Home | History | Annotate | Download | only in X86
      1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that X86 uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "x86-isel"
     16 #include "X86ISelLowering.h"
     17 #include "X86.h"
     18 #include "X86InstrBuilder.h"
     19 #include "X86TargetMachine.h"
     20 #include "X86TargetObjectFile.h"
     21 #include "Utils/X86ShuffleDecode.h"
     22 #include "llvm/CallingConv.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/GlobalAlias.h"
     26 #include "llvm/GlobalVariable.h"
     27 #include "llvm/Function.h"
     28 #include "llvm/Instructions.h"
     29 #include "llvm/Intrinsics.h"
     30 #include "llvm/LLVMContext.h"
     31 #include "llvm/CodeGen/IntrinsicLowering.h"
     32 #include "llvm/CodeGen/MachineFrameInfo.h"
     33 #include "llvm/CodeGen/MachineFunction.h"
     34 #include "llvm/CodeGen/MachineInstrBuilder.h"
     35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     36 #include "llvm/CodeGen/MachineModuleInfo.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/MC/MCAsmInfo.h"
     39 #include "llvm/MC/MCContext.h"
     40 #include "llvm/MC/MCExpr.h"
     41 #include "llvm/MC/MCSymbol.h"
     42 #include "llvm/ADT/SmallSet.h"
     43 #include "llvm/ADT/Statistic.h"
     44 #include "llvm/ADT/StringExtras.h"
     45 #include "llvm/ADT/VariadicFunction.h"
     46 #include "llvm/Support/CallSite.h"
     47 #include "llvm/Support/Debug.h"
     48 #include "llvm/Support/ErrorHandling.h"
     49 #include "llvm/Support/MathExtras.h"
     50 #include "llvm/Target/TargetOptions.h"
     51 #include <bitset>
     52 #include <cctype>
     53 using namespace llvm;
     54 
     55 STATISTIC(NumTailCalls, "Number of tail calls");
     56 
     57 // Forward declarations.
     58 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
     59                        SDValue V2);
     60 
     61 /// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
     62 /// sets things up to match to an AVX VEXTRACTF128 instruction or a
     63 /// simple subregister reference.  Idx is an index in the 128 bits we
     64 /// want.  It need not be aligned to a 128-bit bounday.  That makes
     65 /// lowering EXTRACT_VECTOR_ELT operations easier.
     66 static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
     67                                    SelectionDAG &DAG, DebugLoc dl) {
     68   EVT VT = Vec.getValueType();
     69   assert(VT.is256BitVector() && "Unexpected vector size!");
     70   EVT ElVT = VT.getVectorElementType();
     71   unsigned Factor = VT.getSizeInBits()/128;
     72   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
     73                                   VT.getVectorNumElements()/Factor);
     74 
     75   // Extract from UNDEF is UNDEF.
     76   if (Vec.getOpcode() == ISD::UNDEF)
     77     return DAG.getUNDEF(ResultVT);
     78 
     79   // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
     80   // we can match to VEXTRACTF128.
     81   unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
     82 
     83   // This is the index of the first element of the 128-bit chunk
     84   // we want.
     85   unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
     86                                * ElemsPerChunk);
     87 
     88   SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
     89   SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
     90                                VecIdx);
     91 
     92   return Result;
     93 }
     94 
     95 /// Generate a DAG to put 128-bits into a vector > 128 bits.  This
     96 /// sets things up to match to an AVX VINSERTF128 instruction or a
     97 /// simple superregister reference.  Idx is an index in the 128 bits
     98 /// we want.  It need not be aligned to a 128-bit bounday.  That makes
     99 /// lowering INSERT_VECTOR_ELT operations easier.
    100 static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
    101                                   unsigned IdxVal, SelectionDAG &DAG,
    102                                   DebugLoc dl) {
    103   // Inserting UNDEF is Result
    104   if (Vec.getOpcode() == ISD::UNDEF)
    105     return Result;
    106 
    107   EVT VT = Vec.getValueType();
    108   assert(VT.is128BitVector() && "Unexpected vector size!");
    109 
    110   EVT ElVT = VT.getVectorElementType();
    111   EVT ResultVT = Result.getValueType();
    112 
    113   // Insert the relevant 128 bits.
    114   unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
    115 
    116   // This is the index of the first element of the 128-bit chunk
    117   // we want.
    118   unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
    119                                * ElemsPerChunk);
    120 
    121   SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
    122   return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
    123                      VecIdx);
    124 }
    125 
    126 /// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
    127 /// instructions. This is used because creating CONCAT_VECTOR nodes of
    128 /// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
    129 /// large BUILD_VECTORS.
    130 static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
    131                                    unsigned NumElems, SelectionDAG &DAG,
    132                                    DebugLoc dl) {
    133   SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
    134   return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
    135 }
    136 
    137 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
    138   const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
    139   bool is64Bit = Subtarget->is64Bit();
    140 
    141   if (Subtarget->isTargetEnvMacho()) {
    142     if (is64Bit)
    143       return new X86_64MachoTargetObjectFile();
    144     return new TargetLoweringObjectFileMachO();
    145   }
    146 
    147   if (Subtarget->isTargetLinux())
    148     return new X86LinuxTargetObjectFile();
    149   if (Subtarget->isTargetELF())
    150     return new TargetLoweringObjectFileELF();
    151   if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
    152     return new TargetLoweringObjectFileCOFF();
    153   llvm_unreachable("unknown subtarget type");
    154 }
    155 
    156 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
    157   : TargetLowering(TM, createTLOF(TM)) {
    158   Subtarget = &TM.getSubtarget<X86Subtarget>();
    159   X86ScalarSSEf64 = Subtarget->hasSSE2();
    160   X86ScalarSSEf32 = Subtarget->hasSSE1();
    161   X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
    162 
    163   RegInfo = TM.getRegisterInfo();
    164   TD = getTargetData();
    165 
    166   // Set up the TargetLowering object.
    167   static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
    168 
    169   // X86 is weird, it always uses i8 for shift amounts and setcc results.
    170   setBooleanContents(ZeroOrOneBooleanContent);
    171   // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
    172   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    173 
    174   // For 64-bit since we have so many registers use the ILP scheduler, for
    175   // 32-bit code use the register pressure specific scheduling.
    176   // For Atom, always use ILP scheduling.
    177   if (Subtarget->isAtom())
    178     setSchedulingPreference(Sched::ILP);
    179   else if (Subtarget->is64Bit())
    180     setSchedulingPreference(Sched::ILP);
    181   else
    182     setSchedulingPreference(Sched::RegPressure);
    183   setStackPointerRegisterToSaveRestore(X86StackPtr);
    184 
    185   // Bypass i32 with i8 on Atom when compiling with O2
    186   if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
    187     addBypassSlowDivType(Type::getInt32Ty(getGlobalContext()), Type::getInt8Ty(getGlobalContext()));
    188 
    189   if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
    190     // Setup Windows compiler runtime calls.
    191     setLibcallName(RTLIB::SDIV_I64, "_alldiv");
    192     setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
    193     setLibcallName(RTLIB::SREM_I64, "_allrem");
    194     setLibcallName(RTLIB::UREM_I64, "_aullrem");
    195     setLibcallName(RTLIB::MUL_I64, "_allmul");
    196     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
    197     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
    198     setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
    199     setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
    200     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
    201 
    202     // The _ftol2 runtime function has an unusual calling conv, which
    203     // is modeled by a special pseudo-instruction.
    204     setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
    205     setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
    206     setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
    207     setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
    208   }
    209 
    210   if (Subtarget->isTargetDarwin()) {
    211     // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
    212     setUseUnderscoreSetJmp(false);
    213     setUseUnderscoreLongJmp(false);
    214   } else if (Subtarget->isTargetMingw()) {
    215     // MS runtime is weird: it exports _setjmp, but longjmp!
    216     setUseUnderscoreSetJmp(true);
    217     setUseUnderscoreLongJmp(false);
    218   } else {
    219     setUseUnderscoreSetJmp(true);
    220     setUseUnderscoreLongJmp(true);
    221   }
    222 
    223   // Set up the register classes.
    224   addRegisterClass(MVT::i8, &X86::GR8RegClass);
    225   addRegisterClass(MVT::i16, &X86::GR16RegClass);
    226   addRegisterClass(MVT::i32, &X86::GR32RegClass);
    227   if (Subtarget->is64Bit())
    228     addRegisterClass(MVT::i64, &X86::GR64RegClass);
    229 
    230   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
    231 
    232   // We don't accept any truncstore of integer registers.
    233   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
    234   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
    235   setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
    236   setTruncStoreAction(MVT::i32, MVT::i16, Expand);
    237   setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
    238   setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
    239 
    240   // SETOEQ and SETUNE require checking two conditions.
    241   setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
    242   setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
    243   setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
    244   setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
    245   setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
    246   setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
    247 
    248   // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
    249   // operation.
    250   setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
    251   setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
    252   setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
    253 
    254   if (Subtarget->is64Bit()) {
    255     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
    256     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
    257   } else if (!TM.Options.UseSoftFloat) {
    258     // We have an algorithm for SSE2->double, and we turn this into a
    259     // 64-bit FILD followed by conditional FADD for other targets.
    260     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
    261     // We have an algorithm for SSE2, and we turn this into a 64-bit
    262     // FILD for other targets.
    263     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
    264   }
    265 
    266   // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
    267   // this operation.
    268   setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
    269   setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
    270 
    271   if (!TM.Options.UseSoftFloat) {
    272     // SSE has no i16 to fp conversion, only i32
    273     if (X86ScalarSSEf32) {
    274       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
    275       // f32 and f64 cases are Legal, f80 case is not
    276       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
    277     } else {
    278       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
    279       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
    280     }
    281   } else {
    282     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
    283     setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
    284   }
    285 
    286   // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
    287   // are Legal, f80 is custom lowered.
    288   setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
    289   setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
    290 
    291   // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
    292   // this operation.
    293   setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
    294   setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
    295 
    296   if (X86ScalarSSEf32) {
    297     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
    298     // f32 and f64 cases are Legal, f80 case is not
    299     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
    300   } else {
    301     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
    302     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
    303   }
    304 
    305   // Handle FP_TO_UINT by promoting the destination to a larger signed
    306   // conversion.
    307   setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
    308   setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
    309   setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
    310 
    311   if (Subtarget->is64Bit()) {
    312     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
    313     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
    314   } else if (!TM.Options.UseSoftFloat) {
    315     // Since AVX is a superset of SSE3, only check for SSE here.
    316     if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
    317       // Expand FP_TO_UINT into a select.
    318       // FIXME: We would like to use a Custom expander here eventually to do
    319       // the optimal thing for SSE vs. the default expansion in the legalizer.
    320       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
    321     else
    322       // With SSE3 we can use fisttpll to convert to a signed i64; without
    323       // SSE, we're stuck with a fistpll.
    324       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
    325   }
    326 
    327   if (isTargetFTOL()) {
    328     // Use the _ftol2 runtime function, which has a pseudo-instruction
    329     // to handle its weird calling convention.
    330     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
    331   }
    332 
    333   // TODO: when we have SSE, these could be more efficient, by using movd/movq.
    334   if (!X86ScalarSSEf64) {
    335     setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
    336     setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
    337     if (Subtarget->is64Bit()) {
    338       setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
    339       // Without SSE, i64->f64 goes through memory.
    340       setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
    341     }
    342   }
    343 
    344   // Scalar integer divide and remainder are lowered to use operations that
    345   // produce two results, to match the available instructions. This exposes
    346   // the two-result form to trivial CSE, which is able to combine x/y and x%y
    347   // into a single instruction.
    348   //
    349   // Scalar integer multiply-high is also lowered to use two-result
    350   // operations, to match the available instructions. However, plain multiply
    351   // (low) operations are left as Legal, as there are single-result
    352   // instructions for this in x86. Using the two-result multiply instructions
    353   // when both high and low results are needed must be arranged by dagcombine.
    354   for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
    355     MVT VT = IntVTs[i];
    356     setOperationAction(ISD::MULHS, VT, Expand);
    357     setOperationAction(ISD::MULHU, VT, Expand);
    358     setOperationAction(ISD::SDIV, VT, Expand);
    359     setOperationAction(ISD::UDIV, VT, Expand);
    360     setOperationAction(ISD::SREM, VT, Expand);
    361     setOperationAction(ISD::UREM, VT, Expand);
    362 
    363     // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
    364     setOperationAction(ISD::ADDC, VT, Custom);
    365     setOperationAction(ISD::ADDE, VT, Custom);
    366     setOperationAction(ISD::SUBC, VT, Custom);
    367     setOperationAction(ISD::SUBE, VT, Custom);
    368   }
    369 
    370   setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
    371   setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
    372   setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
    373   setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
    374   if (Subtarget->is64Bit())
    375     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
    376   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
    377   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
    378   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
    379   setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
    380   setOperationAction(ISD::FREM             , MVT::f32  , Expand);
    381   setOperationAction(ISD::FREM             , MVT::f64  , Expand);
    382   setOperationAction(ISD::FREM             , MVT::f80  , Expand);
    383   setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
    384 
    385   // Promote the i8 variants and force them on up to i32 which has a shorter
    386   // encoding.
    387   setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
    388   AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
    389   setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
    390   AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
    391   if (Subtarget->hasBMI()) {
    392     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
    393     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
    394     if (Subtarget->is64Bit())
    395       setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
    396   } else {
    397     setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
    398     setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
    399     if (Subtarget->is64Bit())
    400       setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
    401   }
    402 
    403   if (Subtarget->hasLZCNT()) {
    404     // When promoting the i8 variants, force them to i32 for a shorter
    405     // encoding.
    406     setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
    407     AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
    408     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
    409     AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
    410     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
    411     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
    412     if (Subtarget->is64Bit())
    413       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
    414   } else {
    415     setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
    416     setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
    417     setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
    418     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
    419     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
    420     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
    421     if (Subtarget->is64Bit()) {
    422       setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
    423       setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
    424     }
    425   }
    426 
    427   if (Subtarget->hasPOPCNT()) {
    428     setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
    429   } else {
    430     setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
    431     setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
    432     setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
    433     if (Subtarget->is64Bit())
    434       setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
    435   }
    436 
    437   setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
    438   setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
    439 
    440   // These should be promoted to a larger select which is supported.
    441   setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
    442   // X86 wants to expand cmov itself.
    443   setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
    444   setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
    445   setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
    446   setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
    447   setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
    448   setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
    449   setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
    450   setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
    451   setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
    452   setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
    453   setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
    454   setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
    455   if (Subtarget->is64Bit()) {
    456     setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
    457     setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
    458   }
    459   setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
    460 
    461   // Darwin ABI issue.
    462   setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
    463   setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
    464   setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
    465   setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
    466   if (Subtarget->is64Bit())
    467     setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
    468   setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
    469   setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
    470   if (Subtarget->is64Bit()) {
    471     setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
    472     setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
    473     setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
    474     setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
    475     setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
    476   }
    477   // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
    478   setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
    479   setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
    480   setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
    481   if (Subtarget->is64Bit()) {
    482     setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
    483     setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
    484     setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
    485   }
    486 
    487   if (Subtarget->hasSSE1())
    488     setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
    489 
    490   setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
    491   setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
    492 
    493   // On X86 and X86-64, atomic operations are lowered to locked instructions.
    494   // Locked instructions, in turn, have implicit fence semantics (all memory
    495   // operations are flushed before issuing the locked instruction, and they
    496   // are not buffered), so we can fold away the common pattern of
    497   // fence-atomic-fence.
    498   setShouldFoldAtomicFences(true);
    499 
    500   // Expand certain atomics
    501   for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
    502     MVT VT = IntVTs[i];
    503     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
    504     setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
    505     setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
    506   }
    507 
    508   if (!Subtarget->is64Bit()) {
    509     setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
    510     setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
    511     setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
    512     setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
    513     setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
    514     setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
    515     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
    516     setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
    517   }
    518 
    519   if (Subtarget->hasCmpxchg16b()) {
    520     setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
    521   }
    522 
    523   // FIXME - use subtarget debug flags
    524   if (!Subtarget->isTargetDarwin() &&
    525       !Subtarget->isTargetELF() &&
    526       !Subtarget->isTargetCygMing()) {
    527     setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
    528   }
    529 
    530   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
    531   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
    532   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
    533   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
    534   if (Subtarget->is64Bit()) {
    535     setExceptionPointerRegister(X86::RAX);
    536     setExceptionSelectorRegister(X86::RDX);
    537   } else {
    538     setExceptionPointerRegister(X86::EAX);
    539     setExceptionSelectorRegister(X86::EDX);
    540   }
    541   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
    542   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
    543 
    544   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
    545   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
    546 
    547   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    548 
    549   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
    550   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
    551   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
    552   if (Subtarget->is64Bit()) {
    553     setOperationAction(ISD::VAARG           , MVT::Other, Custom);
    554     setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
    555   } else {
    556     setOperationAction(ISD::VAARG           , MVT::Other, Expand);
    557     setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
    558   }
    559 
    560   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    561   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    562 
    563   if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
    564     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    565                        MVT::i64 : MVT::i32, Custom);
    566   else if (TM.Options.EnableSegmentedStacks)
    567     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    568                        MVT::i64 : MVT::i32, Custom);
    569   else
    570     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
    571                        MVT::i64 : MVT::i32, Expand);
    572 
    573   if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
    574     // f32 and f64 use SSE.
    575     // Set up the FP register classes.
    576     addRegisterClass(MVT::f32, &X86::FR32RegClass);
    577     addRegisterClass(MVT::f64, &X86::FR64RegClass);
    578 
    579     // Use ANDPD to simulate FABS.
    580     setOperationAction(ISD::FABS , MVT::f64, Custom);
    581     setOperationAction(ISD::FABS , MVT::f32, Custom);
    582 
    583     // Use XORP to simulate FNEG.
    584     setOperationAction(ISD::FNEG , MVT::f64, Custom);
    585     setOperationAction(ISD::FNEG , MVT::f32, Custom);
    586 
    587     // Use ANDPD and ORPD to simulate FCOPYSIGN.
    588     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    589     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    590 
    591     // Lower this to FGETSIGNx86 plus an AND.
    592     setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
    593     setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
    594 
    595     // We don't support sin/cos/fmod
    596     setOperationAction(ISD::FSIN , MVT::f64, Expand);
    597     setOperationAction(ISD::FCOS , MVT::f64, Expand);
    598     setOperationAction(ISD::FSIN , MVT::f32, Expand);
    599     setOperationAction(ISD::FCOS , MVT::f32, Expand);
    600 
    601     // Expand FP immediates into loads from the stack, except for the special
    602     // cases we handle.
    603     addLegalFPImmediate(APFloat(+0.0)); // xorpd
    604     addLegalFPImmediate(APFloat(+0.0f)); // xorps
    605   } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
    606     // Use SSE for f32, x87 for f64.
    607     // Set up the FP register classes.
    608     addRegisterClass(MVT::f32, &X86::FR32RegClass);
    609     addRegisterClass(MVT::f64, &X86::RFP64RegClass);
    610 
    611     // Use ANDPS to simulate FABS.
    612     setOperationAction(ISD::FABS , MVT::f32, Custom);
    613 
    614     // Use XORP to simulate FNEG.
    615     setOperationAction(ISD::FNEG , MVT::f32, Custom);
    616 
    617     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
    618 
    619     // Use ANDPS and ORPS to simulate FCOPYSIGN.
    620     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    621     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    622 
    623     // We don't support sin/cos/fmod
    624     setOperationAction(ISD::FSIN , MVT::f32, Expand);
    625     setOperationAction(ISD::FCOS , MVT::f32, Expand);
    626 
    627     // Special cases we handle for FP constants.
    628     addLegalFPImmediate(APFloat(+0.0f)); // xorps
    629     addLegalFPImmediate(APFloat(+0.0)); // FLD0
    630     addLegalFPImmediate(APFloat(+1.0)); // FLD1
    631     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    632     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
    633 
    634     if (!TM.Options.UnsafeFPMath) {
    635       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
    636       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    637     }
    638   } else if (!TM.Options.UseSoftFloat) {
    639     // f32 and f64 in x87.
    640     // Set up the FP register classes.
    641     addRegisterClass(MVT::f64, &X86::RFP64RegClass);
    642     addRegisterClass(MVT::f32, &X86::RFP32RegClass);
    643 
    644     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
    645     setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
    646     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    647     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    648 
    649     if (!TM.Options.UnsafeFPMath) {
    650       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
    651       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    652     }
    653     addLegalFPImmediate(APFloat(+0.0)); // FLD0
    654     addLegalFPImmediate(APFloat(+1.0)); // FLD1
    655     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    656     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
    657     addLegalFPImmediate(APFloat(+0.0f)); // FLD0
    658     addLegalFPImmediate(APFloat(+1.0f)); // FLD1
    659     addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
    660     addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
    661   }
    662 
    663   // We don't support FMA.
    664   setOperationAction(ISD::FMA, MVT::f64, Expand);
    665   setOperationAction(ISD::FMA, MVT::f32, Expand);
    666 
    667   // Long double always uses X87.
    668   if (!TM.Options.UseSoftFloat) {
    669     addRegisterClass(MVT::f80, &X86::RFP80RegClass);
    670     setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
    671     setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
    672     {
    673       APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
    674       addLegalFPImmediate(TmpFlt);  // FLD0
    675       TmpFlt.changeSign();
    676       addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
    677 
    678       bool ignored;
    679       APFloat TmpFlt2(+1.0);
    680       TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
    681                       &ignored);
    682       addLegalFPImmediate(TmpFlt2);  // FLD1
    683       TmpFlt2.changeSign();
    684       addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
    685     }
    686 
    687     if (!TM.Options.UnsafeFPMath) {
    688       setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
    689       setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
    690     }
    691 
    692     setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
    693     setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
    694     setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
    695     setOperationAction(ISD::FRINT,  MVT::f80, Expand);
    696     setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
    697     setOperationAction(ISD::FMA, MVT::f80, Expand);
    698   }
    699 
    700   // Always use a library call for pow.
    701   setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
    702   setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
    703   setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
    704 
    705   setOperationAction(ISD::FLOG, MVT::f80, Expand);
    706   setOperationAction(ISD::FLOG2, MVT::f80, Expand);
    707   setOperationAction(ISD::FLOG10, MVT::f80, Expand);
    708   setOperationAction(ISD::FEXP, MVT::f80, Expand);
    709   setOperationAction(ISD::FEXP2, MVT::f80, Expand);
    710 
    711   // First set operation action for all vector types to either promote
    712   // (for widening) or expand (for scalarization). Then we will selectively
    713   // turn on ones that can be effectively codegen'd.
    714   for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
    715            VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
    716     setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
    717     setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
    718     setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
    719     setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
    720     setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
    721     setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
    722     setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
    723     setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
    724     setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
    725     setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
    726     setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
    727     setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
    728     setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
    729     setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
    730     setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
    731     setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
    732     setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
    733     setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
    734     setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
    735     setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
    736     setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
    737     setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
    738     setOperationAction(ISD::FMA,  (MVT::SimpleValueType)VT, Expand);
    739     setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
    740     setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
    741     setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
    742     setOperationAction(ISD::FFLOOR, (MVT::SimpleValueType)VT, Expand);
    743     setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    744     setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    745     setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
    746     setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
    747     setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
    748     setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
    749     setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
    750     setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
    751     setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
    752     setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
    753     setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
    754     setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
    755     setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
    756     setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
    757     setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
    758     setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
    759     setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
    760     setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
    761     setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
    762     setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
    763     setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
    764     setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
    765     setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
    766     setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
    767     setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
    768     setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
    769     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
    770     setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
    771     setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    772     setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    773     setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
    774     setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
    775     for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
    776              InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
    777       setTruncStoreAction((MVT::SimpleValueType)VT,
    778                           (MVT::SimpleValueType)InnerVT, Expand);
    779     setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    780     setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
    781     setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
    782   }
    783 
    784   // FIXME: In order to prevent SSE instructions being expanded to MMX ones
    785   // with -msoft-float, disable use of MMX as well.
    786   if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
    787     addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
    788     // No operations on x86mmx supported, everything uses intrinsics.
    789   }
    790 
    791   // MMX-sized vectors (other than x86mmx) are expected to be expanded
    792   // into smaller operations.
    793   setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
    794   setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
    795   setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
    796   setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
    797   setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
    798   setOperationAction(ISD::AND,                MVT::v4i16, Expand);
    799   setOperationAction(ISD::AND,                MVT::v2i32, Expand);
    800   setOperationAction(ISD::AND,                MVT::v1i64, Expand);
    801   setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
    802   setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
    803   setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
    804   setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
    805   setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
    806   setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
    807   setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
    808   setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
    809   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
    810   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
    811   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
    812   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
    813   setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
    814   setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
    815   setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
    816   setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
    817   setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
    818   setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
    819   setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
    820   setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
    821   setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
    822 
    823   if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
    824     addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
    825 
    826     setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
    827     setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
    828     setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
    829     setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
    830     setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
    831     setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
    832     setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
    833     setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
    834     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
    835     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
    836     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    837     setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
    838   }
    839 
    840   if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
    841     addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
    842 
    843     // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
    844     // registers cannot be used even for integer operations.
    845     addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
    846     addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
    847     addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
    848     addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
    849 
    850     setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
    851     setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
    852     setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
    853     setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
    854     setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
    855     setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
    856     setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
    857     setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
    858     setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
    859     setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
    860     setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
    861     setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
    862     setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
    863     setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
    864     setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
    865     setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
    866     setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
    867 
    868     setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
    869     setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
    870     setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
    871     setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
    872 
    873     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
    874     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
    875     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    876     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
    877     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
    878 
    879     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
    880     for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
    881       MVT VT = (MVT::SimpleValueType)i;
    882       // Do not attempt to custom lower non-power-of-2 vectors
    883       if (!isPowerOf2_32(VT.getVectorNumElements()))
    884         continue;
    885       // Do not attempt to custom lower non-128-bit vectors
    886       if (!VT.is128BitVector())
    887         continue;
    888       setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
    889       setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
    890       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    891     }
    892 
    893     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
    894     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
    895     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
    896     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
    897     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
    898     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
    899 
    900     if (Subtarget->is64Bit()) {
    901       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
    902       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
    903     }
    904 
    905     // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
    906     for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
    907       MVT VT = (MVT::SimpleValueType)i;
    908 
    909       // Do not attempt to promote non-128-bit vectors
    910       if (!VT.is128BitVector())
    911         continue;
    912 
    913       setOperationAction(ISD::AND,    VT, Promote);
    914       AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
    915       setOperationAction(ISD::OR,     VT, Promote);
    916       AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
    917       setOperationAction(ISD::XOR,    VT, Promote);
    918       AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
    919       setOperationAction(ISD::LOAD,   VT, Promote);
    920       AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
    921       setOperationAction(ISD::SELECT, VT, Promote);
    922       AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
    923     }
    924 
    925     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    926 
    927     // Custom lower v2i64 and v2f64 selects.
    928     setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
    929     setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
    930     setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
    931     setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
    932 
    933     setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
    934     setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
    935 
    936     setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
    937   }
    938 
    939   if (Subtarget->hasSSE41()) {
    940     setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
    941     setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
    942     setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
    943     setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
    944     setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
    945     setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
    946     setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
    947     setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
    948     setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
    949     setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
    950 
    951     setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
    952     setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
    953 
    954     // FIXME: Do we need to handle scalar-to-vector here?
    955     setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
    956 
    957     setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
    958     setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
    959     setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
    960     setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
    961     setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
    962 
    963     // i8 and i16 vectors are custom , because the source register and source
    964     // source memory operand types are not the same width.  f32 vectors are
    965     // custom since the immediate controlling the insert encodes additional
    966     // information.
    967     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
    968     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    969     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
    970     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
    971 
    972     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
    973     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
    974     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
    975     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    976 
    977     // FIXME: these should be Legal but thats only for the case where
    978     // the index is constant.  For now custom expand to deal with that.
    979     if (Subtarget->is64Bit()) {
    980       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
    981       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
    982     }
    983   }
    984 
    985   if (Subtarget->hasSSE2()) {
    986     setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
    987     setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
    988 
    989     setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
    990     setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
    991 
    992     setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
    993     setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
    994 
    995     if (Subtarget->hasAVX2()) {
    996       setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
    997       setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
    998 
    999       setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
   1000       setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
   1001 
   1002       setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
   1003     } else {
   1004       setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
   1005       setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
   1006 
   1007       setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
   1008       setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
   1009 
   1010       setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
   1011     }
   1012   }
   1013 
   1014   if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
   1015     addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
   1016     addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
   1017     addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
   1018     addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
   1019     addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
   1020     addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
   1021 
   1022     setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
   1023     setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
   1024     setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
   1025 
   1026     setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
   1027     setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
   1028     setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
   1029     setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
   1030     setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
   1031     setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
   1032     setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
   1033     setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
   1034 
   1035     setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
   1036     setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
   1037     setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
   1038     setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
   1039     setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
   1040     setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
   1041     setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
   1042     setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
   1043 
   1044     setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
   1045     setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
   1046     setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
   1047 
   1048     setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
   1049 
   1050     setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
   1051     setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
   1052 
   1053     setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
   1054     setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
   1055 
   1056     setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
   1057     setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
   1058 
   1059     setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
   1060     setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
   1061     setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
   1062     setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
   1063 
   1064     setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
   1065     setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
   1066     setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
   1067 
   1068     setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
   1069     setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
   1070     setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
   1071     setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
   1072 
   1073     if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
   1074       setOperationAction(ISD::FMA,             MVT::v8f32, Custom);
   1075       setOperationAction(ISD::FMA,             MVT::v4f64, Custom);
   1076       setOperationAction(ISD::FMA,             MVT::v4f32, Custom);
   1077       setOperationAction(ISD::FMA,             MVT::v2f64, Custom);
   1078       setOperationAction(ISD::FMA,             MVT::f32, Custom);
   1079       setOperationAction(ISD::FMA,             MVT::f64, Custom);
   1080     }
   1081 
   1082     if (Subtarget->hasAVX2()) {
   1083       setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
   1084       setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
   1085       setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
   1086       setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
   1087 
   1088       setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
   1089       setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
   1090       setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
   1091       setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
   1092 
   1093       setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
   1094       setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
   1095       setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
   1096       // Don't lower v32i8 because there is no 128-bit byte mul
   1097 
   1098       setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
   1099 
   1100       setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
   1101       setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
   1102 
   1103       setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
   1104       setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
   1105 
   1106       setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
   1107     } else {
   1108       setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
   1109       setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
   1110       setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
   1111       setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
   1112 
   1113       setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
   1114       setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
   1115       setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
   1116       setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
   1117 
   1118       setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
   1119       setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
   1120       setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
   1121       // Don't lower v32i8 because there is no 128-bit byte mul
   1122 
   1123       setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
   1124       setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
   1125 
   1126       setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
   1127       setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
   1128 
   1129       setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
   1130     }
   1131 
   1132     // Custom lower several nodes for 256-bit types.
   1133     for (int i = MVT::FIRST_VECTOR_VALUETYPE;
   1134              i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
   1135       MVT VT = (MVT::SimpleValueType)i;
   1136 
   1137       // Extract subvector is special because the value type
   1138       // (result) is 128-bit but the source is 256-bit wide.
   1139       if (VT.is128BitVector())
   1140         setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
   1141 
   1142       // Do not attempt to custom lower other non-256-bit vectors
   1143       if (!VT.is256BitVector())
   1144         continue;
   1145 
   1146       setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
   1147       setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
   1148       setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
   1149       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
   1150       setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
   1151       setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
   1152       setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
   1153     }
   1154 
   1155     // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
   1156     for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
   1157       MVT VT = (MVT::SimpleValueType)i;
   1158 
   1159       // Do not attempt to promote non-256-bit vectors
   1160       if (!VT.is256BitVector())
   1161         continue;
   1162 
   1163       setOperationAction(ISD::AND,    VT, Promote);
   1164       AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
   1165       setOperationAction(ISD::OR,     VT, Promote);
   1166       AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
   1167       setOperationAction(ISD::XOR,    VT, Promote);
   1168       AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
   1169       setOperationAction(ISD::LOAD,   VT, Promote);
   1170       AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
   1171       setOperationAction(ISD::SELECT, VT, Promote);
   1172       AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
   1173     }
   1174   }
   1175 
   1176   // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
   1177   // of this type with custom code.
   1178   for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
   1179            VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
   1180     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
   1181                        Custom);
   1182   }
   1183 
   1184   // We want to custom lower some of our intrinsics.
   1185   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
   1186   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
   1187 
   1188 
   1189   // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
   1190   // handle type legalization for these operations here.
   1191   //
   1192   // FIXME: We really should do custom legalization for addition and
   1193   // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
   1194   // than generic legalization for 64-bit multiplication-with-overflow, though.
   1195   for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
   1196     // Add/Sub/Mul with overflow operations are custom lowered.
   1197     MVT VT = IntVTs[i];
   1198     setOperationAction(ISD::SADDO, VT, Custom);
   1199     setOperationAction(ISD::UADDO, VT, Custom);
   1200     setOperationAction(ISD::SSUBO, VT, Custom);
   1201     setOperationAction(ISD::USUBO, VT, Custom);
   1202     setOperationAction(ISD::SMULO, VT, Custom);
   1203     setOperationAction(ISD::UMULO, VT, Custom);
   1204   }
   1205 
   1206   // There are no 8-bit 3-address imul/mul instructions
   1207   setOperationAction(ISD::SMULO, MVT::i8, Expand);
   1208   setOperationAction(ISD::UMULO, MVT::i8, Expand);
   1209 
   1210   if (!Subtarget->is64Bit()) {
   1211     // These libcalls are not available in 32-bit.
   1212     setLibcallName(RTLIB::SHL_I128, 0);
   1213     setLibcallName(RTLIB::SRL_I128, 0);
   1214     setLibcallName(RTLIB::SRA_I128, 0);
   1215   }
   1216 
   1217   // We have target-specific dag combine patterns for the following nodes:
   1218   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
   1219   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
   1220   setTargetDAGCombine(ISD::VSELECT);
   1221   setTargetDAGCombine(ISD::SELECT);
   1222   setTargetDAGCombine(ISD::SHL);
   1223   setTargetDAGCombine(ISD::SRA);
   1224   setTargetDAGCombine(ISD::SRL);
   1225   setTargetDAGCombine(ISD::OR);
   1226   setTargetDAGCombine(ISD::AND);
   1227   setTargetDAGCombine(ISD::ADD);
   1228   setTargetDAGCombine(ISD::FADD);
   1229   setTargetDAGCombine(ISD::FSUB);
   1230   setTargetDAGCombine(ISD::FMA);
   1231   setTargetDAGCombine(ISD::SUB);
   1232   setTargetDAGCombine(ISD::LOAD);
   1233   setTargetDAGCombine(ISD::STORE);
   1234   setTargetDAGCombine(ISD::ZERO_EXTEND);
   1235   setTargetDAGCombine(ISD::ANY_EXTEND);
   1236   setTargetDAGCombine(ISD::SIGN_EXTEND);
   1237   setTargetDAGCombine(ISD::TRUNCATE);
   1238   setTargetDAGCombine(ISD::UINT_TO_FP);
   1239   setTargetDAGCombine(ISD::SINT_TO_FP);
   1240   setTargetDAGCombine(ISD::SETCC);
   1241   setTargetDAGCombine(ISD::FP_TO_SINT);
   1242   if (Subtarget->is64Bit())
   1243     setTargetDAGCombine(ISD::MUL);
   1244   setTargetDAGCombine(ISD::XOR);
   1245 
   1246   computeRegisterProperties();
   1247 
   1248   // On Darwin, -Os means optimize for size without hurting performance,
   1249   // do not reduce the limit.
   1250   maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
   1251   maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
   1252   maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
   1253   maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
   1254   maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
   1255   maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
   1256   setPrefLoopAlignment(4); // 2^4 bytes.
   1257   benefitFromCodePlacementOpt = true;
   1258 
   1259   // Predictable cmov don't hurt on atom because it's in-order.
   1260   predictableSelectIsExpensive = !Subtarget->isAtom();
   1261 
   1262   setPrefFunctionAlignment(4); // 2^4 bytes.
   1263 }
   1264 
   1265 
   1266 EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
   1267   if (!VT.isVector()) return MVT::i8;
   1268   return VT.changeVectorElementTypeToInteger();
   1269 }
   1270 
   1271 
   1272 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
   1273 /// the desired ByVal argument alignment.
   1274 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
   1275   if (MaxAlign == 16)
   1276     return;
   1277   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
   1278     if (VTy->getBitWidth() == 128)
   1279       MaxAlign = 16;
   1280   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
   1281     unsigned EltAlign = 0;
   1282     getMaxByValAlign(ATy->getElementType(), EltAlign);
   1283     if (EltAlign > MaxAlign)
   1284       MaxAlign = EltAlign;
   1285   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
   1286     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1287       unsigned EltAlign = 0;
   1288       getMaxByValAlign(STy->getElementType(i), EltAlign);
   1289       if (EltAlign > MaxAlign)
   1290         MaxAlign = EltAlign;
   1291       if (MaxAlign == 16)
   1292         break;
   1293     }
   1294   }
   1295 }
   1296 
   1297 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
   1298 /// function arguments in the caller parameter area. For X86, aggregates
   1299 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
   1300 /// are at 4-byte boundaries.
   1301 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
   1302   if (Subtarget->is64Bit()) {
   1303     // Max of 8 and alignment of type.
   1304     unsigned TyAlign = TD->getABITypeAlignment(Ty);
   1305     if (TyAlign > 8)
   1306       return TyAlign;
   1307     return 8;
   1308   }
   1309 
   1310   unsigned Align = 4;
   1311   if (Subtarget->hasSSE1())
   1312     getMaxByValAlign(Ty, Align);
   1313   return Align;
   1314 }
   1315 
   1316 /// getOptimalMemOpType - Returns the target specific optimal type for load
   1317 /// and store operations as a result of memset, memcpy, and memmove
   1318 /// lowering. If DstAlign is zero that means it's safe to destination
   1319 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
   1320 /// means there isn't a need to check it against alignment requirement,
   1321 /// probably because the source does not need to be loaded. If
   1322 /// 'IsZeroVal' is true, that means it's safe to return a
   1323 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
   1324 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
   1325 /// constant so it does not need to be loaded.
   1326 /// It returns EVT::Other if the type should be determined using generic
   1327 /// target-independent logic.
   1328 EVT
   1329 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
   1330                                        unsigned DstAlign, unsigned SrcAlign,
   1331                                        bool IsZeroVal,
   1332                                        bool MemcpyStrSrc,
   1333                                        MachineFunction &MF) const {
   1334   // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
   1335   // linux.  This is because the stack realignment code can't handle certain
   1336   // cases like PR2962.  This should be removed when PR2962 is fixed.
