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
   3383                                             unsigned SReg, unsigned &Lane) {
   3384   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
   3385   Lane = 0;
   3386 
   3387   if (DReg != ARM::NoRegister)
   3388    return DReg;
   3389 
   3390   Lane = 1;
   3391   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
   3392 
   3393   assert(DReg && "S-register with no D super-register?");
   3394   return DReg;
   3395 }
   3396 
   3397 
   3398 void
   3399 ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
   3400   unsigned DstReg, SrcReg, DReg;
   3401   unsigned Lane;
   3402   MachineInstrBuilder MIB(MI);
   3403   const TargetRegisterInfo *TRI = &getRegisterInfo();
   3404   switch (MI->getOpcode()) {
   3405     default:
   3406       llvm_unreachable("cannot handle opcode!");
   3407       break;
   3408     case ARM::VMOVD:
   3409       if (Domain != ExeNEON)
   3410         break;
   3411 
   3412       // Zap the predicate operands.
   3413       assert(!isPredicated(MI) && "Cannot predicate a VORRd");
   3414 
   3415       // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
   3416       DstReg = MI->getOperand(0).getReg();
   3417       SrcReg = MI->getOperand(1).getReg();
   3418 
   3419       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
   3420         MI->RemoveOperand(i-1);
   3421 
   3422       // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
   3423       MI->setDesc(get(ARM::VORRd));
   3424       AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
   3425                         .addReg(SrcReg)
   3426                         .addReg(SrcReg));
   3427       break;
   3428     case ARM::VMOVRS:
   3429       if (Domain != ExeNEON)
   3430         break;
   3431       assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
   3432 
   3433       // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
   3434       DstReg = MI->getOperand(0).getReg();
   3435       SrcReg = MI->getOperand(1).getReg();
   3436 
   3437       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
   3438         MI->RemoveOperand(i-1);
   3439 
   3440       DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
   3441 
   3442       // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
   3443       // Note that DSrc has been widened and the other lane may be undef, which
   3444       // contaminates the entire register.
   3445       MI->setDesc(get(ARM::VGETLNi32));
   3446       AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
   3447                         .addReg(DReg, RegState::Undef)
   3448                         .addImm(Lane));
   3449 
   3450       // The old source should be an implicit use, otherwise we might think it
   3451       // was dead before here.
   3452       MIB.addReg(SrcReg, RegState::Implicit);
   3453       break;
   3454     case ARM::VMOVSR:
   3455       if (Domain != ExeNEON)
   3456         break;
   3457       assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
   3458 
   3459       // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
   3460       DstReg = MI->getOperand(0).getReg();
   3461       SrcReg = MI->getOperand(1).getReg();
   3462 
   3463       DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
   3464 
   3465       // If we insert both a novel <def> and an <undef> on the DReg, we break
   3466       // any existing dependency chain on the unused lane. Either already being
   3467       // present means this instruction is in that chain anyway so we can make
   3468       // the transformation.
   3469       if (!MI->definesRegister(DReg, TRI) && !MI->readsRegister(DReg, TRI))
   3470           break;
   3471 
   3472       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
   3473         MI->RemoveOperand(i-1);
   3474 
   3475       // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
   3476       // Again DDst may be undefined at the beginning of this instruction.
   3477       MI->setDesc(get(ARM::VSETLNi32));
   3478       MIB.addReg(DReg, RegState::Define)
   3479          .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
   3480          .addReg(SrcReg)
   3481          .addImm(Lane);
   3482       AddDefaultPred(MIB);
   3483 
   3484       // The narrower destination must be marked as set to keep previous chains
   3485       // in place.
   3486       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
   3487       break;
   3488     case ARM::VMOVS: {
   3489       if (Domain != ExeNEON)
   3490         break;
   3491 
   3492       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
   3493       DstReg = MI->getOperand(0).getReg();
   3494       SrcReg = MI->getOperand(1).getReg();
   3495 
   3496       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
   3497       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
   3498       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
   3499 
   3500       // If we insert both a novel <def> and an <undef> on the DReg, we break
   3501       // any existing dependency chain on the unused lane. Either already being
   3502       // present means this instruction is in that chain anyway so we can make
   3503       // the transformation.
   3504       if (!MI->definesRegister(DDst, TRI) && !MI->readsRegister(DDst, TRI))
   3505           break;
   3506 
   3507       for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
   3508         MI->RemoveOperand(i-1);
   3509 
   3510       if (DSrc == DDst) {
   3511         // Destination can be:
   3512         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
   3513         MI->setDesc(get(ARM::VDUPLN32d));
   3514         MIB.addReg(DDst, RegState::Define)
   3515            .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
   3516            .addImm(SrcLane);
   3517         AddDefaultPred(MIB);
   3518 
   3519         // Neither the source or the destination are naturally represented any
   3520         // more, so add them in manually.
   3521         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
   3522         MIB.addReg(SrcReg, RegState::Implicit);
   3523         break;
   3524       }
   3525 
   3526       // In general there's no single instruction that can perform an S <-> S
   3527       // move in NEON space, but a pair of VEXT instructions *can* do the
   3528       // job. It turns out that the VEXTs needed will only use DSrc once, with
   3529       // the position based purely on the combination of lane-0 and lane-1
   3530       // involved. For example
   3531       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
   3532       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
   3533       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
   3534       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
   3535       //
   3536       // Pattern of the MachineInstrs is:
   3537       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
   3538       MachineInstrBuilder NewMIB;
   3539       NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
   3540                        get(ARM::VEXTd32), DDst);
   3541 
   3542       // On the first instruction, both DSrc and DDst may be <undef> if present.
   3543       // Specifically when the original instruction didn't have them as an
   3544       // <imp-use>.
   3545       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
   3546       bool CurUndef = !MI->readsRegister(CurReg, TRI);
   3547       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
   3548 
   3549       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
   3550       CurUndef = !MI->readsRegister(CurReg, TRI);
   3551       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
   3552 
   3553       NewMIB.addImm(1);
   3554       AddDefaultPred(NewMIB);
   3555 
   3556       if (SrcLane == DstLane)
   3557         NewMIB.addReg(SrcReg, RegState::Implicit);
   3558 
   3559       MI->setDesc(get(ARM::VEXTd32));
   3560       MIB.addReg(DDst, RegState::Define);
   3561 
   3562       // On the second instruction, DDst has definitely been defined above, so
   3563       // it is not <undef>. DSrc, if present, can be <undef> as above.
   3564       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
   3565       CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
   3566       MIB.addReg(CurReg, getUndefRegState(CurUndef));
   3567 
   3568       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
   3569       CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
   3570       MIB.addReg(CurReg, getUndefRegState(CurUndef));
   3571 
   3572       MIB.addImm(1);
   3573       AddDefaultPred(MIB);
   3574 
   3575       if (SrcLane != DstLane)
   3576         MIB.addReg(SrcReg, RegState::Implicit);
   3577 
   3578       // As before, the original destination is no longer represented, add it
   3579       // implicitly.
   3580       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
   3581       break;
   3582     }
   3583   }
   3584 
   3585 }
   3586 
   3587 bool ARMBaseInstrInfo::hasNOP() const {
   3588   return (Subtarget.getFeatureBits() & ARM::HasV6T2Ops) != 0;
   3589 }
   3590