   1337   const Function *F = MF.getFunction();
   1338   if (IsZeroVal &&
   1339       !F->hasFnAttr(Attribute::NoImplicitFloat)) {
   1340     if (Size >= 16 &&
   1341         (Subtarget->isUnalignedMemAccessFast() ||
   1342          ((DstAlign == 0 || DstAlign >= 16) &&
   1343           (SrcAlign == 0 || SrcAlign >= 16))) &&
   1344         Subtarget->getStackAlignment() >= 16) {
   1345       if (Subtarget->getStackAlignment() >= 32) {
   1346         if (Subtarget->hasAVX2())
   1347           return MVT::v8i32;
   1348         if (Subtarget->hasAVX())
   1349           return MVT::v8f32;
   1350       }
   1351       if (Subtarget->hasSSE2())
   1352         return MVT::v4i32;
   1353       if (Subtarget->hasSSE1())
   1354         return MVT::v4f32;
   1355     } else if (!MemcpyStrSrc && Size >= 8 &&
   1356                !Subtarget->is64Bit() &&
   1357                Subtarget->getStackAlignment() >= 8 &&
   1358                Subtarget->hasSSE2()) {
   1359       // Do not use f64 to lower memcpy if source is string constant. It's
   1360       // better to use i32 to avoid the loads.
   1361       return MVT::f64;
   1362     }
   1363   }
   1364   if (Subtarget->is64Bit() && Size >= 8)
   1365     return MVT::i64;
   1366   return MVT::i32;
   1367 }
   1368 
   1369 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
   1370 /// current function.  The returned value is a member of the
   1371 /// MachineJumpTableInfo::JTEntryKind enum.
   1372 unsigned X86TargetLowering::getJumpTableEncoding() const {
   1373   // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
   1374   // symbol.
   1375   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   1376       Subtarget->isPICStyleGOT())
   1377     return MachineJumpTableInfo::EK_Custom32;
   1378 
   1379   // Otherwise, use the normal jump table encoding heuristics.
   1380   return TargetLowering::getJumpTableEncoding();
   1381 }
   1382 
   1383 const MCExpr *
   1384 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1385                                              const MachineBasicBlock *MBB,
   1386                                              unsigned uid,MCContext &Ctx) const{
   1387   assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   1388          Subtarget->isPICStyleGOT());
   1389   // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
   1390   // entries.
   1391   return MCSymbolRefExpr::Create(MBB->getSymbol(),
   1392                                  MCSymbolRefExpr::VK_GOTOFF, Ctx);
   1393 }
   1394 
   1395 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
   1396 /// jumptable.
   1397 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
   1398                                                     SelectionDAG &DAG) const {
   1399   if (!Subtarget->is64Bit())
   1400     // This doesn't have DebugLoc associated with it, but is not really the
   1401     // same as a Register.
   1402     return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
   1403   return Table;
   1404 }
   1405 
   1406 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
   1407 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
   1408 /// MCExpr.
   1409 const MCExpr *X86TargetLowering::
   1410 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
   1411                              MCContext &Ctx) const {
   1412   // X86-64 uses RIP relative addressing based on the jump table label.
   1413   if (Subtarget->isPICStyleRIPRel())
   1414     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
   1415 
   1416   // Otherwise, the reference is relative to the PIC base.
   1417   return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
   1418 }
   1419 
   1420 // FIXME: Why this routine is here? Move to RegInfo!
   1421 std::pair<const TargetRegisterClass*, uint8_t>
   1422 X86TargetLowering::findRepresentativeClass(EVT VT) const{
   1423   const TargetRegisterClass *RRC = 0;
   1424   uint8_t Cost = 1;
   1425   switch (VT.getSimpleVT().SimpleTy) {
   1426   default:
   1427     return TargetLowering::findRepresentativeClass(VT);
   1428   case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
   1429     RRC = Subtarget->is64Bit() ?
   1430       (const TargetRegisterClass*)&X86::GR64RegClass :
   1431       (const TargetRegisterClass*)&X86::GR32RegClass;
   1432     break;
   1433   case MVT::x86mmx:
   1434     RRC = &X86::VR64RegClass;
   1435     break;
   1436   case MVT::f32: case MVT::f64:
   1437   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
   1438   case MVT::v4f32: case MVT::v2f64:
   1439   case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
   1440   case MVT::v4f64:
   1441     RRC = &X86::VR128RegClass;
   1442     break;
   1443   }
   1444   return std::make_pair(RRC, Cost);
   1445 }
   1446 
   1447 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
   1448                                                unsigned &Offset) const {
   1449   if (!Subtarget->isTargetLinux())
   1450     return false;
   1451 
   1452   if (Subtarget->is64Bit()) {
   1453     // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
   1454     Offset = 0x28;
   1455     if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
   1456       AddressSpace = 256;
   1457     else
   1458       AddressSpace = 257;
   1459   } else {
   1460     // %gs:0x14 on i386
   1461     Offset = 0x14;
   1462     AddressSpace = 256;
   1463   }
   1464   return true;
   1465 }
   1466 
   1467 
   1468 //===----------------------------------------------------------------------===//
   1469 //               Return Value Calling Convention Implementation
   1470 //===----------------------------------------------------------------------===//
   1471 
   1472 #include "X86GenCallingConv.inc"
   1473 
   1474 bool
   1475 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   1476                                   MachineFunction &MF, bool isVarArg,
   1477                         const SmallVectorImpl<ISD::OutputArg> &Outs,
   1478                         LLVMContext &Context) const {
   1479   SmallVector<CCValAssign, 16> RVLocs;
   1480   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1481                  RVLocs, Context);
   1482   return CCInfo.CheckReturn(Outs, RetCC_X86);
   1483 }
   1484 
   1485 SDValue
   1486 X86TargetLowering::LowerReturn(SDValue Chain,
   1487                                CallingConv::ID CallConv, bool isVarArg,
   1488                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   1489                                const SmallVectorImpl<SDValue> &OutVals,
   1490                                DebugLoc dl, SelectionDAG &DAG) const {
   1491   MachineFunction &MF = DAG.getMachineFunction();
   1492   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1493 
   1494   SmallVector<CCValAssign, 16> RVLocs;
   1495   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1496                  RVLocs, *DAG.getContext());
   1497   CCInfo.AnalyzeReturn(Outs, RetCC_X86);
   1498 
   1499   // Add the regs to the liveout set for the function.
   1500   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
   1501   for (unsigned i = 0; i != RVLocs.size(); ++i)
   1502     if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
   1503       MRI.addLiveOut(RVLocs[i].getLocReg());
   1504 
   1505   SDValue Flag;
   1506 
   1507   SmallVector<SDValue, 6> RetOps;
   1508   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   1509   // Operand #1 = Bytes To Pop
   1510   RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
   1511                    MVT::i16));
   1512 
   1513   // Copy the result values into the output registers.
   1514   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1515     CCValAssign &VA = RVLocs[i];
   1516     assert(VA.isRegLoc() && "Can only return in registers!");
   1517     SDValue ValToCopy = OutVals[i];
   1518     EVT ValVT = ValToCopy.getValueType();
   1519 
   1520     // Promote values to the appropriate types
   1521     if (VA.getLocInfo() == CCValAssign::SExt)
   1522       ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
   1523     else if (VA.getLocInfo() == CCValAssign::ZExt)
   1524       ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
   1525     else if (VA.getLocInfo() == CCValAssign::AExt)
   1526       ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
   1527     else if (VA.getLocInfo() == CCValAssign::BCvt)
   1528       ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
   1529 
   1530     // If this is x86-64, and we disabled SSE, we can't return FP values,
   1531     // or SSE or MMX vectors.
   1532     if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
   1533          VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
   1534           (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
   1535       report_fatal_error("SSE register return with SSE disabled");
   1536     }
   1537     // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
   1538     // llvm-gcc has never done it right and no one has noticed, so this
   1539     // should be OK for now.
   1540     if (ValVT == MVT::f64 &&
   1541         (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
   1542       report_fatal_error("SSE2 register return with SSE2 disabled");
   1543 
   1544     // Returns in ST0/ST1 are handled specially: these are pushed as operands to
   1545     // the RET instruction and handled by the FP Stackifier.
   1546     if (VA.getLocReg() == X86::ST0 ||
   1547         VA.getLocReg() == X86::ST1) {
   1548       // If this is a copy from an xmm register to ST(0), use an FPExtend to
   1549       // change the value to the FP stack register class.
   1550       if (isScalarFPTypeInSSEReg(VA.getValVT()))
   1551         ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
   1552       RetOps.push_back(ValToCopy);
   1553       // Don't emit a copytoreg.
   1554       continue;
   1555     }
   1556 
   1557     // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
   1558     // which is returned in RAX / RDX.
   1559     if (Subtarget->is64Bit()) {
   1560       if (ValVT == MVT::x86mmx) {
   1561         if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
   1562           ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
   1563           ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
   1564                                   ValToCopy);
   1565           // If we don't have SSE2 available, convert to v4f32 so the generated
   1566           // register is legal.
   1567           if (!Subtarget->hasSSE2())
   1568             ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
   1569         }
   1570       }
   1571     }
   1572 
   1573     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
   1574     Flag = Chain.getValue(1);
   1575   }
   1576 
   1577   // The x86-64 ABI for returning structs by value requires that we copy
   1578   // the sret argument into %rax for the return. We saved the argument into
   1579   // a virtual register in the entry block, so now we copy the value out
   1580   // and into %rax.
   1581   if (Subtarget->is64Bit() &&
   1582       DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
   1583     MachineFunction &MF = DAG.getMachineFunction();
   1584     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1585     unsigned Reg = FuncInfo->getSRetReturnReg();
   1586     assert(Reg &&
   1587            "SRetReturnReg should have been set in LowerFormalArguments().");
   1588     SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
   1589 
   1590     Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
   1591     Flag = Chain.getValue(1);
   1592 
   1593     // RAX now acts like a return value.
   1594     MRI.addLiveOut(X86::RAX);
   1595   }
   1596 
   1597   RetOps[0] = Chain;  // Update chain.
   1598 
   1599   // Add the flag if we have it.
   1600   if (Flag.getNode())
   1601     RetOps.push_back(Flag);
   1602 
   1603   return DAG.getNode(X86ISD::RET_FLAG, dl,
   1604                      MVT::Other, &RetOps[0], RetOps.size());
   1605 }
   1606 
   1607 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
   1608   if (N->getNumValues() != 1)
   1609     return false;
   1610   if (!N->hasNUsesOfValue(1, 0))
   1611     return false;
   1612 
   1613   SDValue TCChain = Chain;
   1614   SDNode *Copy = *N->use_begin();
   1615   if (Copy->getOpcode() == ISD::CopyToReg) {
   1616     // If the copy has a glue operand, we conservatively assume it isn't safe to
   1617     // perform a tail call.
   1618     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   1619       return false;
   1620     TCChain = Copy->getOperand(0);
   1621   } else if (Copy->getOpcode() != ISD::FP_EXTEND)
   1622     return false;
   1623 
   1624   bool HasRet = false;
   1625   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   1626        UI != UE; ++UI) {
   1627     if (UI->getOpcode() != X86ISD::RET_FLAG)
   1628       return false;
   1629     HasRet = true;
   1630   }
   1631 
   1632   if (!HasRet)
   1633     return false;
   1634 
   1635   Chain = TCChain;
   1636   return true;
   1637 }
   1638 
   1639 EVT
   1640 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
   1641                                             ISD::NodeType ExtendKind) const {
   1642   MVT ReturnMVT;
   1643   // TODO: Is this also valid on 32-bit?
   1644   if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
   1645     ReturnMVT = MVT::i8;
   1646   else
   1647     ReturnMVT = MVT::i32;
   1648 
   1649   EVT MinVT = getRegisterType(Context, ReturnMVT);
   1650   return VT.bitsLT(MinVT) ? MinVT : VT;
   1651 }
   1652 
   1653 /// LowerCallResult - Lower the result values of a call into the
   1654 /// appropriate copies out of appropriate physical registers.
   1655 ///
   1656 SDValue
   1657 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   1658                                    CallingConv::ID CallConv, bool isVarArg,
   1659                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   1660                                    DebugLoc dl, SelectionDAG &DAG,
   1661                                    SmallVectorImpl<SDValue> &InVals) const {
   1662 
   1663   // Assign locations to each value returned by this call.
   1664   SmallVector<CCValAssign, 16> RVLocs;
   1665   bool Is64Bit = Subtarget->is64Bit();
   1666   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
   1667                  getTargetMachine(), RVLocs, *DAG.getContext());
   1668   CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
   1669 
   1670   // Copy all of the result registers out of their specified physreg.
   1671   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1672     CCValAssign &VA = RVLocs[i];
   1673     EVT CopyVT = VA.getValVT();
   1674 
   1675     // If this is x86-64, and we disabled SSE, we can't return FP values
   1676     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
   1677         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
   1678       report_fatal_error("SSE register return with SSE disabled");
   1679     }
   1680 
   1681     SDValue Val;
   1682 
   1683     // If this is a call to a function that returns an fp value on the floating
   1684     // point stack, we must guarantee the value is popped from the stack, so
   1685     // a CopyFromReg is not good enough - the copy instruction may be eliminated
   1686     // if the return value is not used. We use the FpPOP_RETVAL instruction
   1687     // instead.
   1688     if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
   1689       // If we prefer to use the value in xmm registers, copy it out as f80 and
   1690       // use a truncate to move it from fp stack reg to xmm reg.
   1691       if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
   1692       SDValue Ops[] = { Chain, InFlag };
   1693       Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
   1694                                          MVT::Other, MVT::Glue, Ops, 2), 1);
   1695       Val = Chain.getValue(0);
   1696 
   1697       // Round the f80 to the right size, which also moves it to the appropriate
   1698       // xmm register.
   1699       if (CopyVT != VA.getValVT())
   1700         Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
   1701                           // This truncation won't change the value.
   1702                           DAG.getIntPtrConstant(1));
   1703     } else {
   1704       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
   1705                                  CopyVT, InFlag).getValue(1);
   1706       Val = Chain.getValue(0);
   1707     }
   1708     InFlag = Chain.getValue(2);
   1709     InVals.push_back(Val);
   1710   }
   1711 
   1712   return Chain;
   1713 }
   1714 
   1715 
   1716 //===----------------------------------------------------------------------===//
   1717 //                C & StdCall & Fast Calling Convention implementation
   1718 //===----------------------------------------------------------------------===//
   1719 //  StdCall calling convention seems to be standard for many Windows' API
   1720 //  routines and around. It differs from C calling convention just a little:
   1721 //  callee should clean up the stack, not caller. Symbols should be also
   1722 //  decorated in some fancy way :) It doesn't support any vector arguments.
   1723 //  For info on fast calling convention see Fast Calling Convention (tail call)
   1724 //  implementation LowerX86_32FastCCCallTo.
   1725 
   1726 /// CallIsStructReturn - Determines whether a call uses struct return
   1727 /// semantics.
   1728 enum StructReturnType {
   1729   NotStructReturn,
   1730   RegStructReturn,
   1731   StackStructReturn
   1732 };
   1733 static StructReturnType
   1734 callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
   1735   if (Outs.empty())
   1736     return NotStructReturn;
   1737 
   1738   const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
   1739   if (!Flags.isSRet())
   1740     return NotStructReturn;
   1741   if (Flags.isInReg())
   1742     return RegStructReturn;
   1743   return StackStructReturn;
   1744 }
   1745 
   1746 /// ArgsAreStructReturn - Determines whether a function uses struct
   1747 /// return semantics.
   1748 static StructReturnType
   1749 argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
   1750   if (Ins.empty())
   1751     return NotStructReturn;
   1752 
   1753   const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
   1754   if (!Flags.isSRet())
   1755     return NotStructReturn;
   1756   if (Flags.isInReg())
   1757     return RegStructReturn;
   1758   return StackStructReturn;
   1759 }
   1760 
   1761 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
   1762 /// by "Src" to address "Dst" with size and alignment information specified by
   1763 /// the specific parameter attribute. The copy will be passed as a byval
   1764 /// function parameter.
   1765 static SDValue
   1766 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
   1767                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
   1768                           DebugLoc dl) {
   1769   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
   1770 
   1771   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
   1772                        /*isVolatile*/false, /*AlwaysInline=*/true,
   1773                        MachinePointerInfo(), MachinePointerInfo());
   1774 }
   1775 
   1776 /// IsTailCallConvention - Return true if the calling convention is one that
   1777 /// supports tail call optimization.
   1778 static bool IsTailCallConvention(CallingConv::ID CC) {
   1779   return (CC == CallingConv::Fast || CC == CallingConv::GHC);
   1780 }
   1781 
   1782 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   1783   if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
   1784     return false;
   1785 
   1786   CallSite CS(CI);
   1787   CallingConv::ID CalleeCC = CS.getCallingConv();
   1788   if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
   1789     return false;
   1790 
   1791   return true;
   1792 }
   1793 
   1794 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
   1795 /// a tailcall target by changing its ABI.
   1796 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
   1797                                    bool GuaranteedTailCallOpt) {
   1798   return GuaranteedTailCallOpt && IsTailCallConvention(CC);
   1799 }
   1800 
   1801 SDValue
   1802 X86TargetLowering::LowerMemArgument(SDValue Chain,
   1803                                     CallingConv::ID CallConv,
   1804                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   1805                                     DebugLoc dl, SelectionDAG &DAG,
   1806                                     const CCValAssign &VA,
   1807                                     MachineFrameInfo *MFI,
   1808                                     unsigned i) const {
   1809   // Create the nodes corresponding to a load from this parameter slot.
   1810   ISD::ArgFlagsTy Flags = Ins[i].Flags;
   1811   bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
   1812                               getTargetMachine().Options.GuaranteedTailCallOpt);
   1813   bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
   1814   EVT ValVT;
   1815 
   1816   // If value is passed by pointer we have address passed instead of the value
   1817   // itself.
   1818   if (VA.getLocInfo() == CCValAssign::Indirect)
   1819     ValVT = VA.getLocVT();
   1820   else
   1821     ValVT = VA.getValVT();
   1822 
   1823   // FIXME: For now, all byval parameter objects are marked mutable. This can be
   1824   // changed with more analysis.
   1825   // In case of tail call optimization mark all arguments mutable. Since they
   1826   // could be overwritten by lowering of arguments in case of a tail call.
   1827   if (Flags.isByVal()) {
   1828     unsigned Bytes = Flags.getByValSize();
   1829     if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
   1830     int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
   1831     return DAG.getFrameIndex(FI, getPointerTy());
   1832   } else {
   1833     int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
   1834                                     VA.getLocMemOffset(), isImmutable);
   1835     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
   1836     return DAG.getLoad(ValVT, dl, Chain, FIN,
   1837                        MachinePointerInfo::getFixedStack(FI),
   1838                        false, false, false, 0);
   1839   }
   1840 }
   1841 
   1842 SDValue
   1843 X86TargetLowering::LowerFormalArguments(SDValue Chain,
   1844                                         CallingConv::ID CallConv,
   1845                                         bool isVarArg,
   1846                                       const SmallVectorImpl<ISD::InputArg> &Ins,
   1847                                         DebugLoc dl,
   1848                                         SelectionDAG &DAG,
   1849                                         SmallVectorImpl<SDValue> &InVals)
   1850                                           const {
   1851   MachineFunction &MF = DAG.getMachineFunction();
   1852   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1853 
   1854   const Function* Fn = MF.getFunction();
   1855   if (Fn->hasExternalLinkage() &&
   1856       Subtarget->isTargetCygMing() &&
   1857       Fn->getName() == "main")
   1858     FuncInfo->setForceFramePointer(true);
   1859 
   1860   MachineFrameInfo *MFI = MF.getFrameInfo();
   1861   bool Is64Bit = Subtarget->is64Bit();
   1862   bool IsWindows = Subtarget->isTargetWindows();
   1863   bool IsWin64 = Subtarget->isTargetWin64();
   1864 
   1865   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
   1866          "Var args not supported with calling convention fastcc or ghc");
   1867 
   1868   // Assign locations to all of the incoming arguments.
   1869   SmallVector<CCValAssign, 16> ArgLocs;
   1870   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   1871                  ArgLocs, *DAG.getContext());
   1872 
   1873   // Allocate shadow area for Win64
   1874   if (IsWin64) {
   1875     CCInfo.AllocateStack(32, 8);
   1876   }
   1877 
   1878   CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
   1879 
   1880   unsigned LastVal = ~0U;
   1881   SDValue ArgValue;
   1882   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1883     CCValAssign &VA = ArgLocs[i];
   1884     // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
   1885     // places.
   1886     assert(VA.getValNo() != LastVal &&
   1887            "Don't support value assigned to multiple locs yet");
   1888     (void)LastVal;
   1889     LastVal = VA.getValNo();
   1890 
   1891     if (VA.isRegLoc()) {
   1892       EVT RegVT = VA.getLocVT();
   1893       const TargetRegisterClass *RC;
   1894       if (RegVT == MVT::i32)
   1895         RC = &X86::GR32RegClass;
   1896       else if (Is64Bit && RegVT == MVT::i64)
   1897         RC = &X86::GR64RegClass;
   1898       else if (RegVT == MVT::f32)
   1899         RC = &X86::FR32RegClass;
   1900       else if (RegVT == MVT::f64)
   1901         RC = &X86::FR64RegClass;
   1902       else if (RegVT.is256BitVector())
   1903         RC = &X86::VR256RegClass;
   1904       else if (RegVT.is128BitVector())
   1905         RC = &X86::VR128RegClass;
   1906       else if (RegVT == MVT::x86mmx)
   1907         RC = &X86::VR64RegClass;
   1908       else
   1909         llvm_unreachable("Unknown argument type!");
   1910 
   1911       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   1912       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   1913 
   1914       // If this is an 8 or 16-bit value, it is really passed promoted to 32
   1915       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
   1916       // right size.
   1917       if (VA.getLocInfo() == CCValAssign::SExt)
   1918         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   1919                                DAG.getValueType(VA.getValVT()));
   1920       else if (VA.getLocInfo() == CCValAssign::ZExt)
   1921         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   1922                                DAG.getValueType(VA.getValVT()));
   1923       else if (VA.getLocInfo() == CCValAssign::BCvt)
   1924         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   1925 
   1926       if (VA.isExtInLoc()) {
   1927         // Handle MMX values passed in XMM regs.
   1928         if (RegVT.isVector()) {
   1929           ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
   1930                                  ArgValue);
   1931         } else
   1932           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   1933       }
   1934     } else {
   1935       assert(VA.isMemLoc());
   1936       ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
   1937     }
   1938 
   1939     // If value is passed via pointer - do a load.
   1940     if (VA.getLocInfo() == CCValAssign::Indirect)
   1941       ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
   1942                              MachinePointerInfo(), false, false, false, 0);
   1943 
   1944     InVals.push_back(ArgValue);
   1945   }
   1946 
   1947   // The x86-64 ABI for returning structs by value requires that we copy
   1948   // the sret argument into %rax for the return. Save the argument into
   1949   // a virtual register so that we can access it from the return points.
   1950   if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
   1951     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   1952     unsigned Reg = FuncInfo->getSRetReturnReg();
   1953     if (!Reg) {
   1954       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
   1955       FuncInfo->setSRetReturnReg(Reg);
   1956     }
   1957     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
   1958     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
   1959   }
   1960 
   1961   unsigned StackSize = CCInfo.getNextStackOffset();
   1962   // Align stack specially for tail calls.
   1963   if (FuncIsMadeTailCallSafe(CallConv,
   1964                              MF.getTarget().Options.GuaranteedTailCallOpt))
   1965     StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
   1966 
   1967   // If the function takes variable number of arguments, make a frame index for
   1968   // the start of the first vararg value... for expansion of llvm.va_start.
   1969   if (isVarArg) {
   1970     if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
   1971                     CallConv != CallingConv::X86_ThisCall)) {
   1972       FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
   1973     }
   1974     if (Is64Bit) {
   1975       unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
   1976 
   1977       // FIXME: We should really autogenerate these arrays
   1978       static const uint16_t GPR64ArgRegsWin64[] = {
   1979         X86::RCX, X86::RDX, X86::R8,  X86::R9
   1980       };
   1981       static const uint16_t GPR64ArgRegs64Bit[] = {
   1982         X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
   1983       };
   1984       static const uint16_t XMMArgRegs64Bit[] = {
   1985         X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   1986         X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   1987       };
   1988       const uint16_t *GPR64ArgRegs;
   1989       unsigned NumXMMRegs = 0;
   1990 
   1991       if (IsWin64) {
   1992         // The XMM registers which might contain var arg parameters are shadowed
   1993         // in their paired GPR.  So we only need to save the GPR to their home
   1994         // slots.
   1995         TotalNumIntRegs = 4;
   1996         GPR64ArgRegs = GPR64ArgRegsWin64;
   1997       } else {
   1998         TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
   1999         GPR64ArgRegs = GPR64ArgRegs64Bit;
   2000 
   2001         NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
   2002                                                 TotalNumXMMRegs);
   2003       }
   2004       unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
   2005                                                        TotalNumIntRegs);
   2006 
   2007       bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
   2008       assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
   2009              "SSE register cannot be used when SSE is disabled!");
   2010       assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
   2011                NoImplicitFloatOps) &&
   2012              "SSE register cannot be used when SSE is disabled!");
   2013       if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
   2014           !Subtarget->hasSSE1())
   2015         // Kernel mode asks for SSE to be disabled, so don't push them
   2016         // on the stack.
   2017         TotalNumXMMRegs = 0;
   2018 
   2019       if (IsWin64) {
   2020         const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
   2021         // Get to the caller-allocated home save location.  Add 8 to account
   2022         // for the return address.
   2023         int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
   2024         FuncInfo->setRegSaveFrameIndex(
   2025           MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
   2026         // Fixup to set vararg frame on shadow area (4 x i64).
   2027         if (NumIntRegs < 4)
   2028           FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
   2029       } else {
   2030         // For X86-64, if there are vararg parameters that are passed via
   2031         // registers, then we must store them to their spots on the stack so
   2032         // they may be loaded by deferencing the result of va_next.
   2033         FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
   2034         FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
   2035         FuncInfo->setRegSaveFrameIndex(
   2036           MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
   2037                                false));
   2038       }
   2039 
   2040       // Store the integer parameter registers.
   2041       SmallVector<SDValue, 8> MemOps;
   2042       SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
   2043                                         getPointerTy());
   2044       unsigned Offset = FuncInfo->getVarArgsGPOffset();
   2045       for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
   2046         SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
   2047                                   DAG.getIntPtrConstant(Offset));
   2048         unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
   2049                                      &X86::GR64RegClass);
   2050         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
   2051         SDValue Store =
   2052           DAG.getStore(Val.getValue(1), dl, Val, FIN,
   2053                        MachinePointerInfo::getFixedStack(
   2054                          FuncInfo->getRegSaveFrameIndex(), Offset),
   2055                        false, false, 0);
   2056         MemOps.push_back(Store);
   2057         Offset += 8;
   2058       }
   2059 
   2060       if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
   2061         // Now store the XMM (fp + vector) parameter registers.
   2062         SmallVector<SDValue, 11> SaveXMMOps;
   2063         SaveXMMOps.push_back(Chain);
   2064 
   2065         unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
   2066         SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
   2067         SaveXMMOps.push_back(ALVal);
   2068 
   2069         SaveXMMOps.push_back(DAG.getIntPtrConstant(
   2070                                FuncInfo->getRegSaveFrameIndex()));
   2071         SaveXMMOps.push_back(DAG.getIntPtrConstant(
   2072                                FuncInfo->getVarArgsFPOffset()));
   2073 
   2074         for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
   2075           unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
   2076                                        &X86::VR128RegClass);
   2077           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
   2078           SaveXMMOps.push_back(Val);
   2079         }
   2080         MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
   2081                                      MVT::Other,
   2082                                      &SaveXMMOps[0], SaveXMMOps.size()));
   2083       }
   2084 
   2085       if (!MemOps.empty())
   2086         Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2087                             &MemOps[0], MemOps.size());
   2088     }
   2089   }
   2090 
   2091   // Some CCs need callee pop.
   2092   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
   2093                        MF.getTarget().Options.GuaranteedTailCallOpt)) {
   2094     FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
   2095   } else {
   2096     FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
   2097     // If this is an sret function, the return should pop the hidden pointer.
   2098     if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
   2099         argsAreStructReturn(Ins) == StackStructReturn)
   2100       FuncInfo->setBytesToPopOnReturn(4);
   2101   }
   2102 
   2103   if (!Is64Bit) {
   2104     // RegSaveFrameIndex is X86-64 only.
   2105     FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
   2106     if (CallConv == CallingConv::X86_FastCall ||
   2107         CallConv == CallingConv::X86_ThisCall)
   2108       // fastcc functions can't have varargs.
   2109       FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
   2110   }
   2111 
   2112   FuncInfo->setArgumentStackSize(StackSize);
   2113 
   2114   return Chain;
   2115 }
   2116 
   2117 SDValue
   2118 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
   2119                                     SDValue StackPtr, SDValue Arg,
   2120                                     DebugLoc dl, SelectionDAG &DAG,
   2121                                     const CCValAssign &VA,
   2122                                     ISD::ArgFlagsTy Flags) const {
   2123   unsigned LocMemOffset = VA.getLocMemOffset();
   2124   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
   2125   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
   2126   if (Flags.isByVal())
   2127     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
   2128 
   2129   return DAG.getStore(Chain, dl, Arg, PtrOff,
   2130                       MachinePointerInfo::getStack(LocMemOffset),
   2131                       false, false, 0);
   2132 }
   2133 
   2134 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
   2135 /// optimization is performed and it is required.
   2136 SDValue
   2137 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
   2138                                            SDValue &OutRetAddr, SDValue Chain,
   2139                                            bool IsTailCall, bool Is64Bit,
   2140                                            int FPDiff, DebugLoc dl) const {
   2141   // Adjust the Return address stack slot.
   2142   EVT VT = getPointerTy();
   2143   OutRetAddr = getReturnAddressFrameIndex(DAG);
   2144 
   2145   // Load the "old" Return address.
   2146   OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
   2147                            false, false, false, 0);
   2148   return SDValue(OutRetAddr.getNode(), 1);
   2149 }
   2150 
   2151 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
   2152 /// optimization is performed and it is required (FPDiff!=0).
   2153 static SDValue
   2154 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
   2155                          SDValue Chain, SDValue RetAddrFrIdx,
   2156                          bool Is64Bit, int FPDiff, DebugLoc dl) {
   2157   // Store the return address to the appropriate stack slot.
   2158   if (!FPDiff) return Chain;
   2159   // Calculate the new stack slot for the return address.
   2160   int SlotSize = Is64Bit ? 8 : 4;
   2161   int NewReturnAddrFI =
   2162     MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
   2163   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
   2164   SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
   2165   Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
   2166                        MachinePointerInfo::getFixedStack(NewReturnAddrFI),
   2167                        false, false, 0);
   2168   return Chain;
   2169 }
   2170 
   2171 SDValue
   2172 X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   2173                              SmallVectorImpl<SDValue> &InVals) const {
   2174   SelectionDAG &DAG                     = CLI.DAG;
   2175   DebugLoc &dl                          = CLI.DL;
   2176   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
   2177   SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
   2178   SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
   2179   SDValue Chain                         = CLI.Chain;
   2180   SDValue Callee                        = CLI.Callee;
   2181   CallingConv::ID CallConv              = CLI.CallConv;
   2182   bool &isTailCall                      = CLI.IsTailCall;
   2183   bool isVarArg                         = CLI.IsVarArg;
   2184 
   2185   MachineFunction &MF = DAG.getMachineFunction();
   2186   bool Is64Bit        = Subtarget->is64Bit();
   2187   bool IsWin64        = Subtarget->isTargetWin64();
   2188   bool IsWindows      = Subtarget->isTargetWindows();
   2189   StructReturnType SR = callIsStructReturn(Outs);
   2190   bool IsSibcall      = false;
   2191 
   2192   if (MF.getTarget().Options.DisableTailCalls)
   2193     isTailCall = false;
   2194 
   2195   if (isTailCall) {
   2196     // Check if it's really possible to do a tail call.
   2197     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   2198                     isVarArg, SR != NotStructReturn,
   2199                     MF.getFunction()->hasStructRetAttr(),
   2200                     Outs, OutVals, Ins, DAG);
   2201 
   2202     // Sibcalls are automatically detected tailcalls which do not require
   2203     // ABI changes.
   2204     if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
   2205       IsSibcall = true;
   2206 
   2207     if (isTailCall)
   2208       ++NumTailCalls;
   2209   }
   2210 
   2211   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
   2212          "Var args not supported with calling convention fastcc or ghc");
   2213 
   2214   // Analyze operands of the call, assigning locations to each operand.
   2215   SmallVector<CCValAssign, 16> ArgLocs;
   2216   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
   2217                  ArgLocs, *DAG.getContext());
   2218 
   2219   // Allocate shadow area for Win64
   2220   if (IsWin64) {
   2221     CCInfo.AllocateStack(32, 8);
   2222   }
   2223 
   2224   CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2225 
   2226   // Get a count of how many bytes are to be pushed on the stack.
   2227   unsigned NumBytes = CCInfo.getNextStackOffset();
   2228   if (IsSibcall)
   2229     // This is a sibcall. The memory operands are available in caller's
   2230     // own caller's stack.
   2231     NumBytes = 0;
   2232   else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
   2233            IsTailCallConvention(CallConv))
   2234     NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
   2235 
   2236   int FPDiff = 0;
   2237   if (isTailCall && !IsSibcall) {
   2238     // Lower arguments at fp - stackoffset + fpdiff.
   2239     unsigned NumBytesCallerPushed =
   2240       MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
   2241     FPDiff = NumBytesCallerPushed - NumBytes;
   2242 
   2243     // Set the delta of movement of the returnaddr stackslot.
   2244     // But only set if delta is greater than previous delta.
   2245     if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
   2246       MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
   2247   }
   2248 
   2249   if (!IsSibcall)
   2250     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
   2251 
   2252   SDValue RetAddrFrIdx;
   2253   // Load return address for tail calls.
   2254   if (isTailCall && FPDiff)
   2255     Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
   2256                                     Is64Bit, FPDiff, dl);
   2257 
   2258   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   2259   SmallVector<SDValue, 8> MemOpChains;
   2260   SDValue StackPtr;
   2261 
   2262   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   2263   // of tail call optimization arguments are handle later.
   2264   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2265     CCValAssign &VA = ArgLocs[i];
   2266     EVT RegVT = VA.getLocVT();
   2267     SDValue Arg = OutVals[i];
   2268     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2269     bool isByVal = Flags.isByVal();
   2270 
   2271     // Promote the value if needed.
   2272     switch (VA.getLocInfo()) {
   2273     default: llvm_unreachable("Unknown loc info!");
   2274     case CCValAssign::Full: break;
   2275     case CCValAssign::SExt:
   2276       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
   2277       break;
   2278     case CCValAssign::ZExt:
   2279       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
   2280       break;
   2281     case CCValAssign::AExt:
   2282       if (RegVT.is128BitVector()) {
   2283         // Special case: passing MMX values in XMM registers.
   2284         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
   2285         Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
   2286         Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
   2287       } else
   2288         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
   2289       break;
   2290     case CCValAssign::BCvt:
   2291       Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
   2292       break;
   2293     case CCValAssign::Indirect: {
   2294       // Store the argument.
   2295       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
   2296       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
   2297       Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
   2298                            MachinePointerInfo::getFixedStack(FI),
   2299                            false, false, 0);
   2300       Arg = SpillSlot;
   2301       break;
   2302     }
   2303     }
   2304 
   2305     if (VA.isRegLoc()) {
   2306       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   2307       if (isVarArg && IsWin64) {
   2308         // Win64 ABI requires argument XMM reg to be copied to the corresponding
   2309         // shadow reg if callee is a varargs function.
   2310         unsigned ShadowReg = 0;
   2311         switch (VA.getLocReg()) {
   2312         case X86::XMM0: ShadowReg = X86::RCX; break;
   2313         case X86::XMM1: ShadowReg = X86::RDX; break;
   2314         case X86::XMM2: ShadowReg = X86::R8; break;
   2315         case X86::XMM3: ShadowReg = X86::R9; break;
   2316         }
   2317         if (ShadowReg)
   2318           RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
   2319       }
   2320     } else if (!IsSibcall && (!isTailCall || isByVal)) {
   2321       assert(VA.isMemLoc());
   2322       if (StackPtr.getNode() == 0)
   2323         StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
   2324       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   2325                                              dl, DAG, VA, Flags));
   2326     }
   2327   }
   2328 
   2329   if (!MemOpChains.empty())
   2330     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2331                         &MemOpChains[0], MemOpChains.size());
   2332 
   2333   if (Subtarget->isPICStyleGOT()) {
   2334     // ELF / PIC requires GOT in the EBX register before function calls via PLT
   2335     // GOT pointer.
   2336     if (!isTailCall) {
   2337       RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
   2338                DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
   2339     } else {
   2340       // If we are tail calling and generating PIC/GOT style code load the
   2341       // address of the callee into ECX. The value in ecx is used as target of
   2342       // the tail jump. This is done to circumvent the ebx/callee-saved problem
   2343       // for tail calls on PIC/GOT architectures. Normally we would just put the
   2344       // address of GOT into ebx and then call target@PLT. But for tail calls
   2345       // ebx would be restored (since ebx is callee saved) before jumping to the
   2346       // target@PLT.
   2347 
   2348       // Note: The actual moving to ECX is done further down.
   2349       GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
   2350       if (G && !G->getGlobal()->hasHiddenVisibility() &&
   2351           !G->getGlobal()->hasProtectedVisibility())
   2352         Callee = LowerGlobalAddress(Callee, DAG);
   2353       else if (isa<ExternalSymbolSDNode>(Callee))
   2354         Callee = LowerExternalSymbol(Callee, DAG);
   2355     }
   2356   }
   2357 
   2358   if (Is64Bit && isVarArg && !IsWin64) {
   2359     // From AMD64 ABI document:
   2360     // For calls that may call functions that use varargs or stdargs
   2361     // (prototype-less calls or calls to functions containing ellipsis (...) in
   2362     // the declaration) %al is used as hidden argument to specify the number
   2363     // of SSE registers used. The contents of %al do not need to match exactly
   2364     // the number of registers, but must be an ubound on the number of SSE
   2365     // registers used and is in the range 0 - 8 inclusive.
   2366 
   2367     // Count the number of XMM registers allocated.
   2368     static const uint16_t XMMArgRegs[] = {
   2369       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
   2370       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
   2371     };
   2372     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
   2373     assert((Subtarget->hasSSE1() || !NumXMMRegs)
   2374            && "SSE registers cannot be used when SSE is disabled");
   2375 
   2376     RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
   2377                                         DAG.getConstant(NumXMMRegs, MVT::i8)));
   2378   }
   2379 
   2380   // For tail calls lower the arguments to the 'real' stack slot.
   2381   if (isTailCall) {
   2382     // Force all the incoming stack arguments to be loaded from the stack
   2383     // before any new outgoing arguments are stored to the stack, because the
   2384     // outgoing stack slots may alias the incoming argument stack slots, and
   2385     // the alias isn't otherwise explicit. This is slightly more conservative
   2386     // than necessary, because it means that each store effectively depends
   2387     // on every argument instead of just those arguments it would clobber.
   2388     SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
   2389 
   2390     SmallVector<SDValue, 8> MemOpChains2;
   2391     SDValue FIN;
   2392     int FI = 0;
   2393     if (getTargetMachine().Options.GuaranteedTailCallOpt) {
   2394       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2395         CCValAssign &VA = ArgLocs[i];
   2396         if (VA.isRegLoc())
   2397           continue;
   2398         assert(VA.isMemLoc());
   2399         SDValue Arg = OutVals[i];
   2400         ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2401         // Create frame index.
   2402         int32_t Offset = VA.getLocMemOffset()+FPDiff;
   2403         uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
   2404         FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
   2405         FIN = DAG.getFrameIndex(FI, getPointerTy());
   2406 
   2407         if (Flags.isByVal()) {
   2408           // Copy relative to framepointer.
   2409           SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
   2410           if (StackPtr.getNode() == 0)
   2411             StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
   2412                                           getPointerTy());
   2413           Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
   2414 
   2415           MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
   2416                                                            ArgChain,
   2417                                                            Flags, DAG, dl));
   2418         } else {
   2419           // Store relative to framepointer.
   2420           MemOpChains2.push_back(
   2421             DAG.getStore(ArgChain, dl, Arg, FIN,
   2422                          MachinePointerInfo::getFixedStack(FI),
   2423                          false, false, 0));
   2424         }
   2425       }
   2426     }
   2427 
   2428     if (!MemOpChains2.empty())
   2429       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   2430                           &MemOpChains2[0], MemOpChains2.size());
   2431 
   2432     // Store the return address to the appropriate stack slot.
   2433     Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
   2434                                      FPDiff, dl);
   2435   }
   2436 
   2437   // Build a sequence of copy-to-reg nodes chained together with token chain
   2438   // and flag operands which copy the outgoing args into registers.
   2439   SDValue InFlag;
   2440   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   2441     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   2442                              RegsToPass[i].second, InFlag);
   2443     InFlag = Chain.getValue(1);
   2444   }
   2445 
   2446   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
   2447     assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
   2448     // In the 64-bit large code model, we have to make all calls
   2449     // through a register, since the call instruction's 32-bit
   2450     // pc-relative offset may not be large enough to hold the whole
   2451     // address.
   2452   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2453     // If the callee is a GlobalAddress node (quite common, every direct call
   2454     // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
   2455     // it.
   2456 
   2457     // We should use extra load for direct calls to dllimported functions in
   2458     // non-JIT mode.
   2459     const GlobalValue *GV = G->getGlobal();
   2460     if (!GV->hasDLLImportLinkage()) {
   2461       unsigned char OpFlags = 0;
   2462       bool ExtraLoad = false;
   2463       unsigned WrapperKind = ISD::DELETED_NODE;
   2464 
   2465       // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
   2466       // external symbols most go through the PLT in PIC mode.  If the symbol
   2467       // has hidden or protected visibility, or if it is static or local, then
   2468       // we don't need to use the PLT - we can directly call it.
   2469       if (Subtarget->isTargetELF() &&
   2470           getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   2471           GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
   2472         OpFlags = X86II::MO_PLT;
   2473       } else if (Subtarget->isPICStyleStubAny() &&
   2474                  (GV->isDeclaration() || GV->isWeakForLinker()) &&
   2475                  (!Subtarget->getTargetTriple().isMacOSX() ||
   2476                   Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2477         // PC-relative references to external symbols should go through $stub,
   2478         // unless we're building with the leopard linker or later, which
   2479         // automatically synthesizes these stubs.
   2480         OpFlags = X86II::MO_DARWIN_STUB;
   2481       } else if (Subtarget->isPICStyleRIPRel() &&
   2482                  isa<Function>(GV) &&
   2483                  cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
   2484         // If the function is marked as non-lazy, generate an indirect call
   2485         // which loads from the GOT directly. This avoids runtime overhead
   2486         // at the cost of eager binding (and one extra byte of encoding).
   2487         OpFlags = X86II::MO_GOTPCREL;
   2488         WrapperKind = X86ISD::WrapperRIP;
   2489         ExtraLoad = true;
   2490       }
   2491 
   2492       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
   2493                                           G->getOffset(), OpFlags);
   2494 
   2495       // Add a wrapper if needed.
   2496       if (WrapperKind != ISD::DELETED_NODE)
   2497         Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
   2498       // Add extra indirection if needed.
   2499       if (ExtraLoad)
   2500         Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
   2501                              MachinePointerInfo::getGOT(),
   2502                              false, false, false, 0);
   2503     }
   2504   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   2505     unsigned char OpFlags = 0;
   2506 
   2507     // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
   2508     // external symbols should go through the PLT.
   2509     if (Subtarget->isTargetELF() &&
   2510         getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   2511       OpFlags = X86II::MO_PLT;
   2512     } else if (Subtarget->isPICStyleStubAny() &&
   2513                (!Subtarget->getTargetTriple().isMacOSX() ||
   2514                 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
   2515       // PC-relative references to external symbols should go through $stub,
   2516       // unless we're building with the leopard linker or later, which
   2517       // automatically synthesizes these stubs.
   2518       OpFlags = X86II::MO_DARWIN_STUB;
   2519     }
   2520 
   2521     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
   2522                                          OpFlags);
   2523   }
   2524 
   2525   // Returns a chain & a flag for retval copy to use.
   2526   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   2527   SmallVector<SDValue, 8> Ops;
   2528 
   2529   if (!IsSibcall && isTailCall) {
   2530     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
   2531                            DAG.getIntPtrConstant(0, true), InFlag);
   2532     InFlag = Chain.getValue(1);
   2533   }
   2534 
   2535   Ops.push_back(Chain);
   2536   Ops.push_back(Callee);
   2537 
   2538   if (isTailCall)
   2539     Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
   2540 
   2541   // Add argument registers to the end of the list so that they are known live
   2542   // into the call.
   2543   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   2544     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   2545                                   RegsToPass[i].second.getValueType()));
   2546 
   2547   // Add a register mask operand representing the call-preserved registers.
   2548   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
   2549   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
   2550   assert(Mask && "Missing call preserved mask for calling convention");
   2551   Ops.push_back(DAG.getRegisterMask(Mask));
   2552 
   2553   if (InFlag.getNode())
   2554     Ops.push_back(InFlag);
   2555 
   2556   if (isTailCall) {
   2557     // We used to do:
   2558     //// If this is the first return lowered for this function, add the regs
   2559     //// to the liveout set for the function.
   2560     // This isn't right, although it's probably harmless on x86; liveouts
   2561     // should be computed from returns not tail calls.  Consider a void
   2562     // function making a tail call to a function returning int.
   2563     return DAG.getNode(X86ISD::TC_RETURN, dl,
   2564                        NodeTys, &Ops[0], Ops.size());
   2565   }
   2566 
   2567   Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
   2568   InFlag = Chain.getValue(1);
   2569 
   2570   // Create the CALLSEQ_END node.
   2571   unsigned NumBytesForCalleeToPush;
   2572   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
   2573                        getTargetMachine().Options.GuaranteedTailCallOpt))
   2574     NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
   2575   else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
   2576            SR == StackStructReturn)
   2577     // If this is a call to a struct-return function, the callee
   2578     // pops the hidden struct pointer, so we have to push it back.
   2579     // This is common for Darwin/X86, Linux & Mingw32 targets.
   2580     // For MSVC Win32 targets, the caller pops the hidden struct pointer.
   2581     NumBytesForCalleeToPush = 4;
   2582   else
   2583     NumBytesForCalleeToPush = 0;  // Callee pops nothing.
   2584 
   2585   // Returns a flag for retval copy to use.
   2586   if (!IsSibcall) {
   2587     Chain = DAG.getCALLSEQ_END(Chain,
   2588                                DAG.getIntPtrConstant(NumBytes, true),
   2589                                DAG.getIntPtrConstant(NumBytesForCalleeToPush,
   2590                                                      true),
   2591                                InFlag);
   2592     InFlag = Chain.getValue(1);
   2593   }
   2594 
   2595   // Handle result values, copying them out of physregs into vregs that we
   2596   // return.
   2597   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
   2598                          Ins, dl, DAG, InVals);
   2599 }
   2600 
   2601 
   2602 //===----------------------------------------------------------------------===//
   2603 //                Fast Calling Convention (tail call) implementation
   2604 //===----------------------------------------------------------------------===//
   2605 
   2606 //  Like std call, callee cleans arguments, convention except that ECX is
   2607 //  reserved for storing the tail called function address. Only 2 registers are
   2608 //  free for argument passing (inreg). Tail call optimization is performed
   2609 //  provided:
   2610 //                * tailcallopt is enabled
   2611 //                * caller/callee are fastcc
   2612 //  On X86_64 architecture with GOT-style position independent code only local
   2613 //  (within module) calls are supported at the moment.
   2614 //  To keep the stack aligned according to platform abi the function
   2615 //  GetAlignedArgumentStackSize ensures that argument delta is always multiples
   2616 //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
   2617 //  If a tail called function callee has more arguments than the caller the
   2618 //  caller needs to make sure that there is room to move the RETADDR to. This is
   2619 //  achieved by reserving an area the size of the argument delta right after the
   2620 //  original REtADDR, but before the saved framepointer or the spilled registers
   2621 //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
   2622 //  stack layout:
   2623 //    arg1
   2624 //    arg2
   2625 //    RETADDR
   2626 //    [ new RETADDR
   2627 //      move area ]
   2628 //    (possible EBP)
   2629 //    ESI
   2630 //    EDI
   2631 //    local1 ..
   2632 
   2633 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
   2634 /// for a 16 byte align requirement.
   2635 unsigned
   2636 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
   2637                                                SelectionDAG& DAG) const {
   2638   MachineFunction &MF = DAG.getMachineFunction();
   2639   const TargetMachine &TM = MF.getTarget();
   2640   const TargetFrameLowering &TFI = *TM.getFrameLowering();
   2641   unsigned StackAlignment = TFI.getStackAlignment();
   2642   uint64_t AlignMask = StackAlignment - 1;
   2643   int64_t Offset = StackSize;
   2644   uint64_t SlotSize = TD->getPointerSize();
   2645   if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
   2646     // Number smaller than 12 so just add the difference.
   2647     Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
   2648   } else {
   2649     // Mask out lower bits, add stackalignment once plus the 12 bytes.
   2650     Offset = ((~AlignMask) & Offset) + StackAlignment +
   2651       (StackAlignment-SlotSize);
   2652   }
   2653   return Offset;
   2654 }
   2655 
   2656 /// MatchingStackOffset - Return true if the given stack call argument is
   2657 /// already available in the same position (relatively) of the caller's
   2658 /// incoming argument stack.
   2659 static
   2660 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   2661                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   2662                          const X86InstrInfo *TII) {
   2663   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   2664   int FI = INT_MAX;
   2665   if (Arg.getOpcode() == ISD::CopyFromReg) {
   2666     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   2667     if (!TargetRegisterInfo::isVirtualRegister(VR))
   2668       return false;
   2669     MachineInstr *Def = MRI->getVRegDef(VR);
   2670     if (!Def)
   2671       return false;
   2672     if (!Flags.isByVal()) {
   2673       if (!TII->isLoadFromStackSlot(Def, FI))
   2674         return false;
   2675     } else {
   2676       unsigned Opcode = Def->getOpcode();
   2677       if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
   2678           Def->getOperand(1).isFI()) {
   2679         FI = Def->getOperand(1).getIndex();
   2680         Bytes = Flags.getByValSize();
   2681       } else
   2682         return false;
   2683     }
   2684   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   2685     if (Flags.isByVal())
   2686       // ByVal argument is passed in as a pointer but it's now being
   2687       // dereferenced. e.g.
   2688       // define @foo(%struct.X* %A) {
   2689       //   tail call @bar(%struct.X* byval %A)
   2690       // }
   2691       return false;
   2692     SDValue Ptr = Ld->getBasePtr();
   2693     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   2694     if (!FINode)
   2695       return false;
   2696     FI = FINode->getIndex();
   2697   } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
   2698     FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
   2699     FI = FINode->getIndex();
   2700     Bytes = Flags.getByValSize();
   2701   } else
   2702     return false;
   2703 
   2704   assert(FI != INT_MAX);
   2705   if (!MFI->isFixedObjectIndex(FI))
   2706     return false;
   2707   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   2708 }
   2709 
   2710 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   2711 /// for tail call optimization. Targets which want to do tail call
   2712 /// optimization should implement this function.
   2713 bool
   2714 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   2715                                                      CallingConv::ID CalleeCC,
   2716                                                      bool isVarArg,
   2717                                                      bool isCalleeStructRet,
   2718                                                      bool isCallerStructRet,
   2719                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   2720                                     const SmallVectorImpl<SDValue> &OutVals,
   2721                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   2722                                                      SelectionDAG& DAG) const {
   2723   if (!IsTailCallConvention(CalleeCC) &&
   2724       CalleeCC != CallingConv::C)
   2725     return false;
   2726 
   2727   // If -tailcallopt is specified, make fastcc functions tail-callable.
   2728   const MachineFunction &MF = DAG.getMachineFunction();
   2729   const Function *CallerF = DAG.getMachineFunction().getFunction();
   2730   CallingConv::ID CallerCC = CallerF->getCallingConv();
   2731   bool CCMatch = CallerCC == CalleeCC;
   2732 
   2733   if (getTargetMachine().Options.GuaranteedTailCallOpt) {
   2734     if (IsTailCallConvention(CalleeCC) && CCMatch)
   2735       return true;
   2736     return false;
   2737   }
   2738 
   2739   // Look for obvious safe cases to perform tail call optimization that do not
   2740   // require ABI changes. This is what gcc calls sibcall.
   2741 
   2742   // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
   2743   // emit a special epilogue.
   2744   if (RegInfo->needsStackRealignment(MF))
   2745     return false;
   2746 
   2747   // Also avoid sibcall optimization if either caller or callee uses struct
   2748   // return semantics.
   2749   if (isCalleeStructRet || isCallerStructRet)
   2750     return false;
   2751 
   2752   // An stdcall caller is expected to clean up its arguments; the callee
   2753   // isn't going to do that.
   2754   if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
   2755     return false;
   2756 
   2757   // Do not sibcall optimize vararg calls unless all arguments are passed via
   2758   // registers.
   2759   if (isVarArg && !Outs.empty()) {
   2760 
   2761     // Optimizing for varargs on Win64 is unlikely to be safe without
   2762     // additional testing.
   2763     if (Subtarget->isTargetWin64())
   2764       return false;
   2765 
   2766     SmallVector<CCValAssign, 16> ArgLocs;
   2767     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   2768                    getTargetMachine(), ArgLocs, *DAG.getContext());
   2769 
   2770     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2771     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
   2772       if (!ArgLocs[i].isRegLoc())
   2773         return false;
   2774   }
   2775 
   2776   // If the call result is in ST0 / ST1, it needs to be popped off the x87
   2777   // stack.  Therefore, if it's not used by the call it is not safe to optimize
   2778   // this into a sibcall.
   2779   bool Unused = false;
   2780   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   2781     if (!Ins[i].Used) {
   2782       Unused = true;
   2783       break;
   2784     }
   2785   }
   2786   if (Unused) {
   2787     SmallVector<CCValAssign, 16> RVLocs;
   2788     CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
   2789                    getTargetMachine(), RVLocs, *DAG.getContext());
   2790     CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
   2791     for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
   2792       CCValAssign &VA = RVLocs[i];
   2793       if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
   2794         return false;
   2795     }
   2796   }
   2797 
   2798   // If the calling conventions do not match, then we'd better make sure the
   2799   // results are returned in the same way as what the caller expects.
   2800   if (!CCMatch) {
   2801     SmallVector<CCValAssign, 16> RVLocs1;
   2802     CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
   2803                     getTargetMachine(), RVLocs1, *DAG.getContext());
   2804     CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
   2805 
   2806     SmallVector<CCValAssign, 16> RVLocs2;
   2807     CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
   2808                     getTargetMachine(), RVLocs2, *DAG.getContext());
   2809     CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
   2810 
   2811     if (RVLocs1.size() != RVLocs2.size())
   2812       return false;
   2813     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
   2814       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
   2815         return false;
   2816       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
   2817         return false;
   2818       if (RVLocs1[i].isRegLoc()) {
   2819         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
   2820           return false;
   2821       } else {
   2822         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
   2823           return false;
   2824       }
   2825     }
   2826   }
   2827 
   2828   // If the callee takes no arguments then go on to check the results of the
   2829   // call.
   2830   if (!Outs.empty()) {
   2831     // Check if stack adjustment is needed. For now, do not do this if any
   2832     // argument is passed on the stack.
   2833     SmallVector<CCValAssign, 16> ArgLocs;
   2834     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
   2835                    getTargetMachine(), ArgLocs, *DAG.getContext());
   2836 
   2837     // Allocate shadow area for Win64
   2838     if (Subtarget->isTargetWin64()) {
   2839       CCInfo.AllocateStack(32, 8);
   2840     }
   2841 
   2842     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
   2843     if (CCInfo.getNextStackOffset()) {
   2844       MachineFunction &MF = DAG.getMachineFunction();
   2845       if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
   2846         return false;
   2847 
   2848       // Check if the arguments are already laid out in the right way as
   2849       // the caller's fixed stack objects.
   2850       MachineFrameInfo *MFI = MF.getFrameInfo();
   2851       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   2852       const X86InstrInfo *TII =
   2853         ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
   2854       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2855         CCValAssign &VA = ArgLocs[i];
   2856         SDValue Arg = OutVals[i];
   2857         ISD::ArgFlagsTy Flags = Outs[i].Flags;
   2858         if (VA.getLocInfo() == CCValAssign::Indirect)
   2859           return false;
   2860         if (!VA.isRegLoc()) {
   2861           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   2862                                    MFI, MRI, TII))
   2863             return false;
   2864         }
   2865       }
   2866     }
   2867 
   2868     // If the tailcall address may be in a register, then make sure it's
   2869     // possible to register allocate for it. In 32-bit, the call address can
   2870     // only target EAX, EDX, or ECX since the tail call must be scheduled after
   2871     // callee-saved registers are restored. These happen to be the same
   2872     // registers used to pass 'inreg' arguments so watch out for those.
   2873     if (!Subtarget->is64Bit() &&
   2874         !isa<GlobalAddressSDNode>(Callee) &&
   2875         !isa<ExternalSymbolSDNode>(Callee)) {
   2876       unsigned NumInRegs = 0;
   2877       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2878         CCValAssign &VA = ArgLocs[i];
   2879         if (!VA.isRegLoc())
   2880           continue;
   2881         unsigned Reg = VA.getLocReg();
   2882         switch (Reg) {
   2883         default: break;
   2884         case X86::EAX: case X86::EDX: case X86::ECX:
   2885           if (++NumInRegs == 3)
   2886             return false;
   2887           break;
   2888         }
   2889       }
   2890     }
   2891   }
   2892 
   2893   return true;
   2894 }
   2895 
   2896 FastISel *
   2897 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
   2898                                   const TargetLibraryInfo *libInfo) const {
   2899   return X86::createFastISel(funcInfo, libInfo);
   2900 }
   2901 
   2902 
   2903 //===----------------------------------------------------------------------===//
   2904 //                           Other Lowering Hooks
   2905 //===----------------------------------------------------------------------===//
   2906 
   2907 static bool MayFoldLoad(SDValue Op) {
   2908   return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
   2909 }
   2910 
   2911 static bool MayFoldIntoStore(SDValue Op) {
   2912   return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
   2913 }
   2914 
   2915 static bool isTargetShuffle(unsigned Opcode) {
   2916   switch(Opcode) {
   2917   default: return false;
   2918   case X86ISD::PSHUFD:
   2919   case X86ISD::PSHUFHW:
   2920   case X86ISD::PSHUFLW:
   2921   case X86ISD::SHUFP:
   2922   case X86ISD::PALIGN:
   2923   case X86ISD::MOVLHPS:
   2924   case X86ISD::MOVLHPD:
   2925   case X86ISD::MOVHLPS:
   2926   case X86ISD::MOVLPS:
   2927   case X86ISD::MOVLPD:
   2928   case X86ISD::MOVSHDUP:
   2929   case X86ISD::MOVSLDUP:
   2930   case X86ISD::MOVDDUP:
   2931   case X86ISD::MOVSS:
   2932   case X86ISD::MOVSD:
   2933   case X86ISD::UNPCKL:
   2934   case X86ISD::UNPCKH:
   2935   case X86ISD::VPERMILP:
   2936   case X86ISD::VPERM2X128:
   2937   case X86ISD::VPERMI:
   2938     return true;
   2939   }
   2940 }
   2941 
   2942 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2943                                     SDValue V1, SelectionDAG &DAG) {
   2944   switch(Opc) {
   2945   default: llvm_unreachable("Unknown x86 shuffle node");
   2946   case X86ISD::MOVSHDUP:
   2947   case X86ISD::MOVSLDUP:
   2948   case X86ISD::MOVDDUP:
   2949     return DAG.getNode(Opc, dl, VT, V1);
   2950   }
   2951 }
   2952 
   2953 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2954                                     SDValue V1, unsigned TargetMask,
   2955                                     SelectionDAG &DAG) {
   2956   switch(Opc) {
   2957   default: llvm_unreachable("Unknown x86 shuffle node");
   2958   case X86ISD::PSHUFD:
   2959   case X86ISD::PSHUFHW:
   2960   case X86ISD::PSHUFLW:
   2961   case X86ISD::VPERMILP:
   2962   case X86ISD::VPERMI:
   2963     return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
   2964   }
   2965 }
   2966 
   2967 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2968                                     SDValue V1, SDValue V2, unsigned TargetMask,
   2969                                     SelectionDAG &DAG) {
   2970   switch(Opc) {
   2971   default: llvm_unreachable("Unknown x86 shuffle node");
   2972   case X86ISD::PALIGN:
   2973   case X86ISD::SHUFP:
   2974   case X86ISD::VPERM2X128:
   2975     return DAG.getNode(Opc, dl, VT, V1, V2,
   2976                        DAG.getConstant(TargetMask, MVT::i8));
   2977   }
   2978 }
   2979 
   2980 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
   2981                                     SDValue V1, SDValue V2, SelectionDAG &DAG) {
   2982   switch(Opc) {
   2983   default: llvm_unreachable("Unknown x86 shuffle node");
   2984   case X86ISD::MOVLHPS:
   2985   case X86ISD::MOVLHPD:
   2986   case X86ISD::MOVHLPS:
   2987   case X86ISD::MOVLPS:
   2988   case X86ISD::MOVLPD:
   2989   case X86ISD::MOVSS:
   2990   case X86ISD::MOVSD:
   2991   case X86ISD::UNPCKL:
   2992   case X86ISD::UNPCKH:
   2993     return DAG.getNode(Opc, dl, VT, V1, V2);
   2994   }
   2995 }
   2996 
   2997 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
   2998   MachineFunction &MF = DAG.getMachineFunction();
   2999   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   3000   int ReturnAddrIndex = FuncInfo->getRAIndex();
   3001 
   3002   if (ReturnAddrIndex == 0) {
   3003     // Set up a frame object for the return address.
   3004     uint64_t SlotSize = TD->getPointerSize();
   3005     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
   3006                                                            false);
   3007     FuncInfo->setRAIndex(ReturnAddrIndex);
   3008   }
   3009 
   3010   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
   3011 }
   3012 
   3013 
   3014 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
   3015                                        bool hasSymbolicDisplacement) {
   3016   // Offset should fit into 32 bit immediate field.
   3017   if (!isInt<32>(Offset))
   3018     return false;
   3019 
   3020   // If we don't have a symbolic displacement - we don't have any extra
   3021   // restrictions.
   3022   if (!hasSymbolicDisplacement)
   3023     return true;
   3024 
   3025   // FIXME: Some tweaks might be needed for medium code model.
   3026   if (M != CodeModel::Small && M != CodeModel::Kernel)
   3027     return false;
   3028 
   3029   // For small code model we assume that latest object is 16MB before end of 31
   3030   // bits boundary. We may also accept pretty large negative constants knowing
   3031   // that all objects are in the positive half of address space.
   3032   if (M == CodeModel::Small && Offset < 16*1024*1024)
   3033     return true;
   3034 
   3035   // For kernel code model we know that all object resist in the negative half
   3036   // of 32bits address space. We may not accept negative offsets, since they may
   3037   // be just off and we may accept pretty large positive ones.
   3038   if (M == CodeModel::Kernel && Offset > 0)
   3039     return true;
   3040 
   3041   return false;
   3042 }
   3043 
   3044 /// isCalleePop - Determines whether the callee is required to pop its
   3045 /// own arguments. Callee pop is necessary to support tail calls.
   3046 bool X86::isCalleePop(CallingConv::ID CallingConv,
   3047                       bool is64Bit, bool IsVarArg, bool TailCallOpt) {
   3048   if (IsVarArg)
   3049     return false;
   3050 
   3051   switch (CallingConv) {
   3052   default:
   3053     return false;
   3054   case CallingConv::X86_StdCall:
   3055     return !is64Bit;
   3056   case CallingConv::X86_FastCall:
   3057     return !is64Bit;
   3058   case CallingConv::X86_ThisCall:
   3059     return !is64Bit;
   3060   case CallingConv::Fast:
   3061     return TailCallOpt;
   3062   case CallingConv::GHC:
   3063     return TailCallOpt;
   3064   }
   3065 }
   3066 
   3067 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
   3068 /// specific condition code, returning the condition code and the LHS/RHS of the
   3069 /// comparison to make.
   3070 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
   3071                                SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
   3072   if (!isFP) {
   3073     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
   3074       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
   3075         // X > -1   -> X == 0, jump !sign.
   3076         RHS = DAG.getConstant(0, RHS.getValueType());
   3077         return X86::COND_NS;
   3078       }
   3079       if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
   3080         // X < 0   -> X == 0, jump on sign.
   3081         return X86::COND_S;
   3082       }
   3083       if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
   3084         // X < 1   -> X <= 0
   3085         RHS = DAG.getConstant(0, RHS.getValueType());
   3086         return X86::COND_LE;
   3087       }
   3088     }
   3089 
   3090     switch (SetCCOpcode) {
   3091     default: llvm_unreachable("Invalid integer condition!");
   3092     case ISD::SETEQ:  return X86::COND_E;
   3093     case ISD::SETGT:  return X86::COND_G;
   3094     case ISD::SETGE:  return X86::COND_GE;
   3095     case ISD::SETLT:  return X86::COND_L;
   3096     case ISD::SETLE:  return X86::COND_LE;
   3097     case ISD::SETNE:  return X86::COND_NE;
   3098     case ISD::SETULT: return X86::COND_B;
   3099     case ISD::SETUGT: return X86::COND_A;
   3100     case ISD::SETULE: return X86::COND_BE;
   3101     case ISD::SETUGE: return X86::COND_AE;
   3102     }
   3103   }
   3104 
   3105   // First determine if it is required or is profitable to flip the operands.
   3106 
   3107   // If LHS is a foldable load, but RHS is not, flip the condition.
   3108   if (ISD::isNON_EXTLoad(LHS.getNode()) &&
   3109       !ISD::isNON_EXTLoad(RHS.getNode())) {
   3110     SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
   3111     std::swap(LHS, RHS);
   3112   }
   3113 
   3114   switch (SetCCOpcode) {
   3115   default: break;
   3116   case ISD::SETOLT:
   3117   case ISD::SETOLE:
   3118   case ISD::SETUGT:
   3119   case ISD::SETUGE:
   3120     std::swap(LHS, RHS);
   3121     break;
   3122   }
   3123 
   3124   // On a floating point condition, the flags are set as follows:
   3125   // ZF  PF  CF   op
   3126   //  0 | 0 | 0 | X > Y
   3127   //  0 | 0 | 1 | X < Y
   3128   //  1 | 0 | 0 | X == Y
   3129   //  1 | 1 | 1 | unordered
   3130   switch (SetCCOpcode) {
   3131   default: llvm_unreachable("Condcode should be pre-legalized away");
   3132   case ISD::SETUEQ:
   3133   case ISD::SETEQ:   return X86::COND_E;
   3134   case ISD::SETOLT:              // flipped
   3135   case ISD::SETOGT:
   3136   case ISD::SETGT:   return X86::COND_A;
   3137   case ISD::SETOLE:              // flipped
   3138   case ISD::SETOGE:
   3139   case ISD::SETGE:   return X86::COND_AE;
   3140   case ISD::SETUGT:              // flipped
   3141   case ISD::SETULT:
   3142   case ISD::SETLT:   return X86::COND_B;
   3143   case ISD::SETUGE:              // flipped
   3144   case ISD::SETULE:
   3145   case ISD::SETLE:   return X86::COND_BE;
   3146   case ISD::SETONE:
   3147   case ISD::SETNE:   return X86::COND_NE;
   3148   case ISD::SETUO:   return X86::COND_P;
   3149   case ISD::SETO:    return X86::COND_NP;
   3150   case ISD::SETOEQ:
   3151   case ISD::SETUNE:  return X86::COND_INVALID;
   3152   }
   3153 }
   3154 
   3155 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
   3156 /// code. Current x86 isa includes the following FP cmov instructions:
   3157 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
   3158 static bool hasFPCMov(unsigned X86CC) {
   3159   switch (X86CC) {
   3160   default:
   3161     return false;
   3162   case X86::COND_B:
   3163   case X86::COND_BE:
   3164   case X86::COND_E:
   3165   case X86::COND_P:
   3166   case X86::COND_A:
   3167   case X86::COND_AE:
   3168   case X86::COND_NE:
   3169   case X86::COND_NP:
   3170     return true;
   3171   }
   3172 }
   3173 
   3174 /// isFPImmLegal - Returns true if the target can instruction select the
   3175 /// specified FP immediate natively. If false, the legalizer will
   3176 /// materialize the FP immediate as a load from a constant pool.
   3177 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   3178   for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
   3179     if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
   3180       return true;
   3181   }
   3182   return false;
   3183 }
   3184 
   3185 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
   3186 /// the specified range (L, H].
   3187 static bool isUndefOrInRange(int Val, int Low, int Hi) {
   3188   return (Val < 0) || (Val >= Low && Val < Hi);
   3189 }
   3190 
   3191 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
   3192 /// specified value.
   3193 static bool isUndefOrEqual(int Val, int CmpVal) {
   3194   if (Val < 0 || Val == CmpVal)
   3195     return true;
   3196   return false;
   3197 }
   3198 
   3199 /// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
   3200 /// from position Pos and ending in Pos+Size, falls within the specified
   3201 /// sequential range (L, L+Pos]. or is undef.
   3202 static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
   3203                                        unsigned Pos, unsigned Size, int Low) {
   3204   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
   3205     if (!isUndefOrEqual(Mask[i], Low))
   3206       return false;
   3207   return true;
   3208 }
   3209 
   3210 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
   3211 /// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
   3212 /// the second operand.
   3213 static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
   3214   if (VT == MVT::v4f32 || VT == MVT::v4i32 )
   3215     return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
   3216   if (VT == MVT::v2f64 || VT == MVT::v2i64)
   3217     return (Mask[0] < 2 && Mask[1] < 2);
   3218   return false;
   3219 }
   3220 
   3221 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
   3222 /// is suitable for input to PSHUFHW.
   3223 static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
   3224   if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
   3225     return false;
   3226 
   3227   // Lower quadword copied in order or undef.
   3228   if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
   3229     return false;
   3230 
   3231   // Upper quadword shuffled.
   3232   for (unsigned i = 4; i != 8; ++i)
   3233     if (!isUndefOrInRange(Mask[i], 4, 8))
   3234       return false;
   3235 
   3236   if (VT == MVT::v16i16) {
   3237     // Lower quadword copied in order or undef.
   3238     if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
   3239       return false;
   3240 
   3241     // Upper quadword shuffled.
   3242     for (unsigned i = 12; i != 16; ++i)
   3243       if (!isUndefOrInRange(Mask[i], 12, 16))
   3244         return false;
   3245   }
   3246 
   3247   return true;
   3248 }
   3249 
   3250 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
   3251 /// is suitable for input to PSHUFLW.
   3252 static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
   3253   if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
   3254     return false;
   3255 
   3256   // Upper quadword copied in order.
   3257   if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
   3258     return false;
   3259 
   3260   // Lower quadword shuffled.
   3261   for (unsigned i = 0; i != 4; ++i)
   3262     if (!isUndefOrInRange(Mask[i], 0, 4))
   3263       return false;
   3264 
   3265   if (VT == MVT::v16i16) {
   3266     // Upper quadword copied in order.
   3267     if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
   3268       return false;
   3269 
   3270     // Lower quadword shuffled.
   3271     for (unsigned i = 8; i != 12; ++i)
   3272       if (!isUndefOrInRange(Mask[i], 8, 12))
   3273         return false;
   3274   }
   3275 
   3276   return true;
   3277 }
   3278 
   3279 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
   3280 /// is suitable for input to PALIGNR.
   3281 static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
   3282                           const X86Subtarget *Subtarget) {
   3283   if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
   3284       (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
   3285     return false;
   3286 
   3287   unsigned NumElts = VT.getVectorNumElements();
   3288   unsigned NumLanes = VT.getSizeInBits()/128;
   3289   unsigned NumLaneElts = NumElts/NumLanes;
   3290 
   3291   // Do not handle 64-bit element shuffles with palignr.
   3292   if (NumLaneElts == 2)
   3293     return false;
   3294 
   3295   for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
   3296     unsigned i;
   3297     for (i = 0; i != NumLaneElts; ++i) {
   3298       if (Mask[i+l] >= 0)
   3299         break;
   3300     }
   3301 
   3302     // Lane is all undef, go to next lane
   3303     if (i == NumLaneElts)
   3304       continue;
   3305 
   3306     int Start = Mask[i+l];
   3307 
   3308     // Make sure its in this lane in one of the sources
   3309     if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
   3310         !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
   3311       return false;
   3312 
   3313     // If not lane 0, then we must match lane 0
   3314     if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
   3315       return false;
   3316 
   3317     // Correct second source to be contiguous with first source
   3318     if (Start >= (int)NumElts)
   3319       Start -= NumElts - NumLaneElts;
   3320 
   3321     // Make sure we're shifting in the right direction.
   3322     if (Start <= (int)(i+l))
   3323       return false;
   3324 
   3325     Start -= i;
   3326 
   3327     // Check the rest of the elements to see if they are consecutive.
   3328     for (++i; i != NumLaneElts; ++i) {
   3329       int Idx = Mask[i+l];
   3330 
   3331       // Make sure its in this lane
   3332       if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
   3333           !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
   3334         return false;
   3335 
   3336       // If not lane 0, then we must match lane 0
   3337       if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
   3338         return false;
   3339 
   3340       if (Idx >= (int)NumElts)
   3341         Idx -= NumElts - NumLaneElts;
   3342 
   3343       if (!isUndefOrEqual(Idx, Start+i))
   3344         return false;
   3345 
   3346     }
   3347   }
   3348 
   3349   return true;
   3350 }
   3351 
   3352 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
   3353 /// the two vector operands have swapped position.
   3354 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
   3355                                      unsigned NumElems) {
   3356   for (unsigned i = 0; i != NumElems; ++i) {
   3357     int idx = Mask[i];
   3358     if (idx < 0)
   3359       continue;
   3360     else if (idx < (int)NumElems)
   3361       Mask[i] = idx + NumElems;
   3362     else
   3363       Mask[i] = idx - NumElems;
   3364   }
   3365 }
   3366 
   3367 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
   3368 /// specifies a shuffle of elements that is suitable for input to 128/256-bit
   3369 /// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
   3370 /// reverse of what x86 shuffles want.
   3371 static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
   3372                         bool Commuted = false) {
   3373   if (!HasAVX && VT.getSizeInBits() == 256)
   3374     return false;
   3375 
   3376   unsigned NumElems = VT.getVectorNumElements();
   3377   unsigned NumLanes = VT.getSizeInBits()/128;
   3378   unsigned NumLaneElems = NumElems/NumLanes;
   3379 
   3380   if (NumLaneElems != 2 && NumLaneElems != 4)
   3381     return false;
   3382 
   3383   // VSHUFPSY divides the resulting vector into 4 chunks.
   3384   // The sources are also splitted into 4 chunks, and each destination
   3385   // chunk must come from a different source chunk.
   3386   //
   3387   //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
   3388   //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
   3389   //
   3390   //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
   3391   //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
   3392   //
   3393   // VSHUFPDY divides the resulting vector into 4 chunks.
   3394   // The sources are also splitted into 4 chunks, and each destination
   3395   // chunk must come from a different source chunk.
   3396   //
   3397   //  SRC1 =>      X3       X2       X1       X0
   3398   //  SRC2 =>      Y3       Y2       Y1       Y0
   3399   //
   3400   //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
   3401   //
   3402   unsigned HalfLaneElems = NumLaneElems/2;
   3403   for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
   3404     for (unsigned i = 0; i != NumLaneElems; ++i) {
   3405       int Idx = Mask[i+l];
   3406       unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
   3407       if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
   3408         return false;
   3409       // For VSHUFPSY, the mask of the second half must be the same as the
   3410       // first but with the appropriate offsets. This works in the same way as
   3411       // VPERMILPS works with masks.
   3412       if (NumElems != 8 || l == 0 || Mask[i] < 0)
   3413         continue;
   3414       if (!isUndefOrEqual(Idx, Mask[i]+l))
   3415         return false;
   3416     }
   3417   }
   3418 
   3419   return true;
   3420 }
   3421 
   3422 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3423 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
   3424 static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
   3425   if (!VT.is128BitVector())
   3426     return false;
   3427 
   3428   unsigned NumElems = VT.getVectorNumElements();
   3429 
   3430   if (NumElems != 4)
   3431     return false;
   3432 
   3433   // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
   3434   return isUndefOrEqual(Mask[0], 6) &&
   3435          isUndefOrEqual(Mask[1], 7) &&
   3436          isUndefOrEqual(Mask[2], 2) &&
   3437          isUndefOrEqual(Mask[3], 3);
   3438 }
   3439 
   3440 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
   3441 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
   3442 /// <2, 3, 2, 3>
   3443 static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
   3444   if (!VT.is128BitVector())
   3445     return false;
   3446 
   3447   unsigned NumElems = VT.getVectorNumElements();
   3448 
   3449   if (NumElems != 4)
   3450     return false;
   3451 
   3452   return isUndefOrEqual(Mask[0], 2) &&
   3453          isUndefOrEqual(Mask[1], 3) &&
   3454          isUndefOrEqual(Mask[2], 2) &&
   3455          isUndefOrEqual(Mask[3], 3);
   3456 }
   3457 
   3458 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
   3459 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
   3460 static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
   3461   if (!VT.is128BitVector())
   3462     return false;
   3463 
   3464   unsigned NumElems = VT.getVectorNumElements();
   3465 
   3466   if (NumElems != 2 && NumElems != 4)
   3467     return false;
   3468 
   3469   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
   3470     if (!isUndefOrEqual(Mask[i], i + NumElems))
   3471       return false;
   3472 
   3473   for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
   3474     if (!isUndefOrEqual(Mask[i], i))
   3475       return false;
   3476 
   3477   return true;
   3478 }
   3479 
   3480 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
   3481 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
   3482 static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
   3483   if (!VT.is128BitVector())
   3484     return false;
   3485 
   3486   unsigned NumElems = VT.getVectorNumElements();
   3487 
   3488   if (NumElems != 2 && NumElems != 4)
   3489     return false;
   3490 
   3491   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
   3492     if (!isUndefOrEqual(Mask[i], i))
   3493       return false;
   3494 
   3495   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
   3496     if (!isUndefOrEqual(Mask[i + e], i + NumElems))
   3497       return false;
   3498 
   3499   return true;
   3500 }
   3501 
   3502 //
   3503 // Some special combinations that can be optimized.
   3504 //
   3505 static
   3506 SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
   3507                                SelectionDAG &DAG) {
   3508   EVT VT = SVOp->getValueType(0);
   3509   DebugLoc dl = SVOp->getDebugLoc();
   3510 
   3511   if (VT != MVT::v8i32 && VT != MVT::v8f32)
   3512     return SDValue();
   3513 
   3514   ArrayRef<int> Mask = SVOp->getMask();
   3515 
   3516   // These are the special masks that may be optimized.
   3517   static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
   3518   static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
   3519   bool MatchEvenMask = true;
   3520   bool MatchOddMask  = true;
   3521   for (int i=0; i<8; ++i) {
   3522     if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
   3523       MatchEvenMask = false;
   3524     if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
   3525       MatchOddMask = false;
   3526   }
   3527 
   3528   if (!MatchEvenMask && !MatchOddMask)
   3529     return SDValue();
   3530 
   3531   SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
   3532 
   3533   SDValue Op0 = SVOp->getOperand(0);
   3534   SDValue Op1 = SVOp->getOperand(1);
   3535 
   3536   if (MatchEvenMask) {
   3537     // Shift the second operand right to 32 bits.
   3538     static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
   3539     Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
   3540   } else {
   3541     // Shift the first operand left to 32 bits.
   3542     static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
   3543     Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
   3544   }
   3545   static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
   3546   return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
   3547 }
   3548 
   3549 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
   3550 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
   3551 static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
   3552                          bool HasAVX2, bool V2IsSplat = false) {
   3553   unsigned NumElts = VT.getVectorNumElements();
   3554 
   3555   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3556          "Unsupported vector type for unpckh");
   3557 
   3558   if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
   3559       (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
   3560     return false;
   3561 
   3562   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3563   // independently on 128-bit lanes.
   3564   unsigned NumLanes = VT.getSizeInBits()/128;
   3565   unsigned NumLaneElts = NumElts/NumLanes;
   3566 
   3567   for (unsigned l = 0; l != NumLanes; ++l) {
   3568     for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
   3569          i != (l+1)*NumLaneElts;
   3570          i += 2, ++j) {
   3571       int BitI  = Mask[i];
   3572       int BitI1 = Mask[i+1];
   3573       if (!isUndefOrEqual(BitI, j))
   3574         return false;
   3575       if (V2IsSplat) {
   3576         if (!isUndefOrEqual(BitI1, NumElts))
   3577           return false;
   3578       } else {
   3579         if (!isUndefOrEqual(BitI1, j + NumElts))
   3580           return false;
   3581       }
   3582     }
   3583   }
   3584 
   3585   return true;
   3586 }
   3587 
   3588 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
   3589 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
   3590 static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
   3591                          bool HasAVX2, bool V2IsSplat = false) {
   3592   unsigned NumElts = VT.getVectorNumElements();
   3593 
   3594   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3595          "Unsupported vector type for unpckh");
   3596 
   3597   if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
   3598       (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
   3599     return false;
   3600 
   3601   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3602   // independently on 128-bit lanes.
   3603   unsigned NumLanes = VT.getSizeInBits()/128;
   3604   unsigned NumLaneElts = NumElts/NumLanes;
   3605 
   3606   for (unsigned l = 0; l != NumLanes; ++l) {
   3607     for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
   3608          i != (l+1)*NumLaneElts; i += 2, ++j) {
   3609       int BitI  = Mask[i];
   3610       int BitI1 = Mask[i+1];
   3611       if (!isUndefOrEqual(BitI, j))
   3612         return false;
   3613       if (V2IsSplat) {
   3614         if (isUndefOrEqual(BitI1, NumElts))
   3615           return false;
   3616       } else {
   3617         if (!isUndefOrEqual(BitI1, j+NumElts))
   3618           return false;
   3619       }
   3620     }
   3621   }
   3622   return true;
   3623 }
   3624 
   3625 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
   3626 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
   3627 /// <0, 0, 1, 1>
   3628 static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
   3629                                   bool HasAVX2) {
   3630   unsigned NumElts = VT.getVectorNumElements();
   3631 
   3632   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3633          "Unsupported vector type for unpckh");
   3634 
   3635   if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
   3636       (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
   3637     return false;
   3638 
   3639   // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
   3640   // FIXME: Need a better way to get rid of this, there's no latency difference
   3641   // between UNPCKLPD and MOVDDUP, the later should always be checked first and
   3642   // the former later. We should also remove the "_undef" special mask.
   3643   if (NumElts == 4 && VT.getSizeInBits() == 256)
   3644     return false;
   3645 
   3646   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3647   // independently on 128-bit lanes.
   3648   unsigned NumLanes = VT.getSizeInBits()/128;
   3649   unsigned NumLaneElts = NumElts/NumLanes;
   3650 
   3651   for (unsigned l = 0; l != NumLanes; ++l) {
   3652     for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
   3653          i != (l+1)*NumLaneElts;
   3654          i += 2, ++j) {
   3655       int BitI  = Mask[i];
   3656       int BitI1 = Mask[i+1];
   3657 
   3658       if (!isUndefOrEqual(BitI, j))
   3659         return false;
   3660       if (!isUndefOrEqual(BitI1, j))
   3661         return false;
   3662     }
   3663   }
   3664 
   3665   return true;
   3666 }
   3667 
   3668 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
   3669 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
   3670 /// <2, 2, 3, 3>
   3671 static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
   3672   unsigned NumElts = VT.getVectorNumElements();
   3673 
   3674   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3675          "Unsupported vector type for unpckh");
   3676 
   3677   if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
   3678       (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
   3679     return false;
   3680 
   3681   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
   3682   // independently on 128-bit lanes.
   3683   unsigned NumLanes = VT.getSizeInBits()/128;
   3684   unsigned NumLaneElts = NumElts/NumLanes;
   3685 
   3686   for (unsigned l = 0; l != NumLanes; ++l) {
   3687     for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
   3688          i != (l+1)*NumLaneElts; i += 2, ++j) {
   3689       int BitI  = Mask[i];
   3690       int BitI1 = Mask[i+1];
   3691       if (!isUndefOrEqual(BitI, j))
   3692         return false;
   3693       if (!isUndefOrEqual(BitI1, j))
   3694         return false;
   3695     }
   3696   }
   3697   return true;
   3698 }
   3699 
   3700 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
   3701 /// specifies a shuffle of elements that is suitable for input to MOVSS,
   3702 /// MOVSD, and MOVD, i.e. setting the lowest element.
   3703 static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
   3704   if (VT.getVectorElementType().getSizeInBits() < 32)
   3705     return false;
   3706   if (!VT.is128BitVector())
   3707     return false;
   3708 
   3709   unsigned NumElts = VT.getVectorNumElements();
   3710 
   3711   if (!isUndefOrEqual(Mask[0], NumElts))
   3712     return false;
   3713 
   3714   for (unsigned i = 1; i != NumElts; ++i)
   3715     if (!isUndefOrEqual(Mask[i], i))
   3716       return false;
   3717 
   3718   return true;
   3719 }
   3720 
   3721 /// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
   3722 /// as permutations between 128-bit chunks or halves. As an example: this
   3723 /// shuffle bellow:
   3724 ///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
   3725 /// The first half comes from the second half of V1 and the second half from the
   3726 /// the second half of V2.
   3727 static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
   3728   if (!HasAVX || !VT.is256BitVector())
   3729     return false;
   3730 
   3731   // The shuffle result is divided into half A and half B. In total the two
   3732   // sources have 4 halves, namely: C, D, E, F. The final values of A and
   3733   // B must come from C, D, E or F.
   3734   unsigned HalfSize = VT.getVectorNumElements()/2;
   3735   bool MatchA = false, MatchB = false;
   3736 
   3737   // Check if A comes from one of C, D, E, F.
   3738   for (unsigned Half = 0; Half != 4; ++Half) {
   3739     if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
   3740       MatchA = true;
   3741       break;
   3742     }
   3743   }
   3744 
   3745   // Check if B comes from one of C, D, E, F.
   3746   for (unsigned Half = 0; Half != 4; ++Half) {
   3747     if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
   3748       MatchB = true;
   3749       break;
   3750     }
   3751   }
   3752 
   3753   return MatchA && MatchB;
   3754 }
   3755 
   3756 /// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
   3757 /// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
   3758 static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
   3759   EVT VT = SVOp->getValueType(0);
   3760 
   3761   unsigned HalfSize = VT.getVectorNumElements()/2;
   3762 
   3763   unsigned FstHalf = 0, SndHalf = 0;
   3764   for (unsigned i = 0; i < HalfSize; ++i) {
   3765     if (SVOp->getMaskElt(i) > 0) {
   3766       FstHalf = SVOp->getMaskElt(i)/HalfSize;
   3767       break;
   3768     }
   3769   }
   3770   for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
   3771     if (SVOp->getMaskElt(i) > 0) {
   3772       SndHalf = SVOp->getMaskElt(i)/HalfSize;
   3773       break;
   3774     }
   3775   }
   3776 
   3777   return (FstHalf | (SndHalf << 4));
   3778 }
   3779 
   3780 /// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
   3781 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
   3782 /// Note that VPERMIL mask matching is different depending whether theunderlying
   3783 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
   3784 /// to the same elements of the low, but to the higher half of the source.
   3785 /// In VPERMILPD the two lanes could be shuffled independently of each other
   3786 /// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
   3787 static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
   3788   if (!HasAVX)
   3789     return false;
   3790 
   3791   unsigned NumElts = VT.getVectorNumElements();
   3792   // Only match 256-bit with 32/64-bit types
   3793   if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
   3794     return false;
   3795 
   3796   unsigned NumLanes = VT.getSizeInBits()/128;
   3797   unsigned LaneSize = NumElts/NumLanes;
   3798   for (unsigned l = 0; l != NumElts; l += LaneSize) {
   3799     for (unsigned i = 0; i != LaneSize; ++i) {
   3800       if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
   3801         return false;
   3802       if (NumElts != 8 || l == 0)
   3803         continue;
   3804       // VPERMILPS handling
   3805       if (Mask[i] < 0)
   3806         continue;
   3807       if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
   3808         return false;
   3809     }
   3810   }
   3811 
   3812   return true;
   3813 }
   3814 
   3815 /// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
   3816 /// of what x86 movss want. X86 movs requires the lowest  element to be lowest
   3817 /// element of vector 2 and the other elements to come from vector 1 in order.
   3818 static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
   3819                                bool V2IsSplat = false, bool V2IsUndef = false) {
   3820   if (!VT.is128BitVector())
   3821     return false;
   3822 
   3823   unsigned NumOps = VT.getVectorNumElements();
   3824   if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
   3825     return false;
   3826 
   3827   if (!isUndefOrEqual(Mask[0], 0))
   3828     return false;
   3829 
   3830   for (unsigned i = 1; i != NumOps; ++i)
   3831     if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
   3832           (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
   3833           (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
   3834       return false;
   3835 
   3836   return true;
   3837 }
   3838 
   3839 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3840 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
   3841 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
   3842 static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
   3843                            const X86Subtarget *Subtarget) {
   3844   if (!Subtarget->hasSSE3())
   3845     return false;
   3846 
   3847   unsigned NumElems = VT.getVectorNumElements();
   3848 
   3849   if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
   3850       (VT.getSizeInBits() == 256 && NumElems != 8))
   3851     return false;
   3852 
   3853   // "i+1" is the value the indexed mask element must have
   3854   for (unsigned i = 0; i != NumElems; i += 2)
   3855     if (!isUndefOrEqual(Mask[i], i+1) ||
   3856         !isUndefOrEqual(Mask[i+1], i+1))
   3857       return false;
   3858 
   3859   return true;
   3860 }
   3861 
   3862 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3863 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
   3864 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
   3865 static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
   3866                            const X86Subtarget *Subtarget) {
   3867   if (!Subtarget->hasSSE3())
   3868     return false;
   3869 
   3870   unsigned NumElems = VT.getVectorNumElements();
   3871 
   3872   if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
   3873       (VT.getSizeInBits() == 256 && NumElems != 8))
   3874     return false;
   3875 
   3876   // "i" is the value the indexed mask element must have
   3877   for (unsigned i = 0; i != NumElems; i += 2)
   3878     if (!isUndefOrEqual(Mask[i], i) ||
   3879         !isUndefOrEqual(Mask[i+1], i))
   3880       return false;
   3881 
   3882   return true;
   3883 }
   3884 
   3885 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
   3886 /// specifies a shuffle of elements that is suitable for input to 256-bit
   3887 /// version of MOVDDUP.
   3888 static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
   3889   if (!HasAVX || !VT.is256BitVector())
   3890     return false;
   3891 
   3892   unsigned NumElts = VT.getVectorNumElements();
   3893   if (NumElts != 4)
   3894     return false;
   3895 
   3896   for (unsigned i = 0; i != NumElts/2; ++i)
   3897     if (!isUndefOrEqual(Mask[i], 0))
   3898       return false;
   3899   for (unsigned i = NumElts/2; i != NumElts; ++i)
   3900     if (!isUndefOrEqual(Mask[i], NumElts/2))
   3901       return false;
   3902   return true;
   3903 }
   3904 
   3905 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
   3906 /// specifies a shuffle of elements that is suitable for input to 128-bit
   3907 /// version of MOVDDUP.
   3908 static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
   3909   if (!VT.is128BitVector())
   3910     return false;
   3911 
   3912   unsigned e = VT.getVectorNumElements() / 2;
   3913   for (unsigned i = 0; i != e; ++i)
   3914     if (!isUndefOrEqual(Mask[i], i))
   3915       return false;
   3916   for (unsigned i = 0; i != e; ++i)
   3917     if (!isUndefOrEqual(Mask[e+i], i))
   3918       return false;
   3919   return true;
   3920 }
   3921 
   3922 /// isVEXTRACTF128Index - Return true if the specified
   3923 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
   3924 /// suitable for input to VEXTRACTF128.
   3925 bool X86::isVEXTRACTF128Index(SDNode *N) {
   3926   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
   3927     return false;
   3928 
   3929   // The index should be aligned on a 128-bit boundary.
   3930   uint64_t Index =
   3931     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
   3932 
   3933   unsigned VL = N->getValueType(0).getVectorNumElements();
   3934   unsigned VBits = N->getValueType(0).getSizeInBits();
   3935   unsigned ElSize = VBits / VL;
   3936   bool Result = (Index * ElSize) % 128 == 0;
   3937 
   3938   return Result;
   3939 }
   3940 
   3941 /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
   3942 /// operand specifies a subvector insert that is suitable for input to
   3943 /// VINSERTF128.
   3944 bool X86::isVINSERTF128Index(SDNode *N) {
   3945   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
   3946     return false;
   3947 
   3948   // The index should be aligned on a 128-bit boundary.
   3949   uint64_t Index =
   3950     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
   3951 
   3952   unsigned VL = N->getValueType(0).getVectorNumElements();
   3953   unsigned VBits = N->getValueType(0).getSizeInBits();
   3954   unsigned ElSize = VBits / VL;
   3955   bool Result = (Index * ElSize) % 128 == 0;
   3956 
   3957   return Result;
   3958 }
   3959 
   3960 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
   3961 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
   3962 /// Handles 128-bit and 256-bit.
   3963 static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
   3964   EVT VT = N->getValueType(0);
   3965 
   3966   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   3967          "Unsupported vector type for PSHUF/SHUFP");
   3968 
   3969   // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
   3970   // independently on 128-bit lanes.
   3971   unsigned NumElts = VT.getVectorNumElements();
   3972   unsigned NumLanes = VT.getSizeInBits()/128;
   3973   unsigned NumLaneElts = NumElts/NumLanes;
   3974 
   3975   assert((NumLaneElts == 2 || NumLaneElts == 4) &&
   3976          "Only supports 2 or 4 elements per lane");
   3977 
   3978   unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
   3979   unsigned Mask = 0;
   3980   for (unsigned i = 0; i != NumElts; ++i) {
   3981     int Elt = N->getMaskElt(i);
   3982     if (Elt < 0) continue;
   3983     Elt &= NumLaneElts - 1;
   3984     unsigned ShAmt = (i << Shift) % 8;
   3985     Mask |= Elt << ShAmt;
   3986   }
   3987 
   3988   return Mask;
   3989 }
   3990 
   3991 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
   3992 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
   3993 static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
   3994   EVT VT = N->getValueType(0);
   3995 
   3996   assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
   3997          "Unsupported vector type for PSHUFHW");
   3998 
   3999   unsigned NumElts = VT.getVectorNumElements();
   4000 
   4001   unsigned Mask = 0;
   4002   for (unsigned l = 0; l != NumElts; l += 8) {
   4003     // 8 nodes per lane, but we only care about the last 4.
   4004     for (unsigned i = 0; i < 4; ++i) {
   4005       int Elt = N->getMaskElt(l+i+4);
   4006       if (Elt < 0) continue;
   4007       Elt &= 0x3; // only 2-bits.
   4008       Mask |= Elt << (i * 2);
   4009     }
   4010   }
   4011 
   4012   return Mask;
   4013 }
   4014 
   4015 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
   4016 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
   4017 static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
   4018   EVT VT = N->getValueType(0);
   4019 
   4020   assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
   4021          "Unsupported vector type for PSHUFHW");
   4022 
   4023   unsigned NumElts = VT.getVectorNumElements();
   4024 
   4025   unsigned Mask = 0;
   4026   for (unsigned l = 0; l != NumElts; l += 8) {
   4027     // 8 nodes per lane, but we only care about the first 4.
   4028     for (unsigned i = 0; i < 4; ++i) {
   4029       int Elt = N->getMaskElt(l+i);
   4030       if (Elt < 0) continue;
   4031       Elt &= 0x3; // only 2-bits
   4032       Mask |= Elt << (i * 2);
   4033     }
   4034   }
   4035 
   4036   return Mask;
   4037 }
   4038 
   4039 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
   4040 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
   4041 static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
   4042   EVT VT = SVOp->getValueType(0);
   4043   unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
   4044 
   4045   unsigned NumElts = VT.getVectorNumElements();
   4046   unsigned NumLanes = VT.getSizeInBits()/128;
   4047   unsigned NumLaneElts = NumElts/NumLanes;
   4048 
   4049   int Val = 0;
   4050   unsigned i;
   4051   for (i = 0; i != NumElts; ++i) {
   4052     Val = SVOp->getMaskElt(i);
   4053     if (Val >= 0)
   4054       break;
   4055   }
   4056   if (Val >= (int)NumElts)
   4057     Val -= NumElts - NumLaneElts;
   4058 
   4059   assert(Val - i > 0 && "PALIGNR imm should be positive");
   4060   return (Val - i) * EltSize;
   4061 }
   4062 
   4063 /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
   4064 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
   4065 /// instructions.
   4066 unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
   4067   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
   4068     llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
   4069 
   4070   uint64_t Index =
   4071     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
   4072 
   4073   EVT VecVT = N->getOperand(0).getValueType();
   4074   EVT ElVT = VecVT.getVectorElementType();
   4075 
   4076   unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
   4077   return Index / NumElemsPerChunk;
   4078 }
   4079 
   4080 /// getInsertVINSERTF128Immediate - Return the appropriate immediate
   4081 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
   4082 /// instructions.
   4083 unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
   4084   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
   4085     llvm_unreachable("Illegal insert subvector for VINSERTF128");
   4086 
   4087   uint64_t Index =
   4088     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
   4089 
   4090   EVT VecVT = N->getValueType(0);
   4091   EVT ElVT = VecVT.getVectorElementType();
   4092 
   4093   unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
   4094   return Index / NumElemsPerChunk;
   4095 }
   4096 
   4097 /// getShuffleCLImmediate - Return the appropriate immediate to shuffle
   4098 /// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
   4099 /// Handles 256-bit.
   4100 static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
   4101   EVT VT = N->getValueType(0);
   4102 
   4103   unsigned NumElts = VT.getVectorNumElements();
   4104 
   4105   assert((VT.is256BitVector() && NumElts == 4) &&
   4106          "Unsupported vector type for VPERMQ/VPERMPD");
   4107 
   4108   unsigned Mask = 0;
   4109   for (unsigned i = 0; i != NumElts; ++i) {
   4110     int Elt = N->getMaskElt(i);
   4111     if (Elt < 0)
   4112       continue;
   4113     Mask |= Elt << (i*2);
   4114   }
   4115 
   4116   return Mask;
   4117 }
   4118 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
   4119 /// constant +0.0.
   4120 bool X86::isZeroNode(SDValue Elt) {
   4121   return ((isa<ConstantSDNode>(Elt) &&
   4122            cast<ConstantSDNode>(Elt)->isNullValue()) ||
   4123           (isa<ConstantFPSDNode>(Elt) &&
   4124            cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
   4125 }
   4126 
   4127 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
   4128 /// their permute mask.
   4129 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
   4130                                     SelectionDAG &DAG) {
   4131   EVT VT = SVOp->getValueType(0);
   4132   unsigned NumElems = VT.getVectorNumElements();
   4133   SmallVector<int, 8> MaskVec;
   4134 
   4135   for (unsigned i = 0; i != NumElems; ++i) {
   4136     int Idx = SVOp->getMaskElt(i);
   4137     if (Idx >= 0) {
   4138       if (Idx < (int)NumElems)
   4139         Idx += NumElems;
   4140       else
   4141         Idx -= NumElems;
   4142     }
   4143     MaskVec.push_back(Idx);
   4144   }
   4145   return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
   4146                               SVOp->getOperand(0), &MaskVec[0]);
   4147 }
   4148 
   4149 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
   4150 /// match movhlps. The lower half elements should come from upper half of
   4151 /// V1 (and in order), and the upper half elements should come from the upper
   4152 /// half of V2 (and in order).
   4153 static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
   4154   if (!VT.is128BitVector())
   4155     return false;
   4156   if (VT.getVectorNumElements() != 4)
   4157     return false;
   4158   for (unsigned i = 0, e = 2; i != e; ++i)
   4159     if (!isUndefOrEqual(Mask[i], i+2))
   4160       return false;
   4161   for (unsigned i = 2; i != 4; ++i)
   4162     if (!isUndefOrEqual(Mask[i], i+4))
   4163       return false;
   4164   return true;
   4165 }
   4166 
   4167 /// isScalarLoadToVector - Returns true if the node is a scalar load that
   4168 /// is promoted to a vector. It also returns the LoadSDNode by reference if
   4169 /// required.
   4170 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
   4171   if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
   4172     return false;
   4173   N = N->getOperand(0).getNode();
   4174   if (!ISD::isNON_EXTLoad(N))
   4175     return false;
   4176   if (LD)
   4177     *LD = cast<LoadSDNode>(N);
   4178   return true;
   4179 }
   4180 
   4181 // Test whether the given value is a vector value which will be legalized
   4182 // into a load.
   4183 static bool WillBeConstantPoolLoad(SDNode *N) {
   4184   if (N->getOpcode() != ISD::BUILD_VECTOR)
   4185     return false;
   4186 
   4187   // Check for any non-constant elements.
   4188   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
   4189     switch (N->getOperand(i).getNode()->getOpcode()) {
   4190     case ISD::UNDEF:
   4191     case ISD::ConstantFP:
   4192     case ISD::Constant:
   4193       break;
   4194     default:
   4195       return false;
   4196     }
   4197 
   4198   // Vectors of all-zeros and all-ones are materialized with special
   4199   // instructions rather than being loaded.
   4200   return !ISD::isBuildVectorAllZeros(N) &&
   4201          !ISD::isBuildVectorAllOnes(N);
   4202 }
   4203 
   4204 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
   4205 /// match movlp{s|d}. The lower half elements should come from lower half of
   4206 /// V1 (and in order), and the upper half elements should come from the upper
   4207 /// half of V2 (and in order). And since V1 will become the source of the
   4208 /// MOVLP, it must be either a vector load or a scalar load to vector.
   4209 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
   4210                                ArrayRef<int> Mask, EVT VT) {
   4211   if (!VT.is128BitVector())
   4212     return false;
   4213 
   4214   if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
   4215     return false;
   4216   // Is V2 is a vector load, don't do this transformation. We will try to use
   4217   // load folding shufps op.
   4218   if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
   4219     return false;
   4220 
   4221   unsigned NumElems = VT.getVectorNumElements();
   4222 
   4223   if (NumElems != 2 && NumElems != 4)
   4224     return false;
   4225   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
   4226     if (!isUndefOrEqual(Mask[i], i))
   4227       return false;
   4228   for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
   4229     if (!isUndefOrEqual(Mask[i], i+NumElems))
   4230       return false;
   4231   return true;
   4232 }
   4233 
   4234 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
   4235 /// all the same.
   4236 static bool isSplatVector(SDNode *N) {
   4237   if (N->getOpcode() != ISD::BUILD_VECTOR)
   4238     return false;
   4239 
   4240   SDValue SplatValue = N->getOperand(0);
   4241   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
   4242     if (N->getOperand(i) != SplatValue)
   4243       return false;
   4244   return true;
   4245 }
   4246 
   4247 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
   4248 /// to an zero vector.
   4249 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
   4250 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
   4251   SDValue V1 = N->getOperand(0);
   4252   SDValue V2 = N->getOperand(1);
   4253   unsigned NumElems = N->getValueType(0).getVectorNumElements();
   4254   for (unsigned i = 0; i != NumElems; ++i) {
   4255     int Idx = N->getMaskElt(i);
   4256     if (Idx >= (int)NumElems) {
   4257       unsigned Opc = V2.getOpcode();
   4258       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
   4259         continue;
   4260       if (Opc != ISD::BUILD_VECTOR ||
   4261           !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
   4262         return false;
   4263     } else if (Idx >= 0) {
   4264       unsigned Opc = V1.getOpcode();
   4265       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
   4266         continue;
   4267       if (Opc != ISD::BUILD_VECTOR ||
   4268           !X86::isZeroNode(V1.getOperand(Idx)))
   4269         return false;
   4270     }
   4271   }
   4272   return true;
   4273 }
   4274 
   4275 /// getZeroVector - Returns a vector of specified type with all zero elements.
   4276 ///
   4277 static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
   4278                              SelectionDAG &DAG, DebugLoc dl) {
   4279   assert(VT.isVector() && "Expected a vector type");
   4280   unsigned Size = VT.getSizeInBits();
   4281 
   4282   // Always build SSE zero vectors as <4 x i32> bitcasted
   4283   // to their dest type. This ensures they get CSE'd.
   4284   SDValue Vec;
   4285   if (Size == 128) {  // SSE
   4286     if (Subtarget->hasSSE2()) {  // SSE2
   4287       SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
   4288       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
   4289     } else { // SSE1
   4290       SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
   4291       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
   4292     }
   4293   } else if (Size == 256) { // AVX
   4294     if (Subtarget->hasAVX2()) { // AVX2
   4295       SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
   4296       SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   4297       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
   4298     } else {
   4299       // 256-bit logic and arithmetic instructions in AVX are all
   4300       // floating-point, no support for integer ops. Emit fp zeroed vectors.
   4301       SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
   4302       SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   4303       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
   4304     }
   4305   } else
   4306     llvm_unreachable("Unexpected vector type");
   4307 
   4308   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   4309 }
   4310 
   4311 /// getOnesVector - Returns a vector of specified type with all bits set.
   4312 /// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
   4313 /// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
   4314 /// Then bitcast to their original type, ensuring they get CSE'd.
   4315 static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
   4316                              DebugLoc dl) {
   4317   assert(VT.isVector() && "Expected a vector type");
   4318   unsigned Size = VT.getSizeInBits();
   4319 
   4320   SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
   4321   SDValue Vec;
   4322   if (Size == 256) {
   4323     if (HasAVX2) { // AVX2
   4324       SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
   4325       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
   4326     } else { // AVX
   4327       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
   4328       Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
   4329     }
   4330   } else if (Size == 128) {
   4331     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
   4332   } else
   4333     llvm_unreachable("Unexpected vector type");
   4334 
   4335   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   4336 }
   4337 
   4338 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
   4339 /// that point to V2 points to its first element.
   4340 static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
   4341   for (unsigned i = 0; i != NumElems; ++i) {
   4342     if (Mask[i] > (int)NumElems) {
   4343       Mask[i] = NumElems;
   4344     }
   4345   }
   4346 }
   4347 
   4348 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
   4349 /// operation of specified width.
   4350 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   4351                        SDValue V2) {
   4352   unsigned NumElems = VT.getVectorNumElements();
   4353   SmallVector<int, 8> Mask;
   4354   Mask.push_back(NumElems);
   4355   for (unsigned i = 1; i != NumElems; ++i)
   4356     Mask.push_back(i);
   4357   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4358 }
   4359 
   4360 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
   4361 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   4362                           SDValue V2) {
   4363   unsigned NumElems = VT.getVectorNumElements();
   4364   SmallVector<int, 8> Mask;
   4365   for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
   4366     Mask.push_back(i);
   4367     Mask.push_back(i + NumElems);
   4368   }
   4369   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4370 }
   4371 
   4372 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
   4373 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
   4374                           SDValue V2) {
   4375   unsigned NumElems = VT.getVectorNumElements();
   4376   SmallVector<int, 8> Mask;
   4377   for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
   4378     Mask.push_back(i + Half);
   4379     Mask.push_back(i + NumElems + Half);
   4380   }
   4381   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
   4382 }
   4383 
   4384 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
   4385 // a generic shuffle instruction because the target has no such instructions.
   4386 // Generate shuffles which repeat i16 and i8 several times until they can be
   4387 // represented by v4f32 and then be manipulated by target suported shuffles.
   4388 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
   4389   EVT VT = V.getValueType();
   4390   int NumElems = VT.getVectorNumElements();
   4391   DebugLoc dl = V.getDebugLoc();
   4392 
   4393   while (NumElems > 4) {
   4394     if (EltNo < NumElems/2) {
   4395       V = getUnpackl(DAG, dl, VT, V, V);
   4396     } else {
   4397       V = getUnpackh(DAG, dl, VT, V, V);
   4398       EltNo -= NumElems/2;
   4399     }
   4400     NumElems >>= 1;
   4401   }
   4402   return V;
   4403 }
   4404 
   4405 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
   4406 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
   4407   EVT VT = V.getValueType();
   4408   DebugLoc dl = V.getDebugLoc();
   4409   unsigned Size = VT.getSizeInBits();
   4410 
   4411   if (Size == 128) {
   4412     V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
   4413     int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
   4414     V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
   4415                              &SplatMask[0]);
   4416   } else if (Size == 256) {
   4417     // To use VPERMILPS to splat scalars, the second half of indicies must
   4418     // refer to the higher part, which is a duplication of the lower one,
   4419     // because VPERMILPS can only handle in-lane permutations.
   4420     int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
   4421                          EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
   4422 
   4423     V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
   4424     V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
   4425                              &SplatMask[0]);
   4426   } else
   4427     llvm_unreachable("Vector size not supported");
   4428 
   4429   return DAG.getNode(ISD::BITCAST, dl, VT, V);
   4430 }
   4431 
   4432 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
   4433 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
   4434   EVT SrcVT = SV->getValueType(0);
   4435   SDValue V1 = SV->getOperand(0);
   4436   DebugLoc dl = SV->getDebugLoc();
   4437 
   4438   int EltNo = SV->getSplatIndex();
   4439   int NumElems = SrcVT.getVectorNumElements();
   4440   unsigned Size = SrcVT.getSizeInBits();
   4441 
   4442   assert(((Size == 128 && NumElems > 4) || Size == 256) &&
   4443           "Unknown how to promote splat for type");
   4444 
   4445   // Extract the 128-bit part containing the splat element and update
   4446   // the splat element index when it refers to the higher register.
   4447   if (Size == 256) {
   4448     V1 = Extract128BitVector(V1, EltNo, DAG, dl);
   4449     if (EltNo >= NumElems/2)
   4450       EltNo -= NumElems/2;
   4451   }
   4452 
   4453   // All i16 and i8 vector types can't be used directly by a generic shuffle
   4454   // instruction because the target has no such instruction. Generate shuffles
   4455   // which repeat i16 and i8 several times until they fit in i32, and then can
   4456   // be manipulated by target suported shuffles.
   4457   EVT EltVT = SrcVT.getVectorElementType();
   4458   if (EltVT == MVT::i8 || EltVT == MVT::i16)
   4459     V1 = PromoteSplati8i16(V1, DAG, EltNo);
   4460 
   4461   // Recreate the 256-bit vector and place the same 128-bit vector
   4462   // into the low and high part. This is necessary because we want
   4463   // to use VPERM* to shuffle the vectors
   4464   if (Size == 256) {
   4465     V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
   4466   }
   4467 
   4468   return getLegalSplat(DAG, V1, EltNo);
   4469 }
   4470 
   4471 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
   4472 /// vector of zero or undef vector.  This produces a shuffle where the low
   4473 /// element of V2 is swizzled into the zero/undef vector, landing at element
   4474 /// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
   4475 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
   4476                                            bool IsZero,
   4477                                            const X86Subtarget *Subtarget,
   4478                                            SelectionDAG &DAG) {
   4479   EVT VT = V2.getValueType();
   4480   SDValue V1 = IsZero
   4481     ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
   4482   unsigned NumElems = VT.getVectorNumElements();
   4483   SmallVector<int, 16> MaskVec;
   4484   for (unsigned i = 0; i != NumElems; ++i)
   4485     // If this is the insertion idx, put the low elt of V2 here.
   4486     MaskVec.push_back(i == Idx ? NumElems : i);
   4487   return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
   4488 }
   4489 
   4490 /// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
   4491 /// target specific opcode. Returns true if the Mask could be calculated.
   4492 /// Sets IsUnary to true if only uses one source.
   4493 static bool getTargetShuffleMask(SDNode *N, MVT VT,
   4494                                  SmallVectorImpl<int> &Mask, bool &IsUnary) {
   4495   unsigned NumElems = VT.getVectorNumElements();
   4496   SDValue ImmN;
   4497 
   4498   IsUnary = false;
   4499   switch(N->getOpcode()) {
   4500   case X86ISD::SHUFP:
   4501     ImmN = N->getOperand(N->getNumOperands()-1);
   4502     DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4503     break;
   4504   case X86ISD::UNPCKH:
   4505     DecodeUNPCKHMask(VT, Mask);
   4506     break;
   4507   case X86ISD::UNPCKL:
   4508     DecodeUNPCKLMask(VT, Mask);
   4509     break;
   4510   case X86ISD::MOVHLPS:
   4511     DecodeMOVHLPSMask(NumElems, Mask);
   4512     break;
   4513   case X86ISD::MOVLHPS:
   4514     DecodeMOVLHPSMask(NumElems, Mask);
   4515     break;
   4516   case X86ISD::PSHUFD:
   4517   case X86ISD::VPERMILP:
   4518     ImmN = N->getOperand(N->getNumOperands()-1);
   4519     DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4520     IsUnary = true;
   4521     break;
   4522   case X86ISD::PSHUFHW:
   4523     ImmN = N->getOperand(N->getNumOperands()-1);
   4524     DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4525     IsUnary = true;
   4526     break;
   4527   case X86ISD::PSHUFLW:
   4528     ImmN = N->getOperand(N->getNumOperands()-1);
   4529     DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4530     IsUnary = true;
   4531     break;
   4532   case X86ISD::VPERMI:
   4533     ImmN = N->getOperand(N->getNumOperands()-1);
   4534     DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4535     IsUnary = true;
   4536     break;
   4537   case X86ISD::MOVSS:
   4538   case X86ISD::MOVSD: {
   4539     // The index 0 always comes from the first element of the second source,
   4540     // this is why MOVSS and MOVSD are used in the first place. The other
   4541     // elements come from the other positions of the first source vector
   4542     Mask.push_back(NumElems);
   4543     for (unsigned i = 1; i != NumElems; ++i) {
   4544       Mask.push_back(i);
   4545     }
   4546     break;
   4547   }
   4548   case X86ISD::VPERM2X128:
   4549     ImmN = N->getOperand(N->getNumOperands()-1);
   4550     DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
   4551     if (Mask.empty()) return false;
   4552     break;
   4553   case X86ISD::MOVDDUP:
   4554   case X86ISD::MOVLHPD:
   4555   case X86ISD::MOVLPD:
   4556   case X86ISD::MOVLPS:
   4557   case X86ISD::MOVSHDUP:
   4558   case X86ISD::MOVSLDUP:
   4559   case X86ISD::PALIGN:
   4560     // Not yet implemented
   4561     return false;
   4562   default: llvm_unreachable("unknown target shuffle node");
   4563   }
   4564 
   4565   return true;
   4566 }
   4567 
   4568 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
   4569 /// element of the result of the vector shuffle.
   4570 static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
   4571                                    unsigned Depth) {
   4572   if (Depth == 6)
   4573     return SDValue();  // Limit search depth.
   4574 
   4575   SDValue V = SDValue(N, 0);
   4576   EVT VT = V.getValueType();
   4577   unsigned Opcode = V.getOpcode();
   4578 
   4579   // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
   4580   if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
   4581     int Elt = SV->getMaskElt(Index);
   4582 
   4583     if (Elt < 0)
   4584       return DAG.getUNDEF(VT.getVectorElementType());
   4585 
   4586     unsigned NumElems = VT.getVectorNumElements();
   4587     SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
   4588                                          : SV->getOperand(1);
   4589     return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
   4590   }
   4591 
   4592   // Recurse into target specific vector shuffles to find scalars.
   4593   if (isTargetShuffle(Opcode)) {
   4594     MVT ShufVT = V.getValueType().getSimpleVT();
   4595     unsigned NumElems = ShufVT.getVectorNumElements();
   4596     SmallVector<int, 16> ShuffleMask;
   4597     SDValue ImmN;
   4598     bool IsUnary;
   4599 
   4600     if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
   4601       return SDValue();
   4602 
   4603     int Elt = ShuffleMask[Index];
   4604     if (Elt < 0)
   4605       return DAG.getUNDEF(ShufVT.getVectorElementType());
   4606 
   4607     SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
   4608                                          : N->getOperand(1);
   4609     return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
   4610                                Depth+1);
   4611   }
   4612 
   4613   // Actual nodes that may contain scalar elements
   4614   if (Opcode == ISD::BITCAST) {
   4615     V = V.getOperand(0);
   4616     EVT SrcVT = V.getValueType();
   4617     unsigned NumElems = VT.getVectorNumElements();
   4618 
   4619     if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
   4620       return SDValue();
   4621   }
   4622 
   4623   if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   4624     return (Index == 0) ? V.getOperand(0)
   4625                         : DAG.getUNDEF(VT.getVectorElementType());
   4626 
   4627   if (V.getOpcode() == ISD::BUILD_VECTOR)
   4628     return V.getOperand(Index);
   4629 
   4630   return SDValue();
   4631 }
   4632 
   4633 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
   4634 /// shuffle operation which come from a consecutively from a zero. The
   4635 /// search can start in two different directions, from left or right.
   4636 static
   4637 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
   4638                                   bool ZerosFromLeft, SelectionDAG &DAG) {
   4639   unsigned i;
   4640   for (i = 0; i != NumElems; ++i) {
   4641     unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
   4642     SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
   4643     if (!(Elt.getNode() &&
   4644          (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
   4645       break;
   4646   }
   4647 
   4648   return i;
   4649 }
   4650 
   4651 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
   4652 /// correspond consecutively to elements from one of the vector operands,
   4653 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
   4654 static
   4655 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
   4656                               unsigned MaskI, unsigned MaskE, unsigned OpIdx,
   4657                               unsigned NumElems, unsigned &OpNum) {
   4658   bool SeenV1 = false;
   4659   bool SeenV2 = false;
   4660 
   4661   for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
   4662     int Idx = SVOp->getMaskElt(i);
   4663     // Ignore undef indicies
   4664     if (Idx < 0)
   4665       continue;
   4666 
   4667     if (Idx < (int)NumElems)
   4668       SeenV1 = true;
   4669     else
   4670       SeenV2 = true;
   4671 
   4672     // Only accept consecutive elements from the same vector
   4673     if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
   4674       return false;
   4675   }
   4676 
   4677   OpNum = SeenV1 ? 0 : 1;
   4678   return true;
   4679 }
   4680 
   4681 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
   4682 /// logical left shift of a vector.
   4683 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4684                                bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4685   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
   4686   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
   4687               false /* check zeros from right */, DAG);
   4688   unsigned OpSrc;
   4689 
   4690   if (!NumZeros)
   4691     return false;
   4692 
   4693   // Considering the elements in the mask that are not consecutive zeros,
   4694   // check if they consecutively come from only one of the source vectors.
   4695   //
   4696   //               V1 = {X, A, B, C}     0
   4697   //                         \  \  \    /
   4698   //   vector_shuffle V1, V2 <1, 2, 3, X>
   4699   //
   4700   if (!isShuffleMaskConsecutive(SVOp,
   4701             0,                   // Mask Start Index
   4702             NumElems-NumZeros,   // Mask End Index(exclusive)
   4703             NumZeros,            // Where to start looking in the src vector
   4704             NumElems,            // Number of elements in vector
   4705             OpSrc))              // Which source operand ?
   4706     return false;
   4707 
   4708   isLeft = false;
   4709   ShAmt = NumZeros;
   4710   ShVal = SVOp->getOperand(OpSrc);
   4711   return true;
   4712 }
   4713 
   4714 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
   4715 /// logical left shift of a vector.
   4716 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4717                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4718   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
   4719   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
   4720               true /* check zeros from left */, DAG);
   4721   unsigned OpSrc;
   4722 
   4723   if (!NumZeros)
   4724     return false;
   4725 
   4726   // Considering the elements in the mask that are not consecutive zeros,
   4727   // check if they consecutively come from only one of the source vectors.
   4728   //
   4729   //                           0    { A, B, X, X } = V2
   4730   //                          / \    /  /
   4731   //   vector_shuffle V1, V2 <X, X, 4, 5>
   4732   //
   4733   if (!isShuffleMaskConsecutive(SVOp,
   4734             NumZeros,     // Mask Start Index
   4735             NumElems,     // Mask End Index(exclusive)
   4736             0,            // Where to start looking in the src vector
   4737             NumElems,     // Number of elements in vector
   4738             OpSrc))       // Which source operand ?
   4739     return false;
   4740 
   4741   isLeft = true;
   4742   ShAmt = NumZeros;
   4743   ShVal = SVOp->getOperand(OpSrc);
   4744   return true;
   4745 }
   4746 
   4747 /// isVectorShift - Returns true if the shuffle can be implemented as a
   4748 /// logical left or right shift of a vector.
   4749 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
   4750                           bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
   4751   // Although the logic below support any bitwidth size, there are no
   4752   // shift instructions which handle more than 128-bit vectors.
   4753   if (!SVOp->getValueType(0).is128BitVector())
   4754     return false;
   4755 
   4756   if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
   4757       isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
   4758     return true;
   4759 
   4760   return false;
   4761 }
   4762 
   4763 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
   4764 ///
   4765 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
   4766                                        unsigned NumNonZero, unsigned NumZero,
   4767                                        SelectionDAG &DAG,
   4768                                        const X86Subtarget* Subtarget,
   4769                                        const TargetLowering &TLI) {
   4770   if (NumNonZero > 8)
   4771     return SDValue();
   4772 
   4773   DebugLoc dl = Op.getDebugLoc();
   4774   SDValue V(0, 0);
   4775   bool First = true;
   4776   for (unsigned i = 0; i < 16; ++i) {
   4777     bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
   4778     if (ThisIsNonZero && First) {
   4779       if (NumZero)
   4780         V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
   4781       else
   4782         V = DAG.getUNDEF(MVT::v8i16);
   4783       First = false;
   4784     }
   4785 
   4786     if ((i & 1) != 0) {
   4787       SDValue ThisElt(0, 0), LastElt(0, 0);
   4788       bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
   4789       if (LastIsNonZero) {
   4790         LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
   4791                               MVT::i16, Op.getOperand(i-1));
   4792       }
   4793       if (ThisIsNonZero) {
   4794         ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
   4795         ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
   4796                               ThisElt, DAG.getConstant(8, MVT::i8));
   4797         if (LastIsNonZero)
   4798           ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
   4799       } else
   4800         ThisElt = LastElt;
   4801 
   4802       if (ThisElt.getNode())
   4803         V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
   4804                         DAG.getIntPtrConstant(i/2));
   4805     }
   4806   }
   4807 
   4808   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
   4809 }
   4810 
   4811 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
   4812 ///
   4813 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
   4814                                      unsigned NumNonZero, unsigned NumZero,
   4815                                      SelectionDAG &DAG,
   4816                                      const X86Subtarget* Subtarget,
   4817                                      const TargetLowering &TLI) {
   4818   if (NumNonZero > 4)
   4819     return SDValue();
   4820 
   4821   DebugLoc dl = Op.getDebugLoc();
   4822   SDValue V(0, 0);
   4823   bool First = true;
   4824   for (unsigned i = 0; i < 8; ++i) {
   4825     bool isNonZero = (NonZeros & (1 << i)) != 0;
   4826     if (isNonZero) {
   4827       if (First) {
   4828         if (NumZero)
   4829           V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
   4830         else
   4831           V = DAG.getUNDEF(MVT::v8i16);
   4832         First = false;
   4833       }
   4834       V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
   4835                       MVT::v8i16, V, Op.getOperand(i),
   4836                       DAG.getIntPtrConstant(i));
   4837     }
   4838   }
   4839 
   4840   return V;
   4841 }
   4842 
   4843 /// getVShift - Return a vector logical shift node.
   4844 ///
   4845 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
   4846                          unsigned NumBits, SelectionDAG &DAG,
   4847                          const TargetLowering &TLI, DebugLoc dl) {
   4848   assert(VT.is128BitVector() && "Unknown type for VShift");
   4849   EVT ShVT = MVT::v2i64;
   4850   unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
   4851   SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
   4852   return DAG.getNode(ISD::BITCAST, dl, VT,
   4853                      DAG.getNode(Opc, dl, ShVT, SrcOp,
   4854                              DAG.getConstant(NumBits,
   4855                                   TLI.getShiftAmountTy(SrcOp.getValueType()))));
   4856 }
   4857 
   4858 SDValue
   4859 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
   4860                                           SelectionDAG &DAG) const {
   4861 
   4862   // Check if the scalar load can be widened into a vector load. And if
   4863   // the address is "base + cst" see if the cst can be "absorbed" into
   4864   // the shuffle mask.
   4865   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
   4866     SDValue Ptr = LD->getBasePtr();
   4867     if (!ISD::isNormalLoad(LD) || LD->isVolatile())
   4868       return SDValue();
   4869     EVT PVT = LD->getValueType(0);
   4870     if (PVT != MVT::i32 && PVT != MVT::f32)
   4871       return SDValue();
   4872 
   4873     int FI = -1;
   4874     int64_t Offset = 0;
   4875     if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
   4876       FI = FINode->getIndex();
   4877       Offset = 0;
   4878     } else if (DAG.isBaseWithConstantOffset(Ptr) &&
   4879                isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
   4880       FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
   4881       Offset = Ptr.getConstantOperandVal(1);
   4882       Ptr = Ptr.getOperand(0);
   4883     } else {
   4884       return SDValue();
   4885     }
   4886 
   4887     // FIXME: 256-bit vector instructions don't require a strict alignment,
   4888     // improve this code to support it better.
   4889     unsigned RequiredAlign = VT.getSizeInBits()/8;
   4890     SDValue Chain = LD->getChain();
   4891     // Make sure the stack object alignment is at least 16 or 32.
   4892     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   4893     if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
   4894       if (MFI->isFixedObjectIndex(FI)) {
   4895         // Can't change the alignment. FIXME: It's possible to compute
   4896         // the exact stack offset and reference FI + adjust offset instead.
   4897         // If someone *really* cares about this. That's the way to implement it.
   4898         return SDValue();
   4899       } else {
   4900         MFI->setObjectAlignment(FI, RequiredAlign);
   4901       }
   4902     }
   4903 
   4904     // (Offset % 16 or 32) must be multiple of 4. Then address is then
   4905     // Ptr + (Offset & ~15).
   4906     if (Offset < 0)
   4907       return SDValue();
   4908     if ((Offset % RequiredAlign) & 3)
   4909       return SDValue();
   4910     int64_t StartOffset = Offset & ~(RequiredAlign-1);
   4911     if (StartOffset)
   4912       Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
   4913                         Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
   4914 
   4915     int EltNo = (Offset - StartOffset) >> 2;
   4916     unsigned NumElems = VT.getVectorNumElements();
   4917 
   4918     EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
   4919     SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
   4920                              LD->getPointerInfo().getWithOffset(StartOffset),
   4921                              false, false, false, 0);
   4922 
   4923     SmallVector<int, 8> Mask;
   4924     for (unsigned i = 0; i != NumElems; ++i)
   4925       Mask.push_back(EltNo);
   4926 
   4927     return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
   4928   }
   4929 
   4930   return SDValue();
   4931 }
   4932 
   4933 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
   4934 /// vector of type 'VT', see if the elements can be replaced by a single large
   4935 /// load which has the same value as a build_vector whose operands are 'elts'.
   4936 ///
   4937 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
   4938 ///
   4939 /// FIXME: we'd also like to handle the case where the last elements are zero
   4940 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
   4941 /// There's even a handy isZeroNode for that purpose.
   4942 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
   4943                                         DebugLoc &DL, SelectionDAG &DAG) {
   4944   EVT EltVT = VT.getVectorElementType();
   4945   unsigned NumElems = Elts.size();
   4946 
   4947   LoadSDNode *LDBase = NULL;
   4948   unsigned LastLoadedElt = -1U;
   4949 
   4950   // For each element in the initializer, see if we've found a load or an undef.
   4951   // If we don't find an initial load element, or later load elements are
   4952   // non-consecutive, bail out.
   4953   for (unsigned i = 0; i < NumElems; ++i) {
   4954     SDValue Elt = Elts[i];
   4955 
   4956     if (!Elt.getNode() ||
   4957         (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
   4958       return SDValue();
   4959     if (!LDBase) {
   4960       if (Elt.getNode()->getOpcode() == ISD::UNDEF)
   4961         return SDValue();
   4962       LDBase = cast<LoadSDNode>(Elt.getNode());
   4963       LastLoadedElt = i;
   4964       continue;
   4965     }
   4966     if (Elt.getOpcode() == ISD::UNDEF)
   4967       continue;
   4968 
   4969     LoadSDNode *LD = cast<LoadSDNode>(Elt);
   4970     if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
   4971       return SDValue();
   4972     LastLoadedElt = i;
   4973   }
   4974 
   4975   // If we have found an entire vector of loads and undefs, then return a large
   4976   // load of the entire vector width starting at the base pointer.  If we found
   4977   // consecutive loads for the low half, generate a vzext_load node.
   4978   if (LastLoadedElt == NumElems - 1) {
   4979     if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
   4980       return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
   4981                          LDBase->getPointerInfo(),
   4982                          LDBase->isVolatile(), LDBase->isNonTemporal(),
   4983                          LDBase->isInvariant(), 0);
   4984     return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
   4985                        LDBase->getPointerInfo(),
   4986                        LDBase->isVolatile(), LDBase->isNonTemporal(),
   4987                        LDBase->isInvariant(), LDBase->getAlignment());
   4988   }
   4989   if (NumElems == 4 && LastLoadedElt == 1 &&
   4990       DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
   4991     SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
   4992     SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
   4993     SDValue ResNode =
   4994         DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
   4995                                 LDBase->getPointerInfo(),
   4996                                 LDBase->getAlignment(),
   4997                                 false/*isVolatile*/, true/*ReadMem*/,
   4998                                 false/*WriteMem*/);
   4999 
   5000     // Make sure the newly-created LOAD is in the same position as LDBase in
   5001     // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
   5002     // update uses of LDBase's output chain to use the TokenFactor.
   5003     if (LDBase->hasAnyUseOfValue(1)) {
   5004       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   5005                              SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
   5006       DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
   5007       DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
   5008                              SDValue(ResNode.getNode(), 1));
   5009     }
   5010 
   5011     return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
   5012   }
   5013   return SDValue();
   5014 }
   5015 
   5016 /// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
   5017 /// to generate a splat value for the following cases:
   5018 /// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
   5019 /// 2. A splat shuffle which uses a scalar_to_vector node which comes from
   5020 /// a scalar load, or a constant.
   5021 /// The VBROADCAST node is returned when a pattern is found,
   5022 /// or SDValue() otherwise.
   5023 SDValue
   5024 X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
   5025   if (!Subtarget->hasAVX())
   5026     return SDValue();
   5027 
   5028   EVT VT = Op.getValueType();
   5029   DebugLoc dl = Op.getDebugLoc();
   5030 
   5031   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   5032          "Unsupported vector type for broadcast.");
   5033 
   5034   SDValue Ld;
   5035   bool ConstSplatVal;
   5036 
   5037   switch (Op.getOpcode()) {
   5038     default:
   5039       // Unknown pattern found.
   5040       return SDValue();
   5041 
   5042     case ISD::BUILD_VECTOR: {
   5043       // The BUILD_VECTOR node must be a splat.
   5044       if (!isSplatVector(Op.getNode()))
   5045         return SDValue();
   5046 
   5047       Ld = Op.getOperand(0);
   5048       ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
   5049                      Ld.getOpcode() == ISD::ConstantFP);
   5050 
   5051       // The suspected load node has several users. Make sure that all
   5052       // of its users are from the BUILD_VECTOR node.
   5053       // Constants may have multiple users.
   5054       if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
   5055         return SDValue();
   5056       break;
   5057     }
   5058 
   5059     case ISD::VECTOR_SHUFFLE: {
   5060       ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   5061 
   5062       // Shuffles must have a splat mask where the first element is
   5063       // broadcasted.
   5064       if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
   5065         return SDValue();
   5066 
   5067       SDValue Sc = Op.getOperand(0);
   5068       if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
   5069           Sc.getOpcode() != ISD::BUILD_VECTOR) {
   5070 
   5071         if (!Subtarget->hasAVX2())
   5072           return SDValue();
   5073 
   5074         // Use the register form of the broadcast instruction available on AVX2.
   5075         if (VT.is256BitVector())
   5076           Sc = Extract128BitVector(Sc, 0, DAG, dl);
   5077         return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
   5078       }
   5079 
   5080       Ld = Sc.getOperand(0);
   5081       ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
   5082                        Ld.getOpcode() == ISD::ConstantFP);
   5083 
   5084       // The scalar_to_vector node and the suspected
   5085       // load node must have exactly one user.
   5086       // Constants may have multiple users.
   5087       if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
   5088         return SDValue();
   5089       break;
   5090     }
   5091   }
   5092 
   5093   bool Is256 = VT.is256BitVector();
   5094 
   5095   // Handle the broadcasting a single constant scalar from the constant pool
   5096   // into a vector. On Sandybridge it is still better to load a constant vector
   5097   // from the constant pool and not to broadcast it from a scalar.
   5098   if (ConstSplatVal && Subtarget->hasAVX2()) {
   5099     EVT CVT = Ld.getValueType();
   5100     assert(!CVT.isVector() && "Must not broadcast a vector type");
   5101     unsigned ScalarSize = CVT.getSizeInBits();
   5102 
   5103     if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
   5104       const Constant *C = 0;
   5105       if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
   5106         C = CI->getConstantIntValue();
   5107       else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
   5108         C = CF->getConstantFPValue();
   5109 
   5110       assert(C && "Invalid constant type");
   5111 
   5112       SDValue CP = DAG.getConstantPool(C, getPointerTy());
   5113       unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
   5114       Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
   5115                        MachinePointerInfo::getConstantPool(),
   5116                        false, false, false, Alignment);
   5117 
   5118       return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
   5119     }
   5120   }
   5121 
   5122   bool IsLoad = ISD::isNormalLoad(Ld.getNode());
   5123   unsigned ScalarSize = Ld.getValueType().getSizeInBits();
   5124 
   5125   // Handle AVX2 in-register broadcasts.
   5126   if (!IsLoad && Subtarget->hasAVX2() &&
   5127       (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
   5128     return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
   5129 
   5130   // The scalar source must be a normal load.
   5131   if (!IsLoad)
   5132     return SDValue();
   5133 
   5134   if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
   5135     return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
   5136 
   5137   // The integer check is needed for the 64-bit into 128-bit so it doesn't match
   5138   // double since there is no vbroadcastsd xmm
   5139   if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
   5140     if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
   5141       return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
   5142   }
   5143 
   5144   // Unsupported broadcast.
   5145   return SDValue();
   5146 }
   5147 
   5148 // LowerVectorFpExtend - Recognize the scalarized FP_EXTEND from v2f32 to v2f64
   5149 // and convert it into X86ISD::VFPEXT due to the current ISD::FP_EXTEND has the
   5150 // constraint of matching input/output vector elements.
   5151 SDValue
   5152 X86TargetLowering::LowerVectorFpExtend(SDValue &Op, SelectionDAG &DAG) const {
   5153   DebugLoc DL = Op.getDebugLoc();
   5154   SDNode *N = Op.getNode();
   5155   EVT VT = Op.getValueType();
   5156   unsigned NumElts = Op.getNumOperands();
   5157 
   5158   // Check supported types and sub-targets.
   5159   //
   5160   // Only v2f32 -> v2f64 needs special handling.
   5161   if (VT != MVT::v2f64 || !Subtarget->hasSSE2())
   5162     return SDValue();
   5163 
   5164   SDValue VecIn;
   5165   EVT VecInVT;
   5166   SmallVector<int, 8> Mask;
   5167   EVT SrcVT = MVT::Other;
   5168 
   5169   // Check the patterns could be translated into X86vfpext.
   5170   for (unsigned i = 0; i < NumElts; ++i) {
   5171     SDValue In = N->getOperand(i);
   5172     unsigned Opcode = In.getOpcode();
   5173 
   5174     // Skip if the element is undefined.
   5175     if (Opcode == ISD::UNDEF) {
   5176       Mask.push_back(-1);
   5177       continue;
   5178     }
   5179 
   5180     // Quit if one of the elements is not defined from 'fpext'.
   5181     if (Opcode != ISD::FP_EXTEND)
   5182       return SDValue();
   5183 
   5184     // Check how the source of 'fpext' is defined.
   5185     SDValue L2In = In.getOperand(0);
   5186     EVT L2InVT = L2In.getValueType();
   5187 
   5188     // Check the original type
   5189     if (SrcVT == MVT::Other)
   5190       SrcVT = L2InVT;
   5191     else if (SrcVT != L2InVT) // Quit if non-homogenous typed.
   5192       return SDValue();
   5193 
   5194     // Check whether the value being 'fpext'ed is extracted from the same
   5195     // source.
   5196     Opcode = L2In.getOpcode();
   5197 
   5198     // Quit if it's not extracted with a constant index.
   5199     if (Opcode != ISD::EXTRACT_VECTOR_ELT ||
   5200         !isa<ConstantSDNode>(L2In.getOperand(1)))
   5201       return SDValue();
   5202 
   5203     SDValue ExtractedFromVec = L2In.getOperand(0);
   5204 
   5205     if (VecIn.getNode() == 0) {
   5206       VecIn = ExtractedFromVec;
   5207       VecInVT = ExtractedFromVec.getValueType();
   5208     } else if (VecIn != ExtractedFromVec) // Quit if built from more than 1 vec.
   5209       return SDValue();
   5210 
   5211     Mask.push_back(cast<ConstantSDNode>(L2In.getOperand(1))->getZExtValue());
   5212   }
   5213 
   5214   // Quit if all operands of BUILD_VECTOR are undefined.
   5215   if (!VecIn.getNode())
   5216     return SDValue();
   5217 
   5218   // Fill the remaining mask as undef.
   5219   for (unsigned i = NumElts; i < VecInVT.getVectorNumElements(); ++i)
   5220     Mask.push_back(-1);
   5221 
   5222   return DAG.getNode(X86ISD::VFPEXT, DL, VT,
   5223                      DAG.getVectorShuffle(VecInVT, DL,
   5224                                           VecIn, DAG.getUNDEF(VecInVT),
   5225                                           &Mask[0]));
   5226 }
   5227 
   5228 SDValue
   5229 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
   5230   DebugLoc dl = Op.getDebugLoc();
   5231 
   5232   EVT VT = Op.getValueType();
   5233   EVT ExtVT = VT.getVectorElementType();
   5234   unsigned NumElems = Op.getNumOperands();
   5235 
   5236   // Vectors containing all zeros can be matched by pxor and xorps later
   5237   if (ISD::isBuildVectorAllZeros(Op.getNode())) {
   5238     // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
   5239     // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
   5240     if (VT == MVT::v4i32 || VT == MVT::v8i32)
   5241       return Op;
   5242 
   5243     return getZeroVector(VT, Subtarget, DAG, dl);
   5244   }
   5245 
   5246   // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
   5247   // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
   5248   // vpcmpeqd on 256-bit vectors.
   5249   if (ISD::isBuildVectorAllOnes(Op.getNode())) {
   5250     if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
   5251       return Op;
   5252 
   5253     return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
   5254   }
   5255 
   5256   SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
   5257   if (Broadcast.getNode())
   5258     return Broadcast;
   5259 
   5260   SDValue FpExt = LowerVectorFpExtend(Op, DAG);
   5261   if (FpExt.getNode())
   5262     return FpExt;
   5263 
   5264   unsigned EVTBits = ExtVT.getSizeInBits();
   5265 
   5266   unsigned NumZero  = 0;
   5267   unsigned NumNonZero = 0;
   5268   unsigned NonZeros = 0;
   5269   bool IsAllConstants = true;
   5270   SmallSet<SDValue, 8> Values;
   5271   for (unsigned i = 0; i < NumElems; ++i) {
   5272     SDValue Elt = Op.getOperand(i);
   5273     if (Elt.getOpcode() == ISD::UNDEF)
   5274       continue;
   5275     Values.insert(Elt);
   5276     if (Elt.getOpcode() != ISD::Constant &&
   5277         Elt.getOpcode() != ISD::ConstantFP)
   5278       IsAllConstants = false;
   5279     if (X86::isZeroNode(Elt))
   5280       NumZero++;
   5281     else {
   5282       NonZeros |= (1 << i);
   5283       NumNonZero++;
   5284     }
   5285   }
   5286 
   5287   // All undef vector. Return an UNDEF.  All zero vectors were handled above.
   5288   if (NumNonZero == 0)
   5289     return DAG.getUNDEF(VT);
   5290 
   5291   // Special case for single non-zero, non-undef, element.
   5292   if (NumNonZero == 1) {
   5293     unsigned Idx = CountTrailingZeros_32(NonZeros);
   5294     SDValue Item = Op.getOperand(Idx);
   5295 
   5296     // If this is an insertion of an i64 value on x86-32, and if the top bits of
   5297     // the value are obviously zero, truncate the value to i32 and do the
   5298     // insertion that way.  Only do this if the value is non-constant or if the
   5299     // value is a constant being inserted into element 0.  It is cheaper to do
   5300     // a constant pool load than it is to do a movd + shuffle.
   5301     if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
   5302         (!IsAllConstants || Idx == 0)) {
   5303       if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
   5304         // Handle SSE only.
   5305         assert(VT == MVT::v2i64 && "Expected an SSE value type!");
   5306         EVT VecVT = MVT::v4i32;
   5307         unsigned VecElts = 4;
   5308 
   5309         // Truncate the value (which may itself be a constant) to i32, and
   5310         // convert it to a vector with movd (S2V+shuffle to zero extend).
   5311         Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
   5312         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
   5313         Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
   5314 
   5315         // Now we have our 32-bit value zero extended in the low element of
   5316         // a vector.  If Idx != 0, swizzle it into place.
   5317         if (Idx != 0) {
   5318           SmallVector<int, 4> Mask;
   5319           Mask.push_back(Idx);
   5320           for (unsigned i = 1; i != VecElts; ++i)
   5321             Mask.push_back(i);
   5322           Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
   5323                                       &Mask[0]);
   5324         }
   5325         return DAG.getNode(ISD::BITCAST, dl, VT, Item);
   5326       }
   5327     }
   5328 
   5329     // If we have a constant or non-constant insertion into the low element of
   5330     // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
   5331     // the rest of the elements.  This will be matched as movd/movq/movss/movsd
   5332     // depending on what the source datatype is.
   5333     if (Idx == 0) {
   5334       if (NumZero == 0)
   5335         return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5336 
   5337       if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
   5338           (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
   5339         if (VT.is256BitVector()) {
   5340           SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
   5341           return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
   5342                              Item, DAG.getIntPtrConstant(0));
   5343         }
   5344         assert(VT.is128BitVector() && "Expected an SSE value type!");
   5345         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5346         // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
   5347         return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
   5348       }
   5349 
   5350       if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
   5351         Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
   5352         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
   5353         if (VT.is256BitVector()) {
   5354           SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
   5355           Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
   5356         } else {
   5357           assert(VT.is128BitVector() && "Expected an SSE value type!");
   5358           Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
   5359         }
   5360         return DAG.getNode(ISD::BITCAST, dl, VT, Item);
   5361       }
   5362     }
   5363 
   5364     // Is it a vector logical left shift?
   5365     if (NumElems == 2 && Idx == 1 &&
   5366         X86::isZeroNode(Op.getOperand(0)) &&
   5367         !X86::isZeroNode(Op.getOperand(1))) {
   5368       unsigned NumBits = VT.getSizeInBits();
   5369       return getVShift(true, VT,
   5370                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   5371                                    VT, Op.getOperand(1)),
   5372                        NumBits/2, DAG, *this, dl);
   5373     }
   5374 
   5375     if (IsAllConstants) // Otherwise, it's better to do a constpool load.
   5376       return SDValue();
   5377 
   5378     // Otherwise, if this is a vector with i32 or f32 elements, and the element
   5379     // is a non-constant being inserted into an element other than the low one,
   5380     // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
   5381     // movd/movss) to move this into the low element, then shuffle it into
   5382     // place.
   5383     if (EVTBits == 32) {
   5384       Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
   5385 
   5386       // Turn it into a shuffle of zero and zero-extended scalar to vector.
   5387       Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
   5388       SmallVector<int, 8> MaskVec;
   5389       for (unsigned i = 0; i != NumElems; ++i)
   5390         MaskVec.push_back(i == Idx ? 0 : 1);
   5391       return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
   5392     }
   5393   }
   5394 
   5395   // Splat is obviously ok. Let legalizer expand it to a shuffle.
   5396   if (Values.size() == 1) {
   5397     if (EVTBits == 32) {
   5398       // Instead of a shuffle like this:
   5399       // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
   5400       // Check if it's possible to issue this instead.
   5401       // shuffle (vload ptr)), undef, <1, 1, 1, 1>
   5402       unsigned Idx = CountTrailingZeros_32(NonZeros);
   5403       SDValue Item = Op.getOperand(Idx);
   5404       if (Op.getNode()->isOnlyUserOf(Item.getNode()))
   5405         return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
   5406     }
   5407     return SDValue();
   5408   }
   5409 
   5410   // A vector full of immediates; various special cases are already
   5411   // handled, so this is best done with a single constant-pool load.
   5412   if (IsAllConstants)
   5413     return SDValue();
   5414 
   5415   // For AVX-length vectors, build the individual 128-bit pieces and use
   5416   // shuffles to put them in place.
   5417   if (VT.is256BitVector()) {
   5418     SmallVector<SDValue, 32> V;
   5419     for (unsigned i = 0; i != NumElems; ++i)
   5420       V.push_back(Op.getOperand(i));
   5421 
   5422     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
   5423 
   5424     // Build both the lower and upper subvector.
   5425     SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
   5426     SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
   5427                                 NumElems/2);
   5428 
   5429     // Recreate the wider vector with the lower and upper part.
   5430     return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
   5431   }
   5432 
   5433   // Let legalizer expand 2-wide build_vectors.
   5434   if (EVTBits == 64) {
   5435     if (NumNonZero == 1) {
   5436       // One half is zero or undef.
   5437       unsigned Idx = CountTrailingZeros_32(NonZeros);
   5438       SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
   5439                                  Op.getOperand(Idx));
   5440       return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
   5441     }
   5442     return SDValue();
   5443   }
   5444 
   5445   // If element VT is < 32 bits, convert it to inserts into a zero vector.
   5446   if (EVTBits == 8 && NumElems == 16) {
   5447     SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
   5448                                         Subtarget, *this);
   5449     if (V.getNode()) return V;
   5450   }
   5451 
   5452   if (EVTBits == 16 && NumElems == 8) {
   5453     SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
   5454                                       Subtarget, *this);
   5455     if (V.getNode()) return V;
   5456   }
   5457 
   5458   // If element VT is == 32 bits, turn it into a number of shuffles.
   5459   SmallVector<SDValue, 8> V(NumElems);
   5460   if (NumElems == 4 && NumZero > 0) {
   5461     for (unsigned i = 0; i < 4; ++i) {
   5462       bool isZero = !(NonZeros & (1 << i));
   5463       if (isZero)
   5464         V[i] = getZeroVector(VT, Subtarget, DAG, dl);
   5465       else
   5466         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
   5467     }
   5468 
   5469     for (unsigned i = 0; i < 2; ++i) {
   5470       switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
   5471         default: break;
   5472         case 0:
   5473           V[i] = V[i*2];  // Must be a zero vector.
   5474           break;
   5475         case 1:
   5476           V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
   5477           break;
   5478         case 2:
   5479           V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
   5480           break;
   5481         case 3:
   5482           V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
   5483           break;
   5484       }
   5485     }
   5486 
   5487     bool Reverse1 = (NonZeros & 0x3) == 2;
   5488     bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
   5489     int MaskVec[] = {
   5490       Reverse1 ? 1 : 0,
   5491       Reverse1 ? 0 : 1,
   5492       static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
   5493       static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
   5494     };
   5495     return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
   5496   }
   5497 
   5498   if (Values.size() > 1 && VT.is128BitVector()) {
   5499     // Check for a build vector of consecutive loads.
   5500     for (unsigned i = 0; i < NumElems; ++i)
   5501       V[i] = Op.getOperand(i);
   5502 
   5503     // Check for elements which are consecutive loads.
   5504     SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
   5505     if (LD.getNode())
   5506       return LD;
   5507 
   5508     // For SSE 4.1, use insertps to put the high elements into the low element.
   5509     if (getSubtarget()->hasSSE41()) {
   5510       SDValue Result;
   5511       if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
   5512         Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
   5513       else
   5514         Result = DAG.getUNDEF(VT);
   5515 
   5516       for (unsigned i = 1; i < NumElems; ++i) {
   5517         if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
   5518         Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
   5519                              Op.getOperand(i), DAG.getIntPtrConstant(i));
   5520       }
   5521       return Result;
   5522     }
   5523 
   5524     // Otherwise, expand into a number of unpckl*, start by extending each of
   5525     // our (non-undef) elements to the full vector width with the element in the
   5526     // bottom slot of the vector (which generates no code for SSE).
   5527     for (unsigned i = 0; i < NumElems; ++i) {
   5528       if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
   5529         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
   5530       else
   5531         V[i] = DAG.getUNDEF(VT);
   5532     }
   5533 
   5534     // Next, we iteratively mix elements, e.g. for v4f32:
   5535     //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
   5536     //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
   5537     //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
   5538     unsigned EltStride = NumElems >> 1;
   5539     while (EltStride != 0) {
   5540       for (unsigned i = 0; i < EltStride; ++i) {
   5541         // If V[i+EltStride] is undef and this is the first round of mixing,
   5542         // then it is safe to just drop this shuffle: V[i] is already in the
   5543         // right place, the one element (since it's the first round) being
   5544         // inserted as undef can be dropped.  This isn't safe for successive
   5545         // rounds because they will permute elements within both vectors.
   5546         if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
   5547             EltStride == NumElems/2)
   5548           continue;
   5549 
   5550         V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
   5551       }
   5552       EltStride >>= 1;
   5553     }
   5554     return V[0];
   5555   }
   5556   return SDValue();
   5557 }
   5558 
   5559 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
   5560 // to create 256-bit vectors from two other 128-bit ones.
   5561 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   5562   DebugLoc dl = Op.getDebugLoc();
   5563   EVT ResVT = Op.getValueType();
   5564 
   5565   assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
   5566 
   5567   SDValue V1 = Op.getOperand(0);
   5568   SDValue V2 = Op.getOperand(1);
   5569   unsigned NumElems = ResVT.getVectorNumElements();
   5570 
   5571   return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
   5572 }
   5573 
   5574 SDValue
   5575 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
   5576   assert(Op.getNumOperands() == 2);
   5577 
   5578   // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
   5579   // from two other 128-bit ones.
   5580   return LowerAVXCONCAT_VECTORS(Op, DAG);
   5581 }
   5582 
   5583 // Try to lower a shuffle node into a simple blend instruction.
   5584 static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
   5585                                           const X86Subtarget *Subtarget,
   5586                                           SelectionDAG &DAG) {
   5587   SDValue V1 = SVOp->getOperand(0);
   5588   SDValue V2 = SVOp->getOperand(1);
   5589   DebugLoc dl = SVOp->getDebugLoc();
   5590   MVT VT = SVOp->getValueType(0).getSimpleVT();
   5591   unsigned NumElems = VT.getVectorNumElements();
   5592 
   5593   if (!Subtarget->hasSSE41())
   5594     return SDValue();
   5595 
   5596   unsigned ISDNo = 0;
   5597   MVT OpTy;
   5598 
   5599   switch (VT.SimpleTy) {
   5600   default: return SDValue();
   5601   case MVT::v8i16:
   5602     ISDNo = X86ISD::BLENDPW;
   5603     OpTy = MVT::v8i16;
   5604     break;
   5605   case MVT::v4i32:
   5606   case MVT::v4f32:
   5607     ISDNo = X86ISD::BLENDPS;
   5608     OpTy = MVT::v4f32;
   5609     break;
   5610   case MVT::v2i64:
   5611   case MVT::v2f64:
   5612     ISDNo = X86ISD::BLENDPD;
   5613     OpTy = MVT::v2f64;
   5614     break;
   5615   case MVT::v8i32:
   5616   case MVT::v8f32:
   5617     if (!Subtarget->hasAVX())
   5618       return SDValue();
   5619     ISDNo = X86ISD::BLENDPS;
   5620     OpTy = MVT::v8f32;
   5621     break;
   5622   case MVT::v4i64:
   5623   case MVT::v4f64:
   5624     if (!Subtarget->hasAVX())
   5625       return SDValue();
   5626     ISDNo = X86ISD::BLENDPD;
   5627     OpTy = MVT::v4f64;
   5628     break;
   5629   }
   5630   assert(ISDNo && "Invalid Op Number");
   5631 
   5632   unsigned MaskVals = 0;
   5633 
   5634   for (unsigned i = 0; i != NumElems; ++i) {
   5635     int EltIdx = SVOp->getMaskElt(i);
   5636     if (EltIdx == (int)i || EltIdx < 0)
   5637       MaskVals |= (1<<i);
   5638     else if (EltIdx == (int)(i + NumElems))
   5639       continue; // Bit is set to zero;
   5640     else
   5641       return SDValue();
   5642   }
   5643 
   5644   V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
   5645   V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
   5646   SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
   5647                              DAG.getConstant(MaskVals, MVT::i32));
   5648   return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
   5649 }
   5650 
   5651 // v8i16 shuffles - Prefer shuffles in the following order:
   5652 // 1. [all]   pshuflw, pshufhw, optional move
   5653 // 2. [ssse3] 1 x pshufb
   5654 // 3. [ssse3] 2 x pshufb + 1 x por
   5655 // 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
   5656 SDValue
   5657 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
   5658                                             SelectionDAG &DAG) const {
   5659   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   5660   SDValue V1 = SVOp->getOperand(0);
   5661   SDValue V2 = SVOp->getOperand(1);
   5662   DebugLoc dl = SVOp->getDebugLoc();
   5663   SmallVector<int, 8> MaskVals;
   5664 
   5665   // Determine if more than 1 of the words in each of the low and high quadwords
   5666   // of the result come from the same quadword of one of the two inputs.  Undef
   5667   // mask values count as coming from any quadword, for better codegen.
   5668   unsigned LoQuad[] = { 0, 0, 0, 0 };
   5669   unsigned HiQuad[] = { 0, 0, 0, 0 };
   5670   std::bitset<4> InputQuads;
   5671   for (unsigned i = 0; i < 8; ++i) {
   5672     unsigned *Quad = i < 4 ? LoQuad : HiQuad;
   5673     int EltIdx = SVOp->getMaskElt(i);
   5674     MaskVals.push_back(EltIdx);
   5675     if (EltIdx < 0) {
   5676       ++Quad[0];
   5677       ++Quad[1];
   5678       ++Quad[2];
   5679       ++Quad[3];
   5680       continue;
   5681     }
   5682     ++Quad[EltIdx / 4];
   5683     InputQuads.set(EltIdx / 4);
   5684   }
   5685 
   5686   int BestLoQuad = -1;
   5687   unsigned MaxQuad = 1;
   5688   for (unsigned i = 0; i < 4; ++i) {
   5689     if (LoQuad[i] > MaxQuad) {
   5690       BestLoQuad = i;
   5691       MaxQuad = LoQuad[i];
   5692     }
   5693   }
   5694 
   5695   int BestHiQuad = -1;
   5696   MaxQuad = 1;
   5697   for (unsigned i = 0; i < 4; ++i) {
   5698     if (HiQuad[i] > MaxQuad) {
   5699       BestHiQuad = i;
   5700       MaxQuad = HiQuad[i];
   5701     }
   5702   }
   5703 
   5704   // For SSSE3, If all 8 words of the result come from only 1 quadword of each
   5705   // of the two input vectors, shuffle them into one input vector so only a
   5706   // single pshufb instruction is necessary. If There are more than 2 input
   5707   // quads, disable the next transformation since it does not help SSSE3.
   5708   bool V1Used = InputQuads[0] || InputQuads[1];
   5709   bool V2Used = InputQuads[2] || InputQuads[3];
   5710   if (Subtarget->hasSSSE3()) {
   5711     if (InputQuads.count() == 2 && V1Used && V2Used) {
   5712       BestLoQuad = InputQuads[0] ? 0 : 1;
   5713       BestHiQuad = InputQuads[2] ? 2 : 3;
   5714     }
   5715     if (InputQuads.count() > 2) {
   5716       BestLoQuad = -1;
   5717       BestHiQuad = -1;
   5718     }
   5719   }
   5720 
   5721   // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
   5722   // the shuffle mask.  If a quad is scored as -1, that means that it contains
   5723   // words from all 4 input quadwords.
   5724   SDValue NewV;
   5725   if (BestLoQuad >= 0 || BestHiQuad >= 0) {
   5726     int MaskV[] = {
   5727       BestLoQuad < 0 ? 0 : BestLoQuad,
   5728       BestHiQuad < 0 ? 1 : BestHiQuad
   5729     };
   5730     NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
   5731                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
   5732                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
   5733     NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
   5734 
   5735     // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
   5736     // source words for the shuffle, to aid later transformations.
   5737     bool AllWordsInNewV = true;
   5738     bool InOrder[2] = { true, true };
   5739     for (unsigned i = 0; i != 8; ++i) {
   5740       int idx = MaskVals[i];
   5741       if (idx != (int)i)
   5742         InOrder[i/4] = false;
   5743       if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
   5744         continue;
   5745       AllWordsInNewV = false;
   5746       break;
   5747     }
   5748 
   5749     bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
   5750     if (AllWordsInNewV) {
   5751       for (int i = 0; i != 8; ++i) {
   5752         int idx = MaskVals[i];
   5753         if (idx < 0)
   5754           continue;
   5755         idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
   5756         if ((idx != i) && idx < 4)
   5757           pshufhw = false;
   5758         if ((idx != i) && idx > 3)
   5759           pshuflw = false;
   5760       }
   5761       V1 = NewV;
   5762       V2Used = false;
   5763       BestLoQuad = 0;
   5764       BestHiQuad = 1;
   5765     }
   5766 
   5767     // If we've eliminated the use of V2, and the new mask is a pshuflw or
   5768     // pshufhw, that's as cheap as it gets.  Return the new shuffle.
   5769     if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
   5770       unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
   5771       unsigned TargetMask = 0;
   5772       NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
   5773                                   DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
   5774       ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
   5775       TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
   5776                              getShufflePSHUFLWImmediate(SVOp);
   5777       V1 = NewV.getOperand(0);
   5778       return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
   5779     }
   5780   }
   5781 
   5782   // If we have SSSE3, and all words of the result are from 1 input vector,
   5783   // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
   5784   // is present, fall back to case 4.
   5785   if (Subtarget->hasSSSE3()) {
   5786     SmallVector<SDValue,16> pshufbMask;
   5787 
   5788     // If we have elements from both input vectors, set the high bit of the
   5789     // shuffle mask element to zero out elements that come from V2 in the V1
   5790     // mask, and elements that come from V1 in the V2 mask, so that the two
   5791     // results can be OR'd together.
   5792     bool TwoInputs = V1Used && V2Used;
   5793     for (unsigned i = 0; i != 8; ++i) {
   5794       int EltIdx = MaskVals[i] * 2;
   5795       int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
   5796       int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
   5797       pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
   5798       pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
   5799     }
   5800     V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
   5801     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
   5802                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5803                                  MVT::v16i8, &pshufbMask[0], 16));
   5804     if (!TwoInputs)
   5805       return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   5806 
   5807     // Calculate the shuffle mask for the second input, shuffle it, and
   5808     // OR it with the first shuffled input.
   5809     pshufbMask.clear();
   5810     for (unsigned i = 0; i != 8; ++i) {
   5811       int EltIdx = MaskVals[i] * 2;
   5812       int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
   5813       int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
   5814       pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
   5815       pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
   5816     }
   5817     V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
   5818     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
   5819                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5820                                  MVT::v16i8, &pshufbMask[0], 16));
   5821     V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
   5822     return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   5823   }
   5824 
   5825   // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
   5826   // and update MaskVals with new element order.
   5827   std::bitset<8> InOrder;
   5828   if (BestLoQuad >= 0) {
   5829     int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
   5830     for (int i = 0; i != 4; ++i) {
   5831       int idx = MaskVals[i];
   5832       if (idx < 0) {
   5833         InOrder.set(i);
   5834       } else if ((idx / 4) == BestLoQuad) {
   5835         MaskV[i] = idx & 3;
   5836         InOrder.set(i);
   5837       }
   5838     }
   5839     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
   5840                                 &MaskV[0]);
   5841 
   5842     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
   5843       ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
   5844       NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
   5845                                   NewV.getOperand(0),
   5846                                   getShufflePSHUFLWImmediate(SVOp), DAG);
   5847     }
   5848   }
   5849 
   5850   // If BestHi >= 0, generate a pshufhw to put the high elements in order,
   5851   // and update MaskVals with the new element order.
   5852   if (BestHiQuad >= 0) {
   5853     int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
   5854     for (unsigned i = 4; i != 8; ++i) {
   5855       int idx = MaskVals[i];
   5856       if (idx < 0) {
   5857         InOrder.set(i);
   5858       } else if ((idx / 4) == BestHiQuad) {
   5859         MaskV[i] = (idx & 3) + 4;
   5860         InOrder.set(i);
   5861       }
   5862     }
   5863     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
   5864                                 &MaskV[0]);
   5865 
   5866     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
   5867       ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
   5868       NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
   5869                                   NewV.getOperand(0),
   5870                                   getShufflePSHUFHWImmediate(SVOp), DAG);
   5871     }
   5872   }
   5873 
   5874   // In case BestHi & BestLo were both -1, which means each quadword has a word
   5875   // from each of the four input quadwords, calculate the InOrder bitvector now
   5876   // before falling through to the insert/extract cleanup.
   5877   if (BestLoQuad == -1 && BestHiQuad == -1) {
   5878     NewV = V1;
   5879     for (int i = 0; i != 8; ++i)
   5880       if (MaskVals[i] < 0 || MaskVals[i] == i)
   5881         InOrder.set(i);
   5882   }
   5883 
   5884   // The other elements are put in the right place using pextrw and pinsrw.
   5885   for (unsigned i = 0; i != 8; ++i) {
   5886     if (InOrder[i])
   5887       continue;
   5888     int EltIdx = MaskVals[i];
   5889     if (EltIdx < 0)
   5890       continue;
   5891     SDValue ExtOp = (EltIdx < 8) ?
   5892       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
   5893                   DAG.getIntPtrConstant(EltIdx)) :
   5894       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
   5895                   DAG.getIntPtrConstant(EltIdx - 8));
   5896     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
   5897                        DAG.getIntPtrConstant(i));
   5898   }
   5899   return NewV;
   5900 }
   5901 
   5902 // v16i8 shuffles - Prefer shuffles in the following order:
   5903 // 1. [ssse3] 1 x pshufb
   5904 // 2. [ssse3] 2 x pshufb + 1 x por
   5905 // 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
   5906 static
   5907 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
   5908                                  SelectionDAG &DAG,
   5909                                  const X86TargetLowering &TLI) {
   5910   SDValue V1 = SVOp->getOperand(0);
   5911   SDValue V2 = SVOp->getOperand(1);
   5912   DebugLoc dl = SVOp->getDebugLoc();
   5913   ArrayRef<int> MaskVals = SVOp->getMask();
   5914 
   5915   // If we have SSSE3, case 1 is generated when all result bytes come from
   5916   // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
   5917   // present, fall back to case 3.
   5918 
   5919   // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
   5920   if (TLI.getSubtarget()->hasSSSE3()) {
   5921     SmallVector<SDValue,16> pshufbMask;
   5922 
   5923     // If all result elements are from one input vector, then only translate
   5924     // undef mask values to 0x80 (zero out result) in the pshufb mask.
   5925     //
   5926     // Otherwise, we have elements from both input vectors, and must zero out
   5927     // elements that come from V2 in the first mask, and V1 in the second mask
   5928     // so that we can OR them together.
   5929     for (unsigned i = 0; i != 16; ++i) {
   5930       int EltIdx = MaskVals[i];
   5931       if (EltIdx < 0 || EltIdx >= 16)
   5932         EltIdx = 0x80;
   5933       pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
   5934     }
   5935     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
   5936                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5937                                  MVT::v16i8, &pshufbMask[0], 16));
   5938 
   5939     // As PSHUFB will zero elements with negative indices, it's safe to ignore
   5940     // the 2nd operand if it's undefined or zero.
   5941     if (V2.getOpcode() == ISD::UNDEF ||
   5942         ISD::isBuildVectorAllZeros(V2.getNode()))
   5943       return V1;
   5944 
   5945     // Calculate the shuffle mask for the second input, shuffle it, and
   5946     // OR it with the first shuffled input.
   5947     pshufbMask.clear();
   5948     for (unsigned i = 0; i != 16; ++i) {
   5949       int EltIdx = MaskVals[i];
   5950       EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
   5951       pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
   5952     }
   5953     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
   5954                      DAG.getNode(ISD::BUILD_VECTOR, dl,
   5955                                  MVT::v16i8, &pshufbMask[0], 16));
   5956     return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
   5957   }
   5958 
   5959   // No SSSE3 - Calculate in place words and then fix all out of place words
   5960   // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
   5961   // the 16 different words that comprise the two doublequadword input vectors.
   5962   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
   5963   V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
   5964   SDValue NewV = V1;
   5965   for (int i = 0; i != 8; ++i) {
   5966     int Elt0 = MaskVals[i*2];
   5967     int Elt1 = MaskVals[i*2+1];
   5968 
   5969     // This word of the result is all undef, skip it.
   5970     if (Elt0 < 0 && Elt1 < 0)
   5971       continue;
   5972 
   5973     // This word of the result is already in the correct place, skip it.
   5974     if ((Elt0 == i*2) && (Elt1 == i*2+1))
   5975       continue;
   5976 
   5977     SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
   5978     SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
   5979     SDValue InsElt;
   5980 
   5981     // If Elt0 and Elt1 are defined, are consecutive, and can be load
   5982     // using a single extract together, load it and store it.
   5983     if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
   5984       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
   5985                            DAG.getIntPtrConstant(Elt1 / 2));
   5986       NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
   5987                         DAG.getIntPtrConstant(i));
   5988       continue;
   5989     }
   5990 
   5991     // If Elt1 is defined, extract it from the appropriate source.  If the
   5992     // source byte is not also odd, shift the extracted word left 8 bits
   5993     // otherwise clear the bottom 8 bits if we need to do an or.
   5994     if (Elt1 >= 0) {
   5995       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
   5996                            DAG.getIntPtrConstant(Elt1 / 2));
   5997       if ((Elt1 & 1) == 0)
   5998         InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
   5999                              DAG.getConstant(8,
   6000                                   TLI.getShiftAmountTy(InsElt.getValueType())));
   6001       else if (Elt0 >= 0)
   6002         InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
   6003                              DAG.getConstant(0xFF00, MVT::i16));
   6004     }
   6005     // If Elt0 is defined, extract it from the appropriate source.  If the
   6006     // source byte is not also even, shift the extracted word right 8 bits. If
   6007     // Elt1 was also defined, OR the extracted values together before
   6008     // inserting them in the result.
   6009     if (Elt0 >= 0) {
   6010       SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
   6011                                     Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
   6012       if ((Elt0 & 1) != 0)
   6013         InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
   6014                               DAG.getConstant(8,
   6015                                  TLI.getShiftAmountTy(InsElt0.getValueType())));
   6016       else if (Elt1 >= 0)
   6017         InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
   6018                              DAG.getConstant(0x00FF, MVT::i16));
   6019       InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
   6020                          : InsElt0;
   6021     }
   6022     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
   6023                        DAG.getIntPtrConstant(i));
   6024   }
   6025   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
   6026 }
   6027 
   6028 // v32i8 shuffles - Translate to VPSHUFB if possible.
   6029 static
   6030 SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
   6031                                  SelectionDAG &DAG,
   6032                                  const X86TargetLowering &TLI) {
   6033   EVT VT = SVOp->getValueType(0);
   6034   SDValue V1 = SVOp->getOperand(0);
   6035   SDValue V2 = SVOp->getOperand(1);
   6036   DebugLoc dl = SVOp->getDebugLoc();
   6037   SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
   6038 
   6039   bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
   6040   bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
   6041   bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
   6042 
   6043   // VPSHUFB may be generated if
   6044   // (1) one of input vector is undefined or zeroinitializer.
   6045   // The mask value 0x80 puts 0 in the corresponding slot of the vector.
   6046   // And (2) the mask indexes don't cross the 128-bit lane.
   6047   if (VT != MVT::v32i8 || !TLI.getSubtarget()->hasAVX2() ||
   6048       (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
   6049     return SDValue();
   6050 
   6051   if (V1IsAllZero && !V2IsAllZero) {
   6052     CommuteVectorShuffleMask(MaskVals, 32);
   6053     V1 = V2;
   6054   }
   6055   SmallVector<SDValue, 32> pshufbMask;
   6056   for (unsigned i = 0; i != 32; i++) {
   6057     int EltIdx = MaskVals[i];
   6058     if (EltIdx < 0 || EltIdx >= 32)
   6059       EltIdx = 0x80;
   6060     else {
   6061       if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
   6062         // Cross lane is not allowed.
   6063         return SDValue();
   6064       EltIdx &= 0xf;
   6065     }
   6066     pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
   6067   }
   6068   return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
   6069                       DAG.getNode(ISD::BUILD_VECTOR, dl,
   6070                                   MVT::v32i8, &pshufbMask[0], 32));
   6071 }
   6072 
   6073 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
   6074 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
   6075 /// done when every pair / quad of shuffle mask elements point to elements in
   6076 /// the right sequence. e.g.
   6077 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
   6078 static
   6079 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
   6080                                  SelectionDAG &DAG, DebugLoc dl) {
   6081   MVT VT = SVOp->getValueType(0).getSimpleVT();
   6082   unsigned NumElems = VT.getVectorNumElements();
   6083   MVT NewVT;
   6084   unsigned Scale;
   6085   switch (VT.SimpleTy) {
   6086   default: llvm_unreachable("Unexpected!");
   6087   case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
   6088   case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
   6089   case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
   6090   case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
   6091   case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
   6092   case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
   6093   }
   6094 
   6095   SmallVector<int, 8> MaskVec;
   6096   for (unsigned i = 0; i != NumElems; i += Scale) {
   6097     int StartIdx = -1;
   6098     for (unsigned j = 0; j != Scale; ++j) {
   6099       int EltIdx = SVOp->getMaskElt(i+j);
   6100       if (EltIdx < 0)
   6101         continue;
   6102       if (StartIdx < 0)
   6103         StartIdx = (EltIdx / Scale);
   6104       if (EltIdx != (int)(StartIdx*Scale + j))
   6105         return SDValue();
   6106     }
   6107     MaskVec.push_back(StartIdx);
   6108   }
   6109 
   6110   SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
   6111   SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
   6112   return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
   6113 }
   6114 
   6115 /// getVZextMovL - Return a zero-extending vector move low node.
   6116 ///
   6117 static SDValue getVZextMovL(EVT VT, EVT OpVT,
   6118                             SDValue SrcOp, SelectionDAG &DAG,
   6119                             const X86Subtarget *Subtarget, DebugLoc dl) {
   6120   if (VT == MVT::v2f64 || VT == MVT::v4f32) {
   6121     LoadSDNode *LD = NULL;
   6122     if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
   6123       LD = dyn_cast<LoadSDNode>(SrcOp);
   6124     if (!LD) {
   6125       // movssrr and movsdrr do not clear top bits. Try to use movd, movq
   6126       // instead.
   6127       MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
   6128       if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
   6129           SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
   6130           SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
   6131           SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
   6132         // PR2108
   6133         OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
   6134         return DAG.getNode(ISD::BITCAST, dl, VT,
   6135                            DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
   6136                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   6137                                                    OpVT,
   6138                                                    SrcOp.getOperand(0)
   6139                                                           .getOperand(0))));
   6140       }
   6141     }
   6142   }
   6143 
   6144   return DAG.getNode(ISD::BITCAST, dl, VT,
   6145                      DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
   6146                                  DAG.getNode(ISD::BITCAST, dl,
   6147                                              OpVT, SrcOp)));
   6148 }
   6149 
   6150 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
   6151 /// which could not be matched by any known target speficic shuffle
   6152 static SDValue
   6153 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   6154 
   6155   SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
   6156   if (NewOp.getNode())
   6157     return NewOp;
   6158 
   6159   EVT VT = SVOp->getValueType(0);
   6160 
   6161   unsigned NumElems = VT.getVectorNumElements();
   6162   unsigned NumLaneElems = NumElems / 2;
   6163 
   6164   DebugLoc dl = SVOp->getDebugLoc();
   6165   MVT EltVT = VT.getVectorElementType().getSimpleVT();
   6166   EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
   6167   SDValue Output[2];
   6168 
   6169   SmallVector<int, 16> Mask;
   6170   for (unsigned l = 0; l < 2; ++l) {
   6171     // Build a shuffle mask for the output, discovering on the fly which
   6172     // input vectors to use as shuffle operands (recorded in InputUsed).
   6173     // If building a suitable shuffle vector proves too hard, then bail
   6174     // out with UseBuildVector set.
   6175     bool UseBuildVector = false;
   6176     int InputUsed[2] = { -1, -1 }; // Not yet discovered.
   6177     unsigned LaneStart = l * NumLaneElems;
   6178     for (unsigned i = 0; i != NumLaneElems; ++i) {
   6179       // The mask element.  This indexes into the input.
   6180       int Idx = SVOp->getMaskElt(i+LaneStart);
   6181       if (Idx < 0) {
   6182         // the mask element does not index into any input vector.
   6183         Mask.push_back(-1);
   6184         continue;
   6185       }
   6186 
   6187       // The input vector this mask element indexes into.
   6188       int Input = Idx / NumLaneElems;
   6189 
   6190       // Turn the index into an offset from the start of the input vector.
   6191       Idx -= Input * NumLaneElems;
   6192 
   6193       // Find or create a shuffle vector operand to hold this input.
   6194       unsigned OpNo;
   6195       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
   6196         if (InputUsed[OpNo] == Input)
   6197           // This input vector is already an operand.
   6198           break;
   6199         if (InputUsed[OpNo] < 0) {
   6200           // Create a new operand for this input vector.
   6201           InputUsed[OpNo] = Input;
   6202           break;
   6203         }
   6204       }
   6205 
   6206       if (OpNo >= array_lengthof(InputUsed)) {
   6207         // More than two input vectors used!  Give up on trying to create a
   6208         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
   6209         UseBuildVector = true;
   6210         break;
   6211       }
   6212 
   6213       // Add the mask index for the new shuffle vector.
   6214       Mask.push_back(Idx + OpNo * NumLaneElems);
   6215     }
   6216 
   6217     if (UseBuildVector) {
   6218       SmallVector<SDValue, 16> SVOps;
   6219       for (unsigned i = 0; i != NumLaneElems; ++i) {
   6220         // The mask element.  This indexes into the input.
   6221         int Idx = SVOp->getMaskElt(i+LaneStart);
   6222         if (Idx < 0) {
   6223           SVOps.push_back(DAG.getUNDEF(EltVT));
   6224           continue;
   6225         }
   6226 
   6227         // The input vector this mask element indexes into.
   6228         int Input = Idx / NumElems;
   6229 
   6230         // Turn the index into an offset from the start of the input vector.
   6231         Idx -= Input * NumElems;
   6232 
   6233         // Extract the vector element by hand.
   6234         SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   6235                                     SVOp->getOperand(Input),
   6236                                     DAG.getIntPtrConstant(Idx)));
   6237       }
   6238 
   6239       // Construct the output using a BUILD_VECTOR.
   6240       Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
   6241                               SVOps.size());
   6242     } else if (InputUsed[0] < 0) {
   6243       // No input vectors were used! The result is undefined.
   6244       Output[l] = DAG.getUNDEF(NVT);
   6245     } else {
   6246       SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
   6247                                         (InputUsed[0] % 2) * NumLaneElems,
   6248                                         DAG, dl);
   6249       // If only one input was used, use an undefined vector for the other.
   6250       SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
   6251         Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
   6252                             (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
   6253       // At least one input vector was used. Create a new shuffle vector.
   6254       Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
   6255     }
   6256 
   6257     Mask.clear();
   6258   }
   6259 
   6260   // Concatenate the result back
   6261   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
   6262 }
   6263 
   6264 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
   6265 /// 4 elements, and match them with several different shuffle types.
   6266 static SDValue
   6267 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
   6268   SDValue V1 = SVOp->getOperand(0);
   6269   SDValue V2 = SVOp->getOperand(1);
   6270   DebugLoc dl = SVOp->getDebugLoc();
   6271   EVT VT = SVOp->getValueType(0);
   6272 
   6273   assert(VT.is128BitVector() && "Unsupported vector size");
   6274 
   6275   std::pair<int, int> Locs[4];
   6276   int Mask1[] = { -1, -1, -1, -1 };
   6277   SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
   6278 
   6279   unsigned NumHi = 0;
   6280   unsigned NumLo = 0;
   6281   for (unsigned i = 0; i != 4; ++i) {
   6282     int Idx = PermMask[i];
   6283     if (Idx < 0) {
   6284       Locs[i] = std::make_pair(-1, -1);
   6285     } else {
   6286       assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
   6287       if (Idx < 4) {
   6288         Locs[i] = std::make_pair(0, NumLo);
   6289         Mask1[NumLo] = Idx;
   6290         NumLo++;
   6291       } else {
   6292         Locs[i] = std::make_pair(1, NumHi);
   6293         if (2+NumHi < 4)
   6294           Mask1[2+NumHi] = Idx;
   6295         NumHi++;
   6296       }
   6297     }
   6298   }
   6299 
   6300   if (NumLo <= 2 && NumHi <= 2) {
   6301     // If no more than two elements come from either vector. This can be
   6302     // implemented with two shuffles. First shuffle gather the elements.
   6303     // The second shuffle, which takes the first shuffle as both of its
   6304     // vector operands, put the elements into the right order.
   6305     V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6306 
   6307     int Mask2[] = { -1, -1, -1, -1 };
   6308 
   6309     for (unsigned i = 0; i != 4; ++i)
   6310       if (Locs[i].first != -1) {
   6311         unsigned Idx = (i < 2) ? 0 : 4;
   6312         Idx += Locs[i].first * 2 + Locs[i].second;
   6313         Mask2[i] = Idx;
   6314       }
   6315 
   6316     return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
   6317   }
   6318 
   6319   if (NumLo == 3 || NumHi == 3) {
   6320     // Otherwise, we must have three elements from one vector, call it X, and
   6321     // one element from the other, call it Y.  First, use a shufps to build an
   6322     // intermediate vector with the one element from Y and the element from X
   6323     // that will be in the same half in the final destination (the indexes don't
   6324     // matter). Then, use a shufps to build the final vector, taking the half
   6325     // containing the element from Y from the intermediate, and the other half
   6326     // from X.
   6327     if (NumHi == 3) {
   6328       // Normalize it so the 3 elements come from V1.
   6329       CommuteVectorShuffleMask(PermMask, 4);
   6330       std::swap(V1, V2);
   6331     }
   6332 
   6333     // Find the element from V2.
   6334     unsigned HiIndex;
   6335     for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
   6336       int Val = PermMask[HiIndex];
   6337       if (Val < 0)
   6338         continue;
   6339       if (Val >= 4)
   6340         break;
   6341     }
   6342 
   6343     Mask1[0] = PermMask[HiIndex];
   6344     Mask1[1] = -1;
   6345     Mask1[2] = PermMask[HiIndex^1];
   6346     Mask1[3] = -1;
   6347     V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6348 
   6349     if (HiIndex >= 2) {
   6350       Mask1[0] = PermMask[0];
   6351       Mask1[1] = PermMask[1];
   6352       Mask1[2] = HiIndex & 1 ? 6 : 4;
   6353       Mask1[3] = HiIndex & 1 ? 4 : 6;
   6354       return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
   6355     }
   6356 
   6357     Mask1[0] = HiIndex & 1 ? 2 : 0;
   6358     Mask1[1] = HiIndex & 1 ? 0 : 2;
   6359     Mask1[2] = PermMask[2];
   6360     Mask1[3] = PermMask[3];
   6361     if (Mask1[2] >= 0)
   6362       Mask1[2] += 4;
   6363     if (Mask1[3] >= 0)
   6364       Mask1[3] += 4;
   6365     return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
   6366   }
   6367 
   6368   // Break it into (shuffle shuffle_hi, shuffle_lo).
   6369   int LoMask[] = { -1, -1, -1, -1 };
   6370   int HiMask[] = { -1, -1, -1, -1 };
   6371 
   6372   int *MaskPtr = LoMask;
   6373   unsigned MaskIdx = 0;
   6374   unsigned LoIdx = 0;
   6375   unsigned HiIdx = 2;
   6376   for (unsigned i = 0; i != 4; ++i) {
   6377     if (i == 2) {
   6378       MaskPtr = HiMask;
   6379       MaskIdx = 1;
   6380       LoIdx = 0;
   6381       HiIdx = 2;
   6382     }
   6383     int Idx = PermMask[i];
   6384     if (Idx < 0) {
   6385       Locs[i] = std::make_pair(-1, -1);
   6386     } else if (Idx < 4) {
   6387       Locs[i] = std::make_pair(MaskIdx, LoIdx);
   6388       MaskPtr[LoIdx] = Idx;
   6389       LoIdx++;
   6390     } else {
   6391       Locs[i] = std::make_pair(MaskIdx, HiIdx);
   6392       MaskPtr[HiIdx] = Idx;
   6393       HiIdx++;
   6394     }
   6395   }
   6396 
   6397   SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
   6398   SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
   6399   int MaskOps[] = { -1, -1, -1, -1 };
   6400   for (unsigned i = 0; i != 4; ++i)
   6401     if (Locs[i].first != -1)
   6402       MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
   6403   return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
   6404 }
   6405 
   6406 static bool MayFoldVectorLoad(SDValue V) {
   6407   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
   6408     V = V.getOperand(0);
   6409   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   6410     V = V.getOperand(0);
   6411   if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
   6412       V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
   6413     // BUILD_VECTOR (load), undef
   6414     V = V.getOperand(0);
   6415   if (MayFoldLoad(V))
   6416     return true;
   6417   return false;
   6418 }
   6419 
   6420 // FIXME: the version above should always be used. Since there's
   6421 // a bug where several vector shuffles can't be folded because the
   6422 // DAG is not updated during lowering and a node claims to have two
   6423 // uses while it only has one, use this version, and let isel match
   6424 // another instruction if the load really happens to have more than
   6425 // one use. Remove this version after this bug get fixed.
   6426 // rdar://8434668, PR8156
   6427 static bool RelaxedMayFoldVectorLoad(SDValue V) {
   6428   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
   6429     V = V.getOperand(0);
   6430   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
   6431     V = V.getOperand(0);
   6432   if (ISD::isNormalLoad(V.getNode()))
   6433     return true;
   6434   return false;
   6435 }
   6436 
   6437 static
   6438 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
   6439   EVT VT = Op.getValueType();
   6440 
   6441   // Canonizalize to v2f64.
   6442   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
   6443   return DAG.getNode(ISD::BITCAST, dl, VT,
   6444                      getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
   6445                                           V1, DAG));
   6446 }
   6447 
   6448 static
   6449 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
   6450                         bool HasSSE2) {
   6451   SDValue V1 = Op.getOperand(0);
   6452   SDValue V2 = Op.getOperand(1);
   6453   EVT VT = Op.getValueType();
   6454 
   6455   assert(VT != MVT::v2i64 && "unsupported shuffle type");
   6456 
   6457   if (HasSSE2 && VT == MVT::v2f64)
   6458     return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
   6459 
   6460   // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
   6461   return DAG.getNode(ISD::BITCAST, dl, VT,
   6462                      getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
   6463                            DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
   6464                            DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
   6465 }
   6466 
   6467 static
   6468 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
   6469   SDValue V1 = Op.getOperand(0);
   6470   SDValue V2 = Op.getOperand(1);
   6471   EVT VT = Op.getValueType();
   6472 
   6473   assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
   6474          "unsupported shuffle type");
   6475 
   6476   if (V2.getOpcode() == ISD::UNDEF)
   6477     V2 = V1;
   6478 
   6479   // v4i32 or v4f32
   6480   return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
   6481 }
   6482 
   6483 static
   6484 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
   6485   SDValue V1 = Op.getOperand(0);
   6486   SDValue V2 = Op.getOperand(1);
   6487   EVT VT = Op.getValueType();
   6488   unsigned NumElems = VT.getVectorNumElements();
   6489 
   6490   // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
   6491   // operand of these instructions is only memory, so check if there's a
   6492   // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
   6493   // same masks.
   6494   bool CanFoldLoad = false;
   6495 
   6496   // Trivial case, when V2 comes from a load.
   6497   if (MayFoldVectorLoad(V2))
   6498     CanFoldLoad = true;
   6499 
   6500   // When V1 is a load, it can be folded later into a store in isel, example:
   6501   //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
   6502   //    turns into:
   6503   //  (MOVLPSmr addr:$src1, VR128:$src2)
   6504   // So, recognize this potential and also use MOVLPS or MOVLPD
   6505   else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
   6506     CanFoldLoad = true;
   6507 
   6508   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6509   if (CanFoldLoad) {
   6510     if (HasSSE2 && NumElems == 2)
   6511       return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
   6512 
   6513     if (NumElems == 4)
   6514       // If we don't care about the second element, proceed to use movss.
   6515       if (SVOp->getMaskElt(1) != -1)
   6516         return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
   6517   }
   6518 
   6519   // movl and movlp will both match v2i64, but v2i64 is never matched by
   6520   // movl earlier because we make it strict to avoid messing with the movlp load
   6521   // folding logic (see the code above getMOVLP call). Match it here then,
   6522   // this is horrible, but will stay like this until we move all shuffle
   6523   // matching to x86 specific nodes. Note that for the 1st condition all
   6524   // types are matched with movsd.
   6525   if (HasSSE2) {
   6526     // FIXME: isMOVLMask should be checked and matched before getMOVLP,
   6527     // as to remove this logic from here, as much as possible
   6528     if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
   6529       return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
   6530     return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
   6531   }
   6532 
   6533   assert(VT != MVT::v4i32 && "unsupported shuffle type");
   6534 
   6535   // Invert the operand order and use SHUFPS to match it.
   6536   return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
   6537                               getShuffleSHUFImmediate(SVOp), DAG);
   6538 }
   6539 
   6540 SDValue
   6541 X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
   6542   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6543   EVT VT = Op.getValueType();
   6544   DebugLoc dl = Op.getDebugLoc();
   6545   SDValue V1 = Op.getOperand(0);
   6546   SDValue V2 = Op.getOperand(1);
   6547 
   6548   if (isZeroShuffle(SVOp))
   6549     return getZeroVector(VT, Subtarget, DAG, dl);
   6550 
   6551   // Handle splat operations
   6552   if (SVOp->isSplat()) {
   6553     unsigned NumElem = VT.getVectorNumElements();
   6554     int Size = VT.getSizeInBits();
   6555 
   6556     // Use vbroadcast whenever the splat comes from a foldable load
   6557     SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
   6558     if (Broadcast.getNode())
   6559       return Broadcast;
   6560 
   6561     // Handle splats by matching through known shuffle masks
   6562     if ((Size == 128 && NumElem <= 4) ||
   6563         (Size == 256 && NumElem < 8))
   6564       return SDValue();
   6565 
   6566     // All remaning splats are promoted to target supported vector shuffles.
   6567     return PromoteSplat(SVOp, DAG);
   6568   }
   6569 
   6570   // If the shuffle can be profitably rewritten as a narrower shuffle, then
   6571   // do it!
   6572   if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
   6573       VT == MVT::v16i16 || VT == MVT::v32i8) {
   6574     SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   6575     if (NewOp.getNode())
   6576       return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
   6577   } else if ((VT == MVT::v4i32 ||
   6578              (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
   6579     // FIXME: Figure out a cleaner way to do this.
   6580     // Try to make use of movq to zero out the top part.
   6581     if (ISD::isBuildVectorAllZeros(V2.getNode())) {
   6582       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   6583       if (NewOp.getNode()) {
   6584         EVT NewVT = NewOp.getValueType();
   6585         if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
   6586                                NewVT, true, false))
   6587           return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
   6588                               DAG, Subtarget, dl);
   6589       }
   6590     } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
   6591       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
   6592       if (NewOp.getNode()) {
   6593         EVT NewVT = NewOp.getValueType();
   6594         if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
   6595           return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
   6596                               DAG, Subtarget, dl);
   6597       }
   6598     }
   6599   }
   6600   return SDValue();
   6601 }
   6602 
   6603 SDValue
   6604 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
   6605   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
   6606   SDValue V1 = Op.getOperand(0);
   6607   SDValue V2 = Op.getOperand(1);
   6608   EVT VT = Op.getValueType();
   6609   DebugLoc dl = Op.getDebugLoc();
   6610   unsigned NumElems = VT.getVectorNumElements();
   6611   bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
   6612   bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
   6613   bool V1IsSplat = false;
   6614   bool V2IsSplat = false;
   6615   bool HasSSE2 = Subtarget->hasSSE2();
   6616   bool HasAVX    = Subtarget->hasAVX();
   6617   bool HasAVX2   = Subtarget->hasAVX2();
   6618   MachineFunction &MF = DAG.getMachineFunction();
   6619   bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
   6620 
   6621   assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
   6622 
   6623   if (V1IsUndef && V2IsUndef)
   6624     return DAG.getUNDEF(VT);
   6625 
   6626   assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
   6627 
   6628   // Vector shuffle lowering takes 3 steps:
   6629   //
   6630   // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
   6631   //    narrowing and commutation of operands should be handled.
   6632   // 2) Matching of shuffles with known shuffle masks to x86 target specific
   6633   //    shuffle nodes.
   6634   // 3) Rewriting of unmatched masks into new generic shuffle operations,
   6635   //    so the shuffle can be broken into other shuffles and the legalizer can
   6636   //    try the lowering again.
   6637   //
   6638   // The general idea is that no vector_shuffle operation should be left to
   6639   // be matched during isel, all of them must be converted to a target specific
   6640   // node here.
   6641 
   6642   // Normalize the input vectors. Here splats, zeroed vectors, profitable
   6643   // narrowing and commutation of operands should be handled. The actual code
   6644   // doesn't include all of those, work in progress...
   6645   SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
   6646   if (NewOp.getNode())
   6647     return NewOp;
   6648 
   6649   SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
   6650 
   6651   // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
   6652   // unpckh_undef). Only use pshufd if speed is more important than size.
   6653   if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
   6654     return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
   6655   if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
   6656     return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
   6657 
   6658   if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
   6659       V2IsUndef && RelaxedMayFoldVectorLoad(V1))
   6660     return getMOVDDup(Op, dl, V1, DAG);
   6661 
   6662   if (isMOVHLPS_v_undef_Mask(M, VT))
   6663     return getMOVHighToLow(Op, dl, DAG);
   6664 
   6665   // Use to match splats
   6666   if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
   6667       (VT == MVT::v2f64 || VT == MVT::v2i64))
   6668     return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
   6669 
   6670   if (isPSHUFDMask(M, VT)) {
   6671     // The actual implementation will match the mask in the if above and then
   6672     // during isel it can match several different instructions, not only pshufd
   6673     // as its name says, sad but true, emulate the behavior for now...
   6674     if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
   6675       return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
   6676 
   6677     unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
   6678 
   6679     if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
   6680       return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
   6681 
   6682     if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
   6683       return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
   6684 
   6685     return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
   6686                                 TargetMask, DAG);
   6687   }
   6688 
   6689   // Check if this can be converted into a logical shift.
   6690   bool isLeft = false;
   6691   unsigned ShAmt = 0;
   6692   SDValue ShVal;
   6693   bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
   6694   if (isShift && ShVal.hasOneUse()) {
   6695     // If the shifted value has multiple uses, it may be cheaper to use
   6696     // v_set0 + movlhps or movhlps, etc.
   6697     EVT EltVT = VT.getVectorElementType();
   6698     ShAmt *= EltVT.getSizeInBits();
   6699     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
   6700   }
   6701 
   6702   if (isMOVLMask(M, VT)) {
   6703     if (ISD::isBuildVectorAllZeros(V1.getNode()))
   6704       return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
   6705     if (!isMOVLPMask(M, VT)) {
   6706       if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
   6707         return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
   6708 
   6709       if (VT == MVT::v4i32 || VT == MVT::v4f32)
   6710         return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
   6711     }
   6712   }
   6713 
   6714   // FIXME: fold these into legal mask.
   6715   if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
   6716     return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
   6717 
   6718   if (isMOVHLPSMask(M, VT))
   6719     return getMOVHighToLow(Op, dl, DAG);
   6720 
   6721   if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
   6722     return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
   6723 
   6724   if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
   6725     return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
   6726 
   6727   if (isMOVLPMask(M, VT))
   6728     return getMOVLP(Op, dl, DAG, HasSSE2);
   6729 
   6730   if (ShouldXformToMOVHLPS(M, VT) ||
   6731       ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
   6732     return CommuteVectorShuffle(SVOp, DAG);
   6733 
   6734   if (isShift) {
   6735     // No better options. Use a vshldq / vsrldq.
   6736     EVT EltVT = VT.getVectorElementType();
   6737     ShAmt *= EltVT.getSizeInBits();
   6738     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
   6739   }
   6740 
   6741   bool Commuted = false;
   6742   // FIXME: This should also accept a bitcast of a splat?  Be careful, not
   6743   // 1,1,1,1 -> v8i16 though.
   6744   V1IsSplat = isSplatVector(V1.getNode());
   6745   V2IsSplat = isSplatVector(V2.getNode());
   6746 
   6747   // Canonicalize the splat or undef, if present, to be on the RHS.
   6748   if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
   6749     CommuteVectorShuffleMask(M, NumElems);
   6750     std::swap(V1, V2);
   6751     std::swap(V1IsSplat, V2IsSplat);
   6752     Commuted = true;
   6753   }
   6754 
   6755   if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
   6756     // Shuffling low element of v1 into undef, just return v1.
   6757     if (V2IsUndef)
   6758       return V1;
   6759     // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
   6760     // the instruction selector will not match, so get a canonical MOVL with
   6761     // swapped operands to undo the commute.
   6762     return getMOVL(DAG, dl, VT, V2, V1);
   6763   }
   6764 
   6765   if (isUNPCKLMask(M, VT, HasAVX2))
   6766     return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
   6767 
   6768   if (isUNPCKHMask(M, VT, HasAVX2))
   6769     return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
   6770 
   6771   if (V2IsSplat) {
   6772     // Normalize mask so all entries that point to V2 points to its first
   6773     // element then try to match unpck{h|l} again. If match, return a
   6774     // new vector_shuffle with the corrected mask.p
   6775     SmallVector<int, 8> NewMask(M.begin(), M.end());
   6776     NormalizeMask(NewMask, NumElems);
   6777     if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
   6778       return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
   6779     if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
   6780       return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
   6781   }
   6782 
   6783   if (Commuted) {
   6784     // Commute is back and try unpck* again.
   6785     // FIXME: this seems wrong.
   6786     CommuteVectorShuffleMask(M, NumElems);
   6787     std::swap(V1, V2);
   6788     std::swap(V1IsSplat, V2IsSplat);
   6789     Commuted = false;
   6790 
   6791     if (isUNPCKLMask(M, VT, HasAVX2))
   6792       return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
   6793 
   6794     if (isUNPCKHMask(M, VT, HasAVX2))
   6795       return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
   6796   }
   6797 
   6798   // Normalize the node to match x86 shuffle ops if needed
   6799   if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
   6800     return CommuteVectorShuffle(SVOp, DAG);
   6801 
   6802   // The checks below are all present in isShuffleMaskLegal, but they are
   6803   // inlined here right now to enable us to directly emit target specific
   6804   // nodes, and remove one by one until they don't return Op anymore.
   6805 
   6806   if (isPALIGNRMask(M, VT, Subtarget))
   6807     return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
   6808                                 getShufflePALIGNRImmediate(SVOp),
   6809                                 DAG);
   6810 
   6811   if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
   6812       SVOp->getSplatIndex() == 0 && V2IsUndef) {
   6813     if (VT == MVT::v2f64 || VT == MVT::v2i64)
   6814       return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
   6815   }
   6816 
   6817   if (isPSHUFHWMask(M, VT, HasAVX2))
   6818     return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
   6819                                 getShufflePSHUFHWImmediate(SVOp),
   6820                                 DAG);
   6821 
   6822   if (isPSHUFLWMask(M, VT, HasAVX2))
   6823     return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
   6824                                 getShufflePSHUFLWImmediate(SVOp),
   6825                                 DAG);
   6826 
   6827   if (isSHUFPMask(M, VT, HasAVX))
   6828     return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
   6829                                 getShuffleSHUFImmediate(SVOp), DAG);
   6830 
   6831   if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
   6832     return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
   6833   if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
   6834     return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
   6835 
   6836   //===--------------------------------------------------------------------===//
   6837   // Generate target specific nodes for 128 or 256-bit shuffles only
   6838   // supported in the AVX instruction set.
   6839   //
   6840 
   6841   // Handle VMOVDDUPY permutations
   6842   if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
   6843     return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
   6844 
   6845   // Handle VPERMILPS/D* permutations
   6846   if (isVPERMILPMask(M, VT, HasAVX)) {
   6847     if (HasAVX2 && VT == MVT::v8i32)
   6848       return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
   6849                                   getShuffleSHUFImmediate(SVOp), DAG);
   6850     return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
   6851                                 getShuffleSHUFImmediate(SVOp), DAG);
   6852   }
   6853 
   6854   // Handle VPERM2F128/VPERM2I128 permutations
   6855   if (isVPERM2X128Mask(M, VT, HasAVX))
   6856     return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
   6857                                 V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
   6858 
   6859   SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
   6860   if (BlendOp.getNode())
   6861     return BlendOp;
   6862 
   6863   if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
   6864     SmallVector<SDValue, 8> permclMask;
   6865     for (unsigned i = 0; i != 8; ++i) {
   6866       permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
   6867     }
   6868     SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
   6869                                &permclMask[0], 8);
   6870     // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
   6871     return DAG.getNode(X86ISD::VPERMV, dl, VT,
   6872                        DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
   6873   }
   6874 
   6875   if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
   6876     return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
   6877                                 getShuffleCLImmediate(SVOp), DAG);
   6878 
   6879 
   6880   //===--------------------------------------------------------------------===//
   6881   // Since no target specific shuffle was selected for this generic one,
   6882   // lower it into other known shuffles. FIXME: this isn't true yet, but
   6883   // this is the plan.
   6884   //
   6885 
   6886   // Handle v8i16 specifically since SSE can do byte extraction and insertion.
   6887   if (VT == MVT::v8i16) {
   6888     SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
   6889     if (NewOp.getNode())
   6890       return NewOp;
   6891   }
   6892 
   6893   if (VT == MVT::v16i8) {
   6894     SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
   6895     if (NewOp.getNode())
   6896       return NewOp;
   6897   }
   6898 
   6899   if (VT == MVT::v32i8) {
   6900     SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, DAG, *this);
   6901     if (NewOp.getNode())
   6902       return NewOp;
   6903   }
   6904 
   6905   // Handle all 128-bit wide vectors with 4 elements, and match them with
   6906   // several different shuffle types.
   6907   if (NumElems == 4 && VT.is128BitVector())
   6908     return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
   6909 
   6910   // Handle general 256-bit shuffles
   6911   if (VT.is256BitVector())
   6912     return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
   6913 
   6914   return SDValue();
   6915 }
   6916 
   6917 SDValue
   6918 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
   6919                                                 SelectionDAG &DAG) const {
   6920   EVT VT = Op.getValueType();
   6921   DebugLoc dl = Op.getDebugLoc();
   6922 
   6923   if (!Op.getOperand(0).getValueType().is128BitVector())
   6924     return SDValue();
   6925 
   6926   if (VT.getSizeInBits() == 8) {
   6927     SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
   6928                                     Op.getOperand(0), Op.getOperand(1));
   6929     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
   6930                                     DAG.getValueType(VT));
   6931     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   6932   }
   6933 
   6934   if (VT.getSizeInBits() == 16) {
   6935     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   6936     // If Idx is 0, it's cheaper to do a move instead of a pextrw.
   6937     if (Idx == 0)
   6938       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
   6939                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   6940                                      DAG.getNode(ISD::BITCAST, dl,
   6941                                                  MVT::v4i32,
   6942                                                  Op.getOperand(0)),
   6943                                      Op.getOperand(1)));
   6944     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
   6945                                     Op.getOperand(0), Op.getOperand(1));
   6946     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
   6947                                     DAG.getValueType(VT));
   6948     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   6949   }
   6950 
   6951   if (VT == MVT::f32) {
   6952     // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
   6953     // the result back to FR32 register. It's only worth matching if the
   6954     // result has a single use which is a store or a bitcast to i32.  And in
   6955     // the case of a store, it's not worth it if the index is a constant 0,
   6956     // because a MOVSSmr can be used instead, which is smaller and faster.
   6957     if (!Op.hasOneUse())
   6958       return SDValue();
   6959     SDNode *User = *Op.getNode()->use_begin();
   6960     if ((User->getOpcode() != ISD::STORE ||
   6961          (isa<ConstantSDNode>(Op.getOperand(1)) &&
   6962           cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
   6963         (User->getOpcode() != ISD::BITCAST ||
   6964          User->getValueType(0) != MVT::i32))
   6965       return SDValue();
   6966     SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   6967                                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
   6968                                               Op.getOperand(0)),
   6969                                               Op.getOperand(1));
   6970     return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
   6971   }
   6972 
   6973   if (VT == MVT::i32 || VT == MVT::i64) {
   6974     // ExtractPS/pextrq works with constant index.
   6975     if (isa<ConstantSDNode>(Op.getOperand(1)))
   6976       return Op;
   6977   }
   6978   return SDValue();
   6979 }
   6980 
   6981 
   6982 SDValue
   6983 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
   6984                                            SelectionDAG &DAG) const {
   6985   if (!isa<ConstantSDNode>(Op.getOperand(1)))
   6986     return SDValue();
   6987 
   6988   SDValue Vec = Op.getOperand(0);
   6989   EVT VecVT = Vec.getValueType();
   6990 
   6991   // If this is a 256-bit vector result, first extract the 128-bit vector and
   6992   // then extract the element from the 128-bit vector.
   6993   if (VecVT.is256BitVector()) {
   6994     DebugLoc dl = Op.getNode()->getDebugLoc();
   6995     unsigned NumElems = VecVT.getVectorNumElements();
   6996     SDValue Idx = Op.getOperand(1);
   6997     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   6998 
   6999     // Get the 128-bit vector.
   7000     Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
   7001 
   7002     if (IdxVal >= NumElems/2)
   7003       IdxVal -= NumElems/2;
   7004     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
   7005                        DAG.getConstant(IdxVal, MVT::i32));
   7006   }
   7007 
   7008   assert(VecVT.is128BitVector() && "Unexpected vector length");
   7009 
   7010   if (Subtarget->hasSSE41()) {
   7011     SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
   7012     if (Res.getNode())
   7013       return Res;
   7014   }
   7015 
   7016   EVT VT = Op.getValueType();
   7017   DebugLoc dl = Op.getDebugLoc();
   7018   // TODO: handle v16i8.
   7019   if (VT.getSizeInBits() == 16) {
   7020     SDValue Vec = Op.getOperand(0);
   7021     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   7022     if (Idx == 0)
   7023       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
   7024                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
   7025                                      DAG.getNode(ISD::BITCAST, dl,
   7026                                                  MVT::v4i32, Vec),
   7027                                      Op.getOperand(1)));
   7028     // Transform it so it match pextrw which produces a 32-bit result.
   7029     EVT EltVT = MVT::i32;
   7030     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
   7031                                     Op.getOperand(0), Op.getOperand(1));
   7032     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
   7033                                     DAG.getValueType(VT));
   7034     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
   7035   }
   7036 
   7037   if (VT.getSizeInBits() == 32) {
   7038     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   7039     if (Idx == 0)
   7040       return Op;
   7041 
   7042     // SHUFPS the element to the lowest double word, then movss.
   7043     int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
   7044     EVT VVT = Op.getOperand(0).getValueType();
   7045     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
   7046                                        DAG.getUNDEF(VVT), Mask);
   7047     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
   7048                        DAG.getIntPtrConstant(0));
   7049   }
   7050 
   7051   if (VT.getSizeInBits() == 64) {
   7052     // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
   7053     // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
   7054     //        to match extract_elt for f64.
   7055     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   7056     if (Idx == 0)
   7057       return Op;
   7058 
   7059     // UNPCKHPD the element to the lowest double word, then movsd.
   7060     // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
   7061     // to a f64mem, the whole operation is folded into a single MOVHPDmr.
   7062     int Mask[2] = { 1, -1 };
   7063     EVT VVT = Op.getOperand(0).getValueType();
   7064     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
   7065                                        DAG.getUNDEF(VVT), Mask);
   7066     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
   7067                        DAG.getIntPtrConstant(0));
   7068   }
   7069 
   7070   return SDValue();
   7071 }
   7072 
   7073 SDValue
   7074 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
   7075                                                SelectionDAG &DAG) const {
   7076   EVT VT = Op.getValueType();
   7077   EVT EltVT = VT.getVectorElementType();
   7078   DebugLoc dl = Op.getDebugLoc();
   7079 
   7080   SDValue N0 = Op.getOperand(0);
   7081   SDValue N1 = Op.getOperand(1);
   7082   SDValue N2 = Op.getOperand(2);
   7083 
   7084   if (!VT.is128BitVector())
   7085     return SDValue();
   7086 
   7087   if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
   7088       isa<ConstantSDNode>(N2)) {
   7089     unsigned Opc;
   7090     if (VT == MVT::v8i16)
   7091       Opc = X86ISD::PINSRW;
   7092     else if (VT == MVT::v16i8)
   7093       Opc = X86ISD::PINSRB;
   7094     else
   7095       Opc = X86ISD::PINSRB;
   7096 
   7097     // Transform it so it match pinsr{b,w} which expects a GR32 as its second
   7098     // argument.
   7099     if (N1.getValueType() != MVT::i32)
   7100       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
   7101     if (N2.getValueType() != MVT::i32)
   7102       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
   7103     return DAG.getNode(Opc, dl, VT, N0, N1, N2);
   7104   }
   7105 
   7106   if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
   7107     // Bits [7:6] of the constant are the source select.  This will always be
   7108     //  zero here.  The DAG Combiner may combine an extract_elt index into these
   7109     //  bits.  For example (insert (extract, 3), 2) could be matched by putting
   7110     //  the '3' into bits [7:6] of X86ISD::INSERTPS.
   7111     // Bits [5:4] of the constant are the destination select.  This is the
   7112     //  value of the incoming immediate.
   7113     // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
   7114     //   combine either bitwise AND or insert of float 0.0 to set these bits.
   7115     N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
   7116     // Create this as a scalar to vector..
   7117     N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
   7118     return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
   7119   }
   7120 
   7121   if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
   7122     // PINSR* works with constant index.
   7123     return Op;
   7124   }
   7125   return SDValue();
   7126 }
   7127 
   7128 SDValue
   7129 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
   7130   EVT VT = Op.getValueType();
   7131   EVT EltVT = VT.getVectorElementType();
   7132 
   7133   DebugLoc dl = Op.getDebugLoc();
   7134   SDValue N0 = Op.getOperand(0);
   7135   SDValue N1 = Op.getOperand(1);
   7136   SDValue N2 = Op.getOperand(2);
   7137 
   7138   // If this is a 256-bit vector result, first extract the 128-bit vector,
   7139   // insert the element into the extracted half and then place it back.
   7140   if (VT.is256BitVector()) {
   7141     if (!isa<ConstantSDNode>(N2))
   7142       return SDValue();
   7143 
   7144     // Get the desired 128-bit vector half.
   7145     unsigned NumElems = VT.getVectorNumElements();
   7146     unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
   7147     SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
   7148 
   7149     // Insert the element into the desired half.
   7150     bool Upper = IdxVal >= NumElems/2;
   7151     V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
   7152                  DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
   7153 
   7154     // Insert the changed part back to the 256-bit vector
   7155     return Insert128BitVector(N0, V, IdxVal, DAG, dl);
   7156   }
   7157 
   7158   if (Subtarget->hasSSE41())
   7159     return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
   7160 
   7161   if (EltVT == MVT::i8)
   7162     return SDValue();
   7163 
   7164   if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
   7165     // Transform it so it match pinsrw which expects a 16-bit value in a GR32
   7166     // as its second argument.
   7167     if (N1.getValueType() != MVT::i32)
   7168       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
   7169     if (N2.getValueType() != MVT::i32)
   7170       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
   7171     return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
   7172   }
   7173   return SDValue();
   7174 }
   7175 
   7176 SDValue
   7177 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
   7178   LLVMContext *Context = DAG.getContext();
   7179   DebugLoc dl = Op.getDebugLoc();
   7180   EVT OpVT = Op.getValueType();
   7181 
   7182   // If this is a 256-bit vector result, first insert into a 128-bit
   7183   // vector and then insert into the 256-bit vector.
   7184   if (!OpVT.is128BitVector()) {
   7185     // Insert into a 128-bit vector.
   7186     EVT VT128 = EVT::getVectorVT(*Context,
   7187                                  OpVT.getVectorElementType(),
   7188                                  OpVT.getVectorNumElements() / 2);
   7189 
   7190     Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
   7191 
   7192     // Insert the 128-bit vector.
   7193     return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
   7194   }
   7195 
   7196   if (OpVT == MVT::v1i64 &&
   7197       Op.getOperand(0).getValueType() == MVT::i64)
   7198     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
   7199 
   7200   SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
   7201   assert(OpVT.is128BitVector() && "Expected an SSE type!");
   7202   return DAG.getNode(ISD::BITCAST, dl, OpVT,
   7203                      DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
   7204 }
   7205 
   7206 // Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
   7207 // a simple subregister reference or explicit instructions to grab
   7208 // upper bits of a vector.
   7209 SDValue
   7210 X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
   7211   if (Subtarget->hasAVX()) {
   7212     DebugLoc dl = Op.getNode()->getDebugLoc();
   7213     SDValue Vec = Op.getNode()->getOperand(0);
   7214     SDValue Idx = Op.getNode()->getOperand(1);
   7215 
   7216     if (Op.getNode()->getValueType(0).is128BitVector() &&
   7217         Vec.getNode()->getValueType(0).is256BitVector() &&
   7218         isa<ConstantSDNode>(Idx)) {
   7219       unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   7220       return Extract128BitVector(Vec, IdxVal, DAG, dl);
   7221     }
   7222   }
   7223   return SDValue();
   7224 }
   7225 
   7226 // Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
   7227 // simple superregister reference or explicit instructions to insert
   7228 // the upper bits of a vector.
   7229 SDValue
   7230 X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
   7231   if (Subtarget->hasAVX()) {
   7232     DebugLoc dl = Op.getNode()->getDebugLoc();
   7233     SDValue Vec = Op.getNode()->getOperand(0);
   7234     SDValue SubVec = Op.getNode()->getOperand(1);
   7235     SDValue Idx = Op.getNode()->getOperand(2);
   7236 
   7237     if (Op.getNode()->getValueType(0).is256BitVector() &&
   7238         SubVec.getNode()->getValueType(0).is128BitVector() &&
   7239         isa<ConstantSDNode>(Idx)) {
   7240       unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
   7241       return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
   7242     }
   7243   }
   7244   return SDValue();
   7245 }
   7246 
   7247 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   7248 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
   7249 // one of the above mentioned nodes. It has to be wrapped because otherwise
   7250 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   7251 // be used to form addressing mode. These wrapped nodes will be selected
   7252 // into MOV32ri.
   7253 SDValue
   7254 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
   7255   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   7256 
   7257   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7258   // global base reg.
   7259   unsigned char OpFlag = 0;
   7260   unsigned WrapperKind = X86ISD::Wrapper;
   7261   CodeModel::Model M = getTargetMachine().getCodeModel();
   7262 
   7263   if (Subtarget->isPICStyleRIPRel() &&
   7264       (M == CodeModel::Small || M == CodeModel::Kernel))
   7265     WrapperKind = X86ISD::WrapperRIP;
   7266   else if (Subtarget->isPICStyleGOT())
   7267     OpFlag = X86II::MO_GOTOFF;
   7268   else if (Subtarget->isPICStyleStubPIC())
   7269     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   7270 
   7271   SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
   7272                                              CP->getAlignment(),
   7273                                              CP->getOffset(), OpFlag);
   7274   DebugLoc DL = CP->getDebugLoc();
   7275   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7276   // With PIC, the address is actually $g + Offset.
   7277   if (OpFlag) {
   7278     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7279                          DAG.getNode(X86ISD::GlobalBaseReg,
   7280                                      DebugLoc(), getPointerTy()),
   7281                          Result);
   7282   }
   7283 
   7284   return Result;
   7285 }
   7286 
   7287 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
   7288   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
   7289 
   7290   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7291   // global base reg.
   7292   unsigned char OpFlag = 0;
   7293   unsigned WrapperKind = X86ISD::Wrapper;
   7294   CodeModel::Model M = getTargetMachine().getCodeModel();
   7295 
   7296   if (Subtarget->isPICStyleRIPRel() &&
   7297       (M == CodeModel::Small || M == CodeModel::Kernel))
   7298     WrapperKind = X86ISD::WrapperRIP;
   7299   else if (Subtarget->isPICStyleGOT())
   7300     OpFlag = X86II::MO_GOTOFF;
   7301   else if (Subtarget->isPICStyleStubPIC())
   7302     OpFlag = X86II::MO_PIC_BASE_OFFSET;
   7303 
   7304   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
   7305                                           OpFlag);
   7306   DebugLoc DL = JT->getDebugLoc();
   7307   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7308 
   7309   // With PIC, the address is actually $g + Offset.
   7310   if (OpFlag)
   7311     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7312                          DAG.getNode(X86ISD::GlobalBaseReg,
   7313                                      DebugLoc(), getPointerTy()),
   7314                          Result);
   7315 
   7316   return Result;
   7317 }
   7318 
   7319 SDValue
   7320 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
   7321   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
   7322 
   7323   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7324   // global base reg.
   7325   unsigned char OpFlag = 0;
   7326   unsigned WrapperKind = X86ISD::Wrapper;
   7327   CodeModel::Model M = getTargetMachine().getCodeModel();
   7328 
   7329   if (Subtarget->isPICStyleRIPRel() &&
   7330       (M == CodeModel::Small || M == CodeModel::Kernel)) {
   7331     if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
   7332       OpFlag = X86II::MO_GOTPCREL;
   7333     WrapperKind = X86ISD::WrapperRIP;
   7334   } else if (Subtarget->isPICStyleGOT()) {
   7335     OpFlag = X86II::MO_GOT;
   7336   } else if (Subtarget->isPICStyleStubPIC()) {
   7337     OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
   7338   } else if (Subtarget->isPICStyleStubNoDynamic()) {
   7339     OpFlag = X86II::MO_DARWIN_NONLAZY;
   7340   }
   7341 
   7342   SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
   7343 
   7344   DebugLoc DL = Op.getDebugLoc();
   7345   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7346 
   7347 
   7348   // With PIC, the address is actually $g + Offset.
   7349   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
   7350       !Subtarget->is64Bit()) {
   7351     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7352                          DAG.getNode(X86ISD::GlobalBaseReg,
   7353                                      DebugLoc(), getPointerTy()),
   7354                          Result);
   7355   }
   7356 
   7357   // For symbols that require a load from a stub to get the address, emit the
   7358   // load.
   7359   if (isGlobalStubReference(OpFlag))
   7360     Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
   7361                          MachinePointerInfo::getGOT(), false, false, false, 0);
   7362 
   7363   return Result;
   7364 }
   7365 
   7366 SDValue
   7367 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
   7368   // Create the TargetBlockAddressAddress node.
   7369   unsigned char OpFlags =
   7370     Subtarget->ClassifyBlockAddressReference();
   7371   CodeModel::Model M = getTargetMachine().getCodeModel();
   7372   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   7373   DebugLoc dl = Op.getDebugLoc();
   7374   SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
   7375                                        /*isTarget=*/true, OpFlags);
   7376 
   7377   if (Subtarget->isPICStyleRIPRel() &&
   7378       (M == CodeModel::Small || M == CodeModel::Kernel))
   7379     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
   7380   else
   7381     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
   7382 
   7383   // With PIC, the address is actually $g + Offset.
   7384   if (isGlobalRelativeToPICBase(OpFlags)) {
   7385     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
   7386                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
   7387                          Result);
   7388   }
   7389 
   7390   return Result;
   7391 }
   7392 
   7393 SDValue
   7394 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
   7395                                       int64_t Offset,
   7396                                       SelectionDAG &DAG) const {
   7397   // Create the TargetGlobalAddress node, folding in the constant
   7398   // offset if it is legal.
   7399   unsigned char OpFlags =
   7400     Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
   7401   CodeModel::Model M = getTargetMachine().getCodeModel();
   7402   SDValue Result;
   7403   if (OpFlags == X86II::MO_NO_FLAG &&
   7404       X86::isOffsetSuitableForCodeModel(Offset, M)) {
   7405     // A direct static reference to a global.
   7406     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
   7407     Offset = 0;
   7408   } else {
   7409     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
   7410   }
   7411 
   7412   if (Subtarget->isPICStyleRIPRel() &&
   7413       (M == CodeModel::Small || M == CodeModel::Kernel))
   7414     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
   7415   else
   7416     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
   7417 
   7418   // With PIC, the address is actually $g + Offset.
   7419   if (isGlobalRelativeToPICBase(OpFlags)) {
   7420     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
   7421                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
   7422                          Result);
   7423   }
   7424 
   7425   // For globals that require a load from a stub to get the address, emit the
   7426   // load.
   7427   if (isGlobalStubReference(OpFlags))
   7428     Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
   7429                          MachinePointerInfo::getGOT(), false, false, false, 0);
   7430 
   7431   // If there was a non-zero offset that we didn't fold, create an explicit
   7432   // addition for it.
   7433   if (Offset != 0)
   7434     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
   7435                          DAG.getConstant(Offset, getPointerTy()));
   7436 
   7437   return Result;
   7438 }
   7439 
   7440 SDValue
   7441 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
   7442   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   7443   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
   7444   return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
   7445 }
   7446 
   7447 static SDValue
   7448 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
   7449            SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
   7450            unsigned char OperandFlags, bool LocalDynamic = false) {
   7451   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   7452   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   7453   DebugLoc dl = GA->getDebugLoc();
   7454   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   7455                                            GA->getValueType(0),
   7456                                            GA->getOffset(),
   7457                                            OperandFlags);
   7458 
   7459   X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
   7460                                            : X86ISD::TLSADDR;
   7461 
   7462   if (InFlag) {
   7463     SDValue Ops[] = { Chain,  TGA, *InFlag };
   7464     Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
   7465   } else {
   7466     SDValue Ops[]  = { Chain, TGA };
   7467     Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
   7468   }
   7469 
   7470   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
   7471   MFI->setAdjustsStack(true);
   7472 
   7473   SDValue Flag = Chain.getValue(1);
   7474   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
   7475 }
   7476 
   7477 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
   7478 static SDValue
   7479 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   7480                                 const EVT PtrVT) {
   7481   SDValue InFlag;
   7482   DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
   7483   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
   7484                                      DAG.getNode(X86ISD::GlobalBaseReg,
   7485                                                  DebugLoc(), PtrVT), InFlag);
   7486   InFlag = Chain.getValue(1);
   7487 
   7488   return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
   7489 }
   7490 
   7491 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
   7492 static SDValue
   7493 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   7494                                 const EVT PtrVT) {
   7495   return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
   7496                     X86::RAX, X86II::MO_TLSGD);
   7497 }
   7498 
   7499 static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
   7500                                            SelectionDAG &DAG,
   7501                                            const EVT PtrVT,
   7502                                            bool is64Bit) {
   7503   DebugLoc dl = GA->getDebugLoc();
   7504 
   7505   // Get the start address of the TLS block for this module.
   7506   X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
   7507       .getInfo<X86MachineFunctionInfo>();
   7508   MFI->incNumLocalDynamicTLSAccesses();
   7509 
   7510   SDValue Base;
   7511   if (is64Bit) {
   7512     Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
   7513                       X86II::MO_TLSLD, /*LocalDynamic=*/true);
   7514   } else {
   7515     SDValue InFlag;
   7516     SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
   7517         DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
   7518     InFlag = Chain.getValue(1);
   7519     Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
   7520                       X86II::MO_TLSLDM, /*LocalDynamic=*/true);
   7521   }
   7522 
   7523   // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
   7524   // of Base.
   7525 
   7526   // Build x@dtpoff.
   7527   unsigned char OperandFlags = X86II::MO_DTPOFF;
   7528   unsigned WrapperKind = X86ISD::Wrapper;
   7529   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   7530                                            GA->getValueType(0),
   7531                                            GA->getOffset(), OperandFlags);
   7532   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
   7533 
   7534   // Add x@dtpoff with the base.
   7535   return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
   7536 }
   7537 
   7538 // Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
   7539 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
   7540                                    const EVT PtrVT, TLSModel::Model model,
   7541                                    bool is64Bit, bool isPIC) {
   7542   DebugLoc dl = GA->getDebugLoc();
   7543 
   7544   // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
   7545   Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
   7546                                                          is64Bit ? 257 : 256));
   7547 
   7548   SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
   7549                                       DAG.getIntPtrConstant(0),
   7550                                       MachinePointerInfo(Ptr),
   7551                                       false, false, false, 0);
   7552 
   7553   unsigned char OperandFlags = 0;
   7554   // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
   7555   // initialexec.
   7556   unsigned WrapperKind = X86ISD::Wrapper;
   7557   if (model == TLSModel::LocalExec) {
   7558     OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
   7559   } else if (model == TLSModel::InitialExec) {
   7560     if (is64Bit) {
   7561       OperandFlags = X86II::MO_GOTTPOFF;
   7562       WrapperKind = X86ISD::WrapperRIP;
   7563     } else {
   7564       OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
   7565     }
   7566   } else {
   7567     llvm_unreachable("Unexpected model");
   7568   }
   7569 
   7570   // emit "addl x@ntpoff,%eax" (local exec)
   7571   // or "addl x@indntpoff,%eax" (initial exec)
   7572   // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
   7573   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   7574                                            GA->getValueType(0),
   7575                                            GA->getOffset(), OperandFlags);
   7576   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
   7577 
   7578   if (model == TLSModel::InitialExec) {
   7579     if (isPIC && !is64Bit) {
   7580       Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
   7581                           DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
   7582                            Offset);
   7583     }
   7584 
   7585     Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
   7586                          MachinePointerInfo::getGOT(), false, false, false,
   7587                          0);
   7588   }
   7589 
   7590   // The address of the thread local variable is the add of the thread
   7591   // pointer with the offset of the variable.
   7592   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   7593 }
   7594 
   7595 SDValue
   7596 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   7597 
   7598   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   7599   const GlobalValue *GV = GA->getGlobal();
   7600 
   7601   if (Subtarget->isTargetELF()) {
   7602     TLSModel::Model model = getTargetMachine().getTLSModel(GV);
   7603 
   7604     switch (model) {
   7605       case TLSModel::GeneralDynamic:
   7606         if (Subtarget->is64Bit())
   7607           return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
   7608         return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
   7609       case TLSModel::LocalDynamic:
   7610         return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
   7611                                            Subtarget->is64Bit());
   7612       case TLSModel::InitialExec:
   7613       case TLSModel::LocalExec:
   7614         return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
   7615                                    Subtarget->is64Bit(),
   7616                          getTargetMachine().getRelocationModel() == Reloc::PIC_);
   7617     }
   7618     llvm_unreachable("Unknown TLS model.");
   7619   }
   7620 
   7621   if (Subtarget->isTargetDarwin()) {
   7622     // Darwin only has one model of TLS.  Lower to that.
   7623     unsigned char OpFlag = 0;
   7624     unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
   7625                            X86ISD::WrapperRIP : X86ISD::Wrapper;
   7626 
   7627     // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
   7628     // global base reg.
   7629     bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
   7630                   !Subtarget->is64Bit();
   7631     if (PIC32)
   7632       OpFlag = X86II::MO_TLVP_PIC_BASE;
   7633     else
   7634       OpFlag = X86II::MO_TLVP;
   7635     DebugLoc DL = Op.getDebugLoc();
   7636     SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
   7637                                                 GA->getValueType(0),
   7638                                                 GA->getOffset(), OpFlag);
   7639     SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
   7640 
   7641     // With PIC32, the address is actually $g + Offset.
   7642     if (PIC32)
   7643       Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   7644                            DAG.getNode(X86ISD::GlobalBaseReg,
   7645                                        DebugLoc(), getPointerTy()),
   7646                            Offset);
   7647 
   7648     // Lowering the machine isd will make sure everything is in the right
   7649     // location.
   7650     SDValue Chain = DAG.getEntryNode();
   7651     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   7652     SDValue Args[] = { Chain, Offset };
   7653     Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
   7654 
   7655     // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
   7656     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   7657     MFI->setAdjustsStack(true);
   7658 
   7659     // And our return value (tls address) is in the standard call return value
   7660     // location.
   7661     unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   7662     return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
   7663                               Chain.getValue(1));
   7664   }
   7665 
   7666   if (Subtarget->isTargetWindows()) {
   7667     // Just use the implicit TLS architecture
   7668     // Need to generate someting similar to:
   7669     //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
   7670     //                                  ; from TEB
   7671     //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
   7672     //   mov     rcx, qword [rdx+rcx*8]
   7673     //   mov     eax, .tls$:tlsvar
   7674     //   [rax+rcx] contains the address
   7675     // Windows 64bit: gs:0x58
   7676     // Windows 32bit: fs:__tls_array
   7677 
   7678     // If GV is an alias then use the aliasee for determining
   7679     // thread-localness.
   7680     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
   7681       GV = GA->resolveAliasedGlobal(false);
   7682     DebugLoc dl = GA->getDebugLoc();
   7683     SDValue Chain = DAG.getEntryNode();
   7684 
   7685     // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
   7686     // %gs:0x58 (64-bit).
   7687     Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
   7688                                         ? Type::getInt8PtrTy(*DAG.getContext(),
   7689                                                              256)
   7690                                         : Type::getInt32PtrTy(*DAG.getContext(),
   7691                                                               257));
   7692 
   7693     SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
   7694                                         Subtarget->is64Bit()
   7695                                         ? DAG.getIntPtrConstant(0x58)
   7696                                         : DAG.getExternalSymbol("_tls_array",
   7697                                                                 getPointerTy()),
   7698                                         MachinePointerInfo(Ptr),
   7699                                         false, false, false, 0);
   7700 
   7701     // Load the _tls_index variable
   7702     SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
   7703     if (Subtarget->is64Bit())
   7704       IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
   7705                            IDX, MachinePointerInfo(), MVT::i32,
   7706                            false, false, 0);
   7707     else
   7708       IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
   7709                         false, false, false, 0);
   7710 
   7711     SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
   7712                                     getPointerTy());
   7713     IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
   7714 
   7715     SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
   7716     res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
   7717                       false, false, false, 0);
   7718 
   7719     // Get the offset of start of .tls section
   7720     SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
   7721                                              GA->getValueType(0),
   7722                                              GA->getOffset(), X86II::MO_SECREL);
   7723     SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
   7724 
   7725     // The address of the thread local variable is the add of the thread
   7726     // pointer with the offset of the variable.
   7727     return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
   7728   }
   7729 
   7730   llvm_unreachable("TLS not implemented for this target.");
   7731 }
   7732 
   7733 
   7734 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
   7735 /// and take a 2 x i32 value to shift plus a shift amount.
   7736 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
   7737   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   7738   EVT VT = Op.getValueType();
   7739   unsigned VTBits = VT.getSizeInBits();
   7740   DebugLoc dl = Op.getDebugLoc();
   7741   bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
   7742   SDValue ShOpLo = Op.getOperand(0);
   7743   SDValue ShOpHi = Op.getOperand(1);
   7744   SDValue ShAmt  = Op.getOperand(2);
   7745   SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
   7746                                      DAG.getConstant(VTBits - 1, MVT::i8))
   7747                        : DAG.getConstant(0, VT);
   7748 
   7749   SDValue Tmp2, Tmp3;
   7750   if (Op.getOpcode() == ISD::SHL_PARTS) {
   7751     Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
   7752     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   7753   } else {
   7754     Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
   7755     Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
   7756   }
   7757 
   7758   SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
   7759                                 DAG.getConstant(VTBits, MVT::i8));
   7760   SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
   7761                              AndNode, DAG.getConstant(0, MVT::i8));
   7762 
   7763   SDValue Hi, Lo;
   7764   SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   7765   SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
   7766   SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
   7767 
   7768   if (Op.getOpcode() == ISD::SHL_PARTS) {
   7769     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
   7770     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
   7771   } else {
   7772     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
   7773     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
   7774   }
   7775 
   7776   SDValue Ops[2] = { Lo, Hi };
   7777   return DAG.getMergeValues(Ops, 2, dl);
   7778 }
   7779 
   7780 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
   7781                                            SelectionDAG &DAG) const {
   7782   EVT SrcVT = Op.getOperand(0).getValueType();
   7783 
   7784   if (SrcVT.isVector())
   7785     return SDValue();
   7786 
   7787   assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
   7788          "Unknown SINT_TO_FP to lower!");
   7789 
   7790   // These are really Legal; return the operand so the caller accepts it as
   7791   // Legal.
   7792   if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
   7793     return Op;
   7794   if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
   7795       Subtarget->is64Bit()) {
   7796     return Op;
   7797   }
   7798 
   7799   DebugLoc dl = Op.getDebugLoc();
   7800   unsigned Size = SrcVT.getSizeInBits()/8;
   7801   MachineFunction &MF = DAG.getMachineFunction();
   7802   int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
   7803   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7804   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   7805                                StackSlot,
   7806                                MachinePointerInfo::getFixedStack(SSFI),
   7807                                false, false, 0);
   7808   return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
   7809 }
   7810 
   7811 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
   7812                                      SDValue StackSlot,
   7813                                      SelectionDAG &DAG) const {
   7814   // Build the FILD
   7815   DebugLoc DL = Op.getDebugLoc();
   7816   SDVTList Tys;
   7817   bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
   7818   if (useSSE)
   7819     Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
   7820   else
   7821     Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
   7822 
   7823   unsigned ByteSize = SrcVT.getSizeInBits()/8;
   7824 
   7825   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
   7826   MachineMemOperand *MMO;
   7827   if (FI) {
   7828     int SSFI = FI->getIndex();
   7829     MMO =
   7830       DAG.getMachineFunction()
   7831       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7832                             MachineMemOperand::MOLoad, ByteSize, ByteSize);
   7833   } else {
   7834     MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
   7835     StackSlot = StackSlot.getOperand(1);
   7836   }
   7837   SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
   7838   SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
   7839                                            X86ISD::FILD, DL,
   7840                                            Tys, Ops, array_lengthof(Ops),
   7841                                            SrcVT, MMO);
   7842 
   7843   if (useSSE) {
   7844     Chain = Result.getValue(1);
   7845     SDValue InFlag = Result.getValue(2);
   7846 
   7847     // FIXME: Currently the FST is flagged to the FILD_FLAG. This
   7848     // shouldn't be necessary except that RFP cannot be live across
   7849     // multiple blocks. When stackifier is fixed, they can be uncoupled.
   7850     MachineFunction &MF = DAG.getMachineFunction();
   7851     unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
   7852     int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
   7853     SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   7854     Tys = DAG.getVTList(MVT::Other);
   7855     SDValue Ops[] = {
   7856       Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
   7857     };
   7858     MachineMemOperand *MMO =
   7859       DAG.getMachineFunction()
   7860       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   7861                             MachineMemOperand::MOStore, SSFISize, SSFISize);
   7862 
   7863     Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
   7864                                     Ops, array_lengthof(Ops),
   7865                                     Op.getValueType(), MMO);
   7866     Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
   7867                          MachinePointerInfo::getFixedStack(SSFI),
   7868                          false, false, false, 0);
   7869   }
   7870 
   7871   return Result;
   7872 }
   7873 
   7874 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
   7875 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
   7876                                                SelectionDAG &DAG) const {
   7877   // This algorithm is not obvious. Here it is what we're trying to output:
   7878   /*
   7879      movq       %rax,  %xmm0
   7880      punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
   7881      subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
   7882      #ifdef __SSE3__
   7883        haddpd   %xmm0, %xmm0
   7884      #else
   7885        pshufd   $0x4e, %xmm0, %xmm1
   7886        addpd    %xmm1, %xmm0
   7887      #endif
   7888   */
   7889 
   7890   DebugLoc dl = Op.getDebugLoc();
   7891   LLVMContext *Context = DAG.getContext();
   7892 
   7893   // Build some magic constants.
   7894   const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
   7895   Constant *C0 = ConstantDataVector::get(*Context, CV0);
   7896   SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
   7897 
   7898   SmallVector<Constant*,2> CV1;
   7899   CV1.push_back(
   7900         ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
   7901   CV1.push_back(
   7902         ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
   7903   Constant *C1 = ConstantVector::get(CV1);
   7904   SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
   7905 
   7906   // Load the 64-bit value into an XMM register.
   7907   SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
   7908                             Op.getOperand(0));
   7909   SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
   7910                               MachinePointerInfo::getConstantPool(),
   7911                               false, false, false, 16);
   7912   SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
   7913                               DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
   7914                               CLod0);
   7915 
   7916   SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
   7917                               MachinePointerInfo::getConstantPool(),
   7918                               false, false, false, 16);
   7919   SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
   7920   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
   7921   SDValue Result;
   7922 
   7923   if (Subtarget->hasSSE3()) {
   7924     // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
   7925     Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
   7926   } else {
   7927     SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
   7928     SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
   7929                                            S2F, 0x4E, DAG);
   7930     Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
   7931                          DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
   7932                          Sub);
   7933   }
   7934 
   7935   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
   7936                      DAG.getIntPtrConstant(0));
   7937 }
   7938 
   7939 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
   7940 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
   7941                                                SelectionDAG &DAG) const {
   7942   DebugLoc dl = Op.getDebugLoc();
   7943   // FP constant to bias correct the final result.
   7944   SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
   7945                                    MVT::f64);
   7946 
   7947   // Load the 32-bit value into an XMM register.
   7948   SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
   7949                              Op.getOperand(0));
   7950 
   7951   // Zero out the upper parts of the register.
   7952   Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
   7953 
   7954   Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   7955                      DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
   7956                      DAG.getIntPtrConstant(0));
   7957 
   7958   // Or the load with the bias.
   7959   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
   7960                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   7961                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   7962                                                    MVT::v2f64, Load)),
   7963                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
   7964                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
   7965                                                    MVT::v2f64, Bias)));
   7966   Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   7967                    DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
   7968                    DAG.getIntPtrConstant(0));
   7969 
   7970   // Subtract the bias.
   7971   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
   7972 
   7973   // Handle final rounding.
   7974   EVT DestVT = Op.getValueType();
   7975 
   7976   if (DestVT.bitsLT(MVT::f64))
   7977     return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
   7978                        DAG.getIntPtrConstant(0));
   7979   if (DestVT.bitsGT(MVT::f64))
   7980     return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
   7981 
   7982   // Handle final rounding.
   7983   return Sub;
   7984 }
   7985 
   7986 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
   7987                                            SelectionDAG &DAG) const {
   7988   SDValue N0 = Op.getOperand(0);
   7989   DebugLoc dl = Op.getDebugLoc();
   7990 
   7991   // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
   7992   // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
   7993   // the optimization here.
   7994   if (DAG.SignBitIsZero(N0))
   7995     return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
   7996 
   7997   EVT SrcVT = N0.getValueType();
   7998   EVT DstVT = Op.getValueType();
   7999   if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
   8000     return LowerUINT_TO_FP_i64(Op, DAG);
   8001   if (SrcVT == MVT::i32 && X86ScalarSSEf64)
   8002     return LowerUINT_TO_FP_i32(Op, DAG);
   8003   if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
   8004     return SDValue();
   8005 
   8006   // Make a 64-bit buffer, and use it to build an FILD.
   8007   SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
   8008   if (SrcVT == MVT::i32) {
   8009     SDValue WordOff = DAG.getConstant(4, getPointerTy());
   8010     SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
   8011                                      getPointerTy(), StackSlot, WordOff);
   8012     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   8013                                   StackSlot, MachinePointerInfo(),
   8014                                   false, false, 0);
   8015     SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
   8016                                   OffsetSlot, MachinePointerInfo(),
   8017                                   false, false, 0);
   8018     SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
   8019     return Fild;
   8020   }
   8021 
   8022   assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
   8023   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
   8024                                StackSlot, MachinePointerInfo(),
   8025                                false, false, 0);
   8026   // For i64 source, we need to add the appropriate power of 2 if the input
   8027   // was negative.  This is the same as the optimization in
   8028   // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
   8029   // we must be careful to do the computation in x87 extended precision, not
   8030   // in SSE. (The generic code can't know it's OK to do this, or how to.)
   8031   int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
   8032   MachineMemOperand *MMO =
   8033     DAG.getMachineFunction()
   8034     .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   8035                           MachineMemOperand::MOLoad, 8, 8);
   8036 
   8037   SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
   8038   SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
   8039   SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
   8040                                          MVT::i64, MMO);
   8041 
   8042   APInt FF(32, 0x5F800000ULL);
   8043 
   8044   // Check whether the sign bit is set.
   8045   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
   8046                                  Op.getOperand(0), DAG.getConstant(0, MVT::i64),
   8047                                  ISD::SETLT);
   8048 
   8049   // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
   8050   SDValue FudgePtr = DAG.getConstantPool(
   8051                              ConstantInt::get(*DAG.getContext(), FF.zext(64)),
   8052                                          getPointerTy());
   8053 
   8054   // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
   8055   SDValue Zero = DAG.getIntPtrConstant(0);
   8056   SDValue Four = DAG.getIntPtrConstant(4);
   8057   SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
   8058                                Zero, Four);
   8059   FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
   8060 
   8061   // Load the value out, extending it from f32 to f80.
   8062   // FIXME: Avoid the extend by constructing the right constant pool?
   8063   SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
   8064                                  FudgePtr, MachinePointerInfo::getConstantPool(),
   8065                                  MVT::f32, false, false, 4);
   8066   // Extend everything to 80 bits to force it to be done on x87.
   8067   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
   8068   return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
   8069 }
   8070 
   8071 std::pair<SDValue,SDValue> X86TargetLowering::
   8072 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
   8073   DebugLoc DL = Op.getDebugLoc();
   8074 
   8075   EVT DstTy = Op.getValueType();
   8076 
   8077   if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
   8078     assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
   8079     DstTy = MVT::i64;
   8080   }
   8081 
   8082   assert(DstTy.getSimpleVT() <= MVT::i64 &&
   8083          DstTy.getSimpleVT() >= MVT::i16 &&
   8084          "Unknown FP_TO_INT to lower!");
   8085 
   8086   // These are really Legal.
   8087   if (DstTy == MVT::i32 &&
   8088       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
   8089     return std::make_pair(SDValue(), SDValue());
   8090   if (Subtarget->is64Bit() &&
   8091       DstTy == MVT::i64 &&
   8092       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
   8093     return std::make_pair(SDValue(), SDValue());
   8094 
   8095   // We lower FP->int64 either into FISTP64 followed by a load from a temporary
   8096   // stack slot, or into the FTOL runtime function.
   8097   MachineFunction &MF = DAG.getMachineFunction();
   8098   unsigned MemSize = DstTy.getSizeInBits()/8;
   8099   int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
   8100   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   8101 
   8102   unsigned Opc;
   8103   if (!IsSigned && isIntegerTypeFTOL(DstTy))
   8104     Opc = X86ISD::WIN_FTOL;
   8105   else
   8106     switch (DstTy.getSimpleVT().SimpleTy) {
   8107     default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
   8108     case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
   8109     case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
   8110     case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
   8111     }
   8112 
   8113   SDValue Chain = DAG.getEntryNode();
   8114   SDValue Value = Op.getOperand(0);
   8115   EVT TheVT = Op.getOperand(0).getValueType();
   8116   // FIXME This causes a redundant load/store if the SSE-class value is already
   8117   // in memory, such as if it is on the callstack.
   8118   if (isScalarFPTypeInSSEReg(TheVT)) {
   8119     assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
   8120     Chain = DAG.getStore(Chain, DL, Value, StackSlot,
   8121                          MachinePointerInfo::getFixedStack(SSFI),
   8122                          false, false, 0);
   8123     SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
   8124     SDValue Ops[] = {
   8125       Chain, StackSlot, DAG.getValueType(TheVT)
   8126     };
   8127 
   8128     MachineMemOperand *MMO =
   8129       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   8130                               MachineMemOperand::MOLoad, MemSize, MemSize);
   8131     Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
   8132                                     DstTy, MMO);
   8133     Chain = Value.getValue(1);
   8134     SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
   8135     StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   8136   }
   8137 
   8138   MachineMemOperand *MMO =
   8139     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   8140                             MachineMemOperand::MOStore, MemSize, MemSize);
   8141 
   8142   if (Opc != X86ISD::WIN_FTOL) {
   8143     // Build the FP_TO_INT*_IN_MEM
   8144     SDValue Ops[] = { Chain, Value, StackSlot };
   8145     SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
   8146                                            Ops, 3, DstTy, MMO);
   8147     return std::make_pair(FIST, StackSlot);
   8148   } else {
   8149     SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
   8150       DAG.getVTList(MVT::Other, MVT::Glue),
   8151       Chain, Value);
   8152     SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
   8153       MVT::i32, ftol.getValue(1));
   8154     SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
   8155       MVT::i32, eax.getValue(2));
   8156     SDValue Ops[] = { eax, edx };
   8157     SDValue pair = IsReplace
   8158       ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
   8159       : DAG.getMergeValues(Ops, 2, DL);
   8160     return std::make_pair(pair, SDValue());
   8161   }
   8162 }
   8163 
   8164 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
   8165                                            SelectionDAG &DAG) const {
   8166   if (Op.getValueType().isVector())
   8167     return SDValue();
   8168 
   8169   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
   8170     /*IsSigned=*/ true, /*IsReplace=*/ false);
   8171   SDValue FIST = Vals.first, StackSlot = Vals.second;
   8172   // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
   8173   if (FIST.getNode() == 0) return Op;
   8174 
   8175   if (StackSlot.getNode())
   8176     // Load the result.
   8177     return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
   8178                        FIST, StackSlot, MachinePointerInfo(),
   8179                        false, false, false, 0);
   8180 
   8181   // The node is the result.
   8182   return FIST;
   8183 }
   8184 
   8185 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
   8186                                            SelectionDAG &DAG) const {
   8187   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
   8188     /*IsSigned=*/ false, /*IsReplace=*/ false);
   8189   SDValue FIST = Vals.first, StackSlot = Vals.second;
   8190   assert(FIST.getNode() && "Unexpected failure");
   8191 
   8192   if (StackSlot.getNode())
   8193     // Load the result.
   8194     return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
   8195                        FIST, StackSlot, MachinePointerInfo(),
   8196                        false, false, false, 0);
   8197 
   8198   // The node is the result.
   8199   return FIST;
   8200 }
   8201 
   8202 SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
   8203   LLVMContext *Context = DAG.getContext();
   8204   DebugLoc dl = Op.getDebugLoc();
   8205   EVT VT = Op.getValueType();
   8206   EVT EltVT = VT;
   8207   unsigned NumElts = VT == MVT::f64 ? 2 : 4;
   8208   if (VT.isVector()) {
   8209     EltVT = VT.getVectorElementType();
   8210     NumElts = VT.getVectorNumElements();
   8211   }
   8212   Constant *C;
   8213   if (EltVT == MVT::f64)
   8214     C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
   8215   else
   8216     C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
   8217   C = ConstantVector::getSplat(NumElts, C);
   8218   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
   8219   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
   8220   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8221                              MachinePointerInfo::getConstantPool(),
   8222                              false, false, false, Alignment);
   8223   if (VT.isVector()) {
   8224     MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
   8225     return DAG.getNode(ISD::BITCAST, dl, VT,
   8226                        DAG.getNode(ISD::AND, dl, ANDVT,
   8227                                    DAG.getNode(ISD::BITCAST, dl, ANDVT,
   8228                                                Op.getOperand(0)),
   8229                                    DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
   8230   }
   8231   return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
   8232 }
   8233 
   8234 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
   8235   LLVMContext *Context = DAG.getContext();
   8236   DebugLoc dl = Op.getDebugLoc();
   8237   EVT VT = Op.getValueType();
   8238   EVT EltVT = VT;
   8239   unsigned NumElts = VT == MVT::f64 ? 2 : 4;
   8240   if (VT.isVector()) {
   8241     EltVT = VT.getVectorElementType();
   8242     NumElts = VT.getVectorNumElements();
   8243   }
   8244   Constant *C;
   8245   if (EltVT == MVT::f64)
   8246     C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
   8247   else
   8248     C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
   8249   C = ConstantVector::getSplat(NumElts, C);
   8250   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
   8251   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
   8252   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8253                              MachinePointerInfo::getConstantPool(),
   8254                              false, false, false, Alignment);
   8255   if (VT.isVector()) {
   8256     MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
   8257     return DAG.getNode(ISD::BITCAST, dl, VT,
   8258                        DAG.getNode(ISD::XOR, dl, XORVT,
   8259                                    DAG.getNode(ISD::BITCAST, dl, XORVT,
   8260                                                Op.getOperand(0)),
   8261                                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
   8262   }
   8263 
   8264   return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
   8265 }
   8266 
   8267 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   8268   LLVMContext *Context = DAG.getContext();
   8269   SDValue Op0 = Op.getOperand(0);
   8270   SDValue Op1 = Op.getOperand(1);
   8271   DebugLoc dl = Op.getDebugLoc();
   8272   EVT VT = Op.getValueType();
   8273   EVT SrcVT = Op1.getValueType();
   8274 
   8275   // If second operand is smaller, extend it first.
   8276   if (SrcVT.bitsLT(VT)) {
   8277     Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
   8278     SrcVT = VT;
   8279   }
   8280   // And if it is bigger, shrink it first.
   8281   if (SrcVT.bitsGT(VT)) {
   8282     Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
   8283     SrcVT = VT;
   8284   }
   8285 
   8286   // At this point the operands and the result should have the same
   8287   // type, and that won't be f80 since that is not custom lowered.
   8288 
   8289   // First get the sign bit of second operand.
   8290   SmallVector<Constant*,4> CV;
   8291   if (SrcVT == MVT::f64) {
   8292     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
   8293     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
   8294   } else {
   8295     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
   8296     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8297     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8298     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8299   }
   8300   Constant *C = ConstantVector::get(CV);
   8301   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8302   SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
   8303                               MachinePointerInfo::getConstantPool(),
   8304                               false, false, false, 16);
   8305   SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
   8306 
   8307   // Shift sign bit right or left if the two operands have different types.
   8308   if (SrcVT.bitsGT(VT)) {
   8309     // Op0 is MVT::f32, Op1 is MVT::f64.
   8310     SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
   8311     SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
   8312                           DAG.getConstant(32, MVT::i32));
   8313     SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
   8314     SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
   8315                           DAG.getIntPtrConstant(0));
   8316   }
   8317 
   8318   // Clear first operand sign bit.
   8319   CV.clear();
   8320   if (VT == MVT::f64) {
   8321     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
   8322     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
   8323   } else {
   8324     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
   8325     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8326     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8327     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
   8328   }
   8329   C = ConstantVector::get(CV);
   8330   CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   8331   SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   8332                               MachinePointerInfo::getConstantPool(),
   8333                               false, false, false, 16);
   8334   SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
   8335 
   8336   // Or the value with the sign bit.
   8337   return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
   8338 }
   8339 
   8340 SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
   8341   SDValue N0 = Op.getOperand(0);
   8342   DebugLoc dl = Op.getDebugLoc();
   8343   EVT VT = Op.getValueType();
   8344 
   8345   // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
   8346   SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
   8347                                   DAG.getConstant(1, VT));
   8348   return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
   8349 }
   8350 
   8351 /// Emit nodes that will be selected as "test Op0,Op0", or something
   8352 /// equivalent.
   8353 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
   8354                                     SelectionDAG &DAG) const {
   8355   DebugLoc dl = Op.getDebugLoc();
   8356 
   8357   // CF and OF aren't always set the way we want. Determine which
   8358   // of these we need.
   8359   bool NeedCF = false;
   8360   bool NeedOF = false;
   8361   switch (X86CC) {
   8362   default: break;
   8363   case X86::COND_A: case X86::COND_AE:
   8364   case X86::COND_B: case X86::COND_BE:
   8365     NeedCF = true;
   8366     break;
   8367   case X86::COND_G: case X86::COND_GE:
   8368   case X86::COND_L: case X86::COND_LE:
   8369   case X86::COND_O: case X86::COND_NO:
   8370     NeedOF = true;
   8371     break;
   8372   }
   8373 
   8374   // See if we can use the EFLAGS value from the operand instead of
   8375   // doing a separate TEST. TEST always sets OF and CF to 0, so unless
   8376   // we prove that the arithmetic won't overflow, we can't use OF or CF.
   8377   if (Op.getResNo() != 0 || NeedOF || NeedCF)
   8378     // Emit a CMP with 0, which is the TEST pattern.
   8379     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
   8380                        DAG.getConstant(0, Op.getValueType()));
   8381 
   8382   unsigned Opcode = 0;
   8383   unsigned NumOperands = 0;
   8384 
   8385   // Truncate operations may prevent the merge of the SETCC instruction
   8386   // and the arithmetic intruction before it. Attempt to truncate the operands
   8387   // of the arithmetic instruction and use a reduced bit-width instruction.
   8388   bool NeedTruncation = false;
   8389   SDValue ArithOp = Op;
   8390   if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
   8391     SDValue Arith = Op->getOperand(0);
   8392     // Both the trunc and the arithmetic op need to have one user each.
   8393     if (Arith->hasOneUse())
   8394       switch (Arith.getOpcode()) {
   8395         default: break;
   8396         case ISD::ADD:
   8397         case ISD::SUB:
   8398         case ISD::AND:
   8399         case ISD::OR:
   8400         case ISD::XOR: {
   8401           NeedTruncation = true;
   8402           ArithOp = Arith;
   8403         }
   8404       }
   8405   }
   8406 
   8407   // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
   8408   // which may be the result of a CAST.  We use the variable 'Op', which is the
   8409   // non-casted variable when we check for possible users.
   8410   switch (ArithOp.getOpcode()) {
   8411   case ISD::ADD:
   8412     // Due to an isel shortcoming, be conservative if this add is likely to be
   8413     // selected as part of a load-modify-store instruction. When the root node
   8414     // in a match is a store, isel doesn't know how to remap non-chain non-flag
   8415     // uses of other nodes in the match, such as the ADD in this case. This
   8416     // leads to the ADD being left around and reselected, with the result being
   8417     // two adds in the output.  Alas, even if none our users are stores, that
   8418     // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
   8419     // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
   8420     // climbing the DAG back to the root, and it doesn't seem to be worth the
   8421     // effort.
   8422     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   8423          UE = Op.getNode()->use_end(); UI != UE; ++UI)
   8424       if (UI->getOpcode() != ISD::CopyToReg &&
   8425           UI->getOpcode() != ISD::SETCC &&
   8426           UI->getOpcode() != ISD::STORE)
   8427         goto default_case;
   8428 
   8429     if (ConstantSDNode *C =
   8430         dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
   8431       // An add of one will be selected as an INC.
   8432       if (C->getAPIntValue() == 1) {
   8433         Opcode = X86ISD::INC;
   8434         NumOperands = 1;
   8435         break;
   8436       }
   8437 
   8438       // An add of negative one (subtract of one) will be selected as a DEC.
   8439       if (C->getAPIntValue().isAllOnesValue()) {
   8440         Opcode = X86ISD::DEC;
   8441         NumOperands = 1;
   8442         break;
   8443       }
   8444     }
   8445 
   8446     // Otherwise use a regular EFLAGS-setting add.
   8447     Opcode = X86ISD::ADD;
   8448     NumOperands = 2;
   8449     break;
   8450   case ISD::AND: {
   8451     // If the primary and result isn't used, don't bother using X86ISD::AND,
   8452     // because a TEST instruction will be better.
   8453     bool NonFlagUse = false;
   8454     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   8455            UE = Op.getNode()->use_end(); UI != UE; ++UI) {
   8456       SDNode *User = *UI;
   8457       unsigned UOpNo = UI.getOperandNo();
   8458       if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
   8459         // Look pass truncate.
   8460         UOpNo = User->use_begin().getOperandNo();
   8461         User = *User->use_begin();
   8462       }
   8463 
   8464       if (User->getOpcode() != ISD::BRCOND &&
   8465           User->getOpcode() != ISD::SETCC &&
   8466           !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
   8467         NonFlagUse = true;
   8468         break;
   8469       }
   8470     }
   8471 
   8472     if (!NonFlagUse)
   8473       break;
   8474   }
   8475     // FALL THROUGH
   8476   case ISD::SUB:
   8477   case ISD::OR:
   8478   case ISD::XOR:
   8479     // Due to the ISEL shortcoming noted above, be conservative if this op is
   8480     // likely to be selected as part of a load-modify-store instruction.
   8481     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   8482            UE = Op.getNode()->use_end(); UI != UE; ++UI)
   8483       if (UI->getOpcode() == ISD::STORE)
   8484         goto default_case;
   8485 
   8486     // Otherwise use a regular EFLAGS-setting instruction.
   8487     switch (ArithOp.getOpcode()) {
   8488     default: llvm_unreachable("unexpected operator!");
   8489     case ISD::SUB: Opcode = X86ISD::SUB; break;
   8490     case ISD::OR:  Opcode = X86ISD::OR;  break;
   8491     case ISD::XOR: Opcode = X86ISD::XOR; break;
   8492     case ISD::AND: Opcode = X86ISD::AND; break;
   8493     }
   8494 
   8495     NumOperands = 2;
   8496     break;
   8497   case X86ISD::ADD:
   8498   case X86ISD::SUB:
   8499   case X86ISD::INC:
   8500   case X86ISD::DEC:
   8501   case X86ISD::OR:
   8502   case X86ISD::XOR:
   8503   case X86ISD::AND:
   8504     return SDValue(Op.getNode(), 1);
   8505   default:
   8506   default_case:
   8507     break;
   8508   }
   8509 
   8510   // If we found that truncation is beneficial, perform the truncation and
   8511   // update 'Op'.
   8512   if (NeedTruncation) {
   8513     EVT VT = Op.getValueType();
   8514     SDValue WideVal = Op->getOperand(0);
   8515     EVT WideVT = WideVal.getValueType();
   8516     unsigned ConvertedOp = 0;
   8517     // Use a target machine opcode to prevent further DAGCombine
   8518     // optimizations that may separate the arithmetic operations
   8519     // from the setcc node.
   8520     switch (WideVal.getOpcode()) {
   8521       default: break;
   8522       case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
   8523       case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
   8524       case ISD::AND: ConvertedOp = X86ISD::AND; break;
   8525       case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
   8526       case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
   8527     }
   8528 
   8529     if (ConvertedOp) {
   8530       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8531       if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
   8532         SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
   8533         SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
   8534         Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
   8535       }
   8536     }
   8537   }
   8538 
   8539   if (Opcode == 0)
   8540     // Emit a CMP with 0, which is the TEST pattern.
   8541     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
   8542                        DAG.getConstant(0, Op.getValueType()));
   8543 
   8544   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   8545   SmallVector<SDValue, 4> Ops;
   8546   for (unsigned i = 0; i != NumOperands; ++i)
   8547     Ops.push_back(Op.getOperand(i));
   8548 
   8549   SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
   8550   DAG.ReplaceAllUsesWith(Op, New);
   8551   return SDValue(New.getNode(), 1);
   8552 }
   8553 
   8554 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
   8555 /// equivalent.
   8556 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
   8557                                    SelectionDAG &DAG) const {
   8558   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
   8559     if (C->getAPIntValue() == 0)
   8560       return EmitTest(Op0, X86CC, DAG);
   8561 
   8562   DebugLoc dl = Op0.getDebugLoc();
   8563   if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
   8564        Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
   8565     // Use SUB instead of CMP to enable CSE between SUB and CMP.
   8566     SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
   8567     SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
   8568                               Op0, Op1);
   8569     return SDValue(Sub.getNode(), 1);
   8570   }
   8571   return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
   8572 }
   8573 
   8574 /// Convert a comparison if required by the subtarget.
   8575 SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
   8576                                                  SelectionDAG &DAG) const {
   8577   // If the subtarget does not support the FUCOMI instruction, floating-point
   8578   // comparisons have to be converted.
   8579   if (Subtarget->hasCMov() ||
   8580       Cmp.getOpcode() != X86ISD::CMP ||
   8581       !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
   8582       !Cmp.getOperand(1).getValueType().isFloatingPoint())
   8583     return Cmp;
   8584 
   8585   // The instruction selector will select an FUCOM instruction instead of
   8586   // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
   8587   // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
   8588   // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
   8589   DebugLoc dl = Cmp.getDebugLoc();
   8590   SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
   8591   SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
   8592   SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
   8593                             DAG.getConstant(8, MVT::i8));
   8594   SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
   8595   return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
   8596 }
   8597 
   8598 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
   8599 /// if it's possible.
   8600 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
   8601                                      DebugLoc dl, SelectionDAG &DAG) const {
   8602   SDValue Op0 = And.getOperand(0);
   8603   SDValue Op1 = And.getOperand(1);
   8604   if (Op0.getOpcode() == ISD::TRUNCATE)
   8605     Op0 = Op0.getOperand(0);
   8606   if (Op1.getOpcode() == ISD::TRUNCATE)
   8607     Op1 = Op1.getOperand(0);
   8608 
   8609   SDValue LHS, RHS;
   8610   if (Op1.getOpcode() == ISD::SHL)
   8611     std::swap(Op0, Op1);
   8612   if (Op0.getOpcode() == ISD::SHL) {
   8613     if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
   8614       if (And00C->getZExtValue() == 1) {
   8615         // If we looked past a truncate, check that it's only truncating away
   8616         // known zeros.
   8617         unsigned BitWidth = Op0.getValueSizeInBits();
   8618         unsigned AndBitWidth = And.getValueSizeInBits();
   8619         if (BitWidth > AndBitWidth) {
   8620           APInt Zeros, Ones;
   8621           DAG.ComputeMaskedBits(Op0, Zeros, Ones);
   8622           if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
   8623             return SDValue();
   8624         }
   8625         LHS = Op1;
   8626         RHS = Op0.getOperand(1);
   8627       }
   8628   } else if (Op1.getOpcode() == ISD::Constant) {
   8629     ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
   8630     uint64_t AndRHSVal = AndRHS->getZExtValue();
   8631     SDValue AndLHS = Op0;
   8632 
   8633     if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
   8634       LHS = AndLHS.getOperand(0);
   8635       RHS = AndLHS.getOperand(1);
   8636     }
   8637 
   8638     // Use BT if the immediate can't be encoded in a TEST instruction.
   8639     if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
   8640       LHS = AndLHS;
   8641       RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
   8642     }
   8643   }
   8644 
   8645   if (LHS.getNode()) {
   8646     // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
   8647     // instruction.  Since the shift amount is in-range-or-undefined, we know
   8648     // that doing a bittest on the i32 value is ok.  We extend to i32 because
   8649     // the encoding for the i16 version is larger than the i32 version.
   8650     // Also promote i16 to i32 for performance / code size reason.
   8651     if (LHS.getValueType() == MVT::i8 ||
   8652         LHS.getValueType() == MVT::i16)
   8653       LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
   8654 
   8655     // If the operand types disagree, extend the shift amount to match.  Since
   8656     // BT ignores high bits (like shifts) we can use anyextend.
   8657     if (LHS.getValueType() != RHS.getValueType())
   8658       RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
   8659 
   8660     SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
   8661     unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
   8662     return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   8663                        DAG.getConstant(Cond, MVT::i8), BT);
   8664   }
   8665 
   8666   return SDValue();
   8667 }
   8668 
   8669 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
   8670 
   8671   if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
   8672 
   8673   assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
   8674   SDValue Op0 = Op.getOperand(0);
   8675   SDValue Op1 = Op.getOperand(1);
   8676   DebugLoc dl = Op.getDebugLoc();
   8677   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
   8678 
   8679   // Optimize to BT if possible.
   8680   // Lower (X & (1 << N)) == 0 to BT(X, N).
   8681   // Lower ((X >>u N) & 1) != 0 to BT(X, N).
   8682   // Lower ((X >>s N) & 1) != 0 to BT(X, N).
   8683   if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
   8684       Op1.getOpcode() == ISD::Constant &&
   8685       cast<ConstantSDNode>(Op1)->isNullValue() &&
   8686       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   8687     SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
   8688     if (NewSetCC.getNode())
   8689       return NewSetCC;
   8690   }
   8691 
   8692   // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
   8693   // these.
   8694   if (Op1.getOpcode() == ISD::Constant &&
   8695       (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
   8696        cast<ConstantSDNode>(Op1)->isNullValue()) &&
   8697       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
   8698 
   8699     // If the input is a setcc, then reuse the input setcc or use a new one with
   8700     // the inverted condition.
   8701     if (Op0.getOpcode() == X86ISD::SETCC) {
   8702       X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
   8703       bool Invert = (CC == ISD::SETNE) ^
   8704         cast<ConstantSDNode>(Op1)->isNullValue();
   8705       if (!Invert) return Op0;
   8706 
   8707       CCode = X86::GetOppositeBranchCondition(CCode);
   8708       return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   8709                          DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
   8710     }
   8711   }
   8712 
   8713   bool isFP = Op1.getValueType().isFloatingPoint();
   8714   unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
   8715   if (X86CC == X86::COND_INVALID)
   8716     return SDValue();
   8717 
   8718   SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
   8719   EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
   8720   return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   8721                      DAG.getConstant(X86CC, MVT::i8), EFLAGS);
   8722 }
   8723 
   8724 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
   8725 // ones, and then concatenate the result back.
   8726 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
   8727   EVT VT = Op.getValueType();
   8728 
   8729   assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
   8730          "Unsupported value type for operation");
   8731 
   8732   unsigned NumElems = VT.getVectorNumElements();
   8733   DebugLoc dl = Op.getDebugLoc();
   8734   SDValue CC = Op.getOperand(2);
   8735 
   8736   // Extract the LHS vectors
   8737   SDValue LHS = Op.getOperand(0);
   8738   SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
   8739   SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
   8740 
   8741   // Extract the RHS vectors
   8742   SDValue RHS = Op.getOperand(1);
   8743   SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
   8744   SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
   8745 
   8746   // Issue the operation on the smaller types and concatenate the result back
   8747   MVT EltVT = VT.getVectorElementType().getSimpleVT();
   8748   EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   8749   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
   8750                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
   8751                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
   8752 }
   8753 
   8754 
   8755 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
   8756   SDValue Cond;
   8757   SDValue Op0 = Op.getOperand(0);
   8758   SDValue Op1 = Op.getOperand(1);
   8759   SDValue CC = Op.getOperand(2);
   8760   EVT VT = Op.getValueType();
   8761   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   8762   bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
   8763   DebugLoc dl = Op.getDebugLoc();
   8764 
   8765   if (isFP) {
   8766 #ifndef NDEBUG
   8767     EVT EltVT = Op0.getValueType().getVectorElementType();
   8768     assert(EltVT == MVT::f32 || EltVT == MVT::f64);
   8769 #endif
   8770 
   8771     unsigned SSECC;
   8772     bool Swap = false;
   8773 
   8774     // SSE Condition code mapping:
   8775     //  0 - EQ
   8776     //  1 - LT
   8777     //  2 - LE
   8778     //  3 - UNORD
   8779     //  4 - NEQ
   8780     //  5 - NLT
   8781     //  6 - NLE
   8782     //  7 - ORD
   8783     switch (SetCCOpcode) {
   8784     default: llvm_unreachable("Unexpected SETCC condition");
   8785     case ISD::SETOEQ:
   8786     case ISD::SETEQ:  SSECC = 0; break;
   8787     case ISD::SETOGT:
   8788     case ISD::SETGT: Swap = true; // Fallthrough
   8789     case ISD::SETLT:
   8790     case ISD::SETOLT: SSECC = 1; break;
   8791     case ISD::SETOGE:
   8792     case ISD::SETGE: Swap = true; // Fallthrough
   8793     case ISD::SETLE:
   8794     case ISD::SETOLE: SSECC = 2; break;
   8795     case ISD::SETUO:  SSECC = 3; break;
   8796     case ISD::SETUNE:
   8797     case ISD::SETNE:  SSECC = 4; break;
   8798     case ISD::SETULE: Swap = true; // Fallthrough
   8799     case ISD::SETUGE: SSECC = 5; break;
   8800     case ISD::SETULT: Swap = true; // Fallthrough
   8801     case ISD::SETUGT: SSECC = 6; break;
   8802     case ISD::SETO:   SSECC = 7; break;
   8803     case ISD::SETUEQ:
   8804     case ISD::SETONE: SSECC = 8; break;
   8805     }
   8806     if (Swap)
   8807       std::swap(Op0, Op1);
   8808 
   8809     // In the two special cases we can't handle, emit two comparisons.
   8810     if (SSECC == 8) {
   8811       unsigned CC0, CC1;
   8812       unsigned CombineOpc;
   8813       if (SetCCOpcode == ISD::SETUEQ) {
   8814         CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
   8815       } else {
   8816         assert(SetCCOpcode == ISD::SETONE);
   8817         CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
   8818       }
   8819 
   8820       SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
   8821                                  DAG.getConstant(CC0, MVT::i8));
   8822       SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
   8823                                  DAG.getConstant(CC1, MVT::i8));
   8824       return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
   8825     }
   8826     // Handle all other FP comparisons here.
   8827     return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
   8828                        DAG.getConstant(SSECC, MVT::i8));
   8829   }
   8830 
   8831   // Break 256-bit integer vector compare into smaller ones.
   8832   if (VT.is256BitVector() && !Subtarget->hasAVX2())
   8833     return Lower256IntVSETCC(Op, DAG);
   8834 
   8835   // We are handling one of the integer comparisons here.  Since SSE only has
   8836   // GT and EQ comparisons for integer, swapping operands and multiple
   8837   // operations may be required for some comparisons.
   8838   unsigned Opc;
   8839   bool Swap = false, Invert = false, FlipSigns = false;
   8840 
   8841   switch (SetCCOpcode) {
   8842   default: llvm_unreachable("Unexpected SETCC condition");
   8843   case ISD::SETNE:  Invert = true;
   8844   case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
   8845   case ISD::SETLT:  Swap = true;
   8846   case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
   8847   case ISD::SETGE:  Swap = true;
   8848   case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
   8849   case ISD::SETULT: Swap = true;
   8850   case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
   8851   case ISD::SETUGE: Swap = true;
   8852   case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
   8853   }
   8854   if (Swap)
   8855     std::swap(Op0, Op1);
   8856 
   8857   // Check that the operation in question is available (most are plain SSE2,
   8858   // but PCMPGTQ and PCMPEQQ have different requirements).
   8859   if (VT == MVT::v2i64) {
   8860     if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
   8861       return SDValue();
   8862     if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41())
   8863       return SDValue();
   8864   }
   8865 
   8866   // Since SSE has no unsigned integer comparisons, we need to flip  the sign
   8867   // bits of the inputs before performing those operations.
   8868   if (FlipSigns) {
   8869     EVT EltVT = VT.getVectorElementType();
   8870     SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
   8871                                       EltVT);
   8872     std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
   8873     SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
   8874                                     SignBits.size());
   8875     Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
   8876     Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
   8877   }
   8878 
   8879   SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
   8880 
   8881   // If the logical-not of the result is required, perform that now.
   8882   if (Invert)
   8883     Result = DAG.getNOT(dl, Result, VT);
   8884 
   8885   return Result;
   8886 }
   8887 
   8888 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
   8889 static bool isX86LogicalCmp(SDValue Op) {
   8890   unsigned Opc = Op.getNode()->getOpcode();
   8891   if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
   8892       Opc == X86ISD::SAHF)
   8893     return true;
   8894   if (Op.getResNo() == 1 &&
   8895       (Opc == X86ISD::ADD ||
   8896        Opc == X86ISD::SUB ||
   8897        Opc == X86ISD::ADC ||
   8898        Opc == X86ISD::SBB ||
   8899        Opc == X86ISD::SMUL ||
   8900        Opc == X86ISD::UMUL ||
   8901        Opc == X86ISD::INC ||
   8902        Opc == X86ISD::DEC ||
   8903        Opc == X86ISD::OR ||
   8904        Opc == X86ISD::XOR ||
   8905        Opc == X86ISD::AND))
   8906     return true;
   8907 
   8908   if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
   8909     return true;
   8910 
   8911   return false;
   8912 }
   8913 
   8914 static bool isZero(SDValue V) {
   8915   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   8916   return C && C->isNullValue();
   8917 }
   8918 
   8919 static bool isAllOnes(SDValue V) {
   8920   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
   8921   return C && C->isAllOnesValue();
   8922 }
   8923 
   8924 static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
   8925   if (V.getOpcode() != ISD::TRUNCATE)
   8926     return false;
   8927 
   8928   SDValue VOp0 = V.getOperand(0);
   8929   unsigned InBits = VOp0.getValueSizeInBits();
   8930   unsigned Bits = V.getValueSizeInBits();
   8931   return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
   8932 }
   8933 
   8934 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   8935   bool addTest = true;
   8936   SDValue Cond  = Op.getOperand(0);
   8937   SDValue Op1 = Op.getOperand(1);
   8938   SDValue Op2 = Op.getOperand(2);
   8939   DebugLoc DL = Op.getDebugLoc();
   8940   SDValue CC;
   8941 
   8942   if (Cond.getOpcode() == ISD::SETCC) {
   8943     SDValue NewCond = LowerSETCC(Cond, DAG);
   8944     if (NewCond.getNode())
   8945       Cond = NewCond;
   8946   }
   8947 
   8948   // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
   8949   // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
   8950   // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
   8951   // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
   8952   if (Cond.getOpcode() == X86ISD::SETCC &&
   8953       Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
   8954       isZero(Cond.getOperand(1).getOperand(1))) {
   8955     SDValue Cmp = Cond.getOperand(1);
   8956 
   8957     unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
   8958 
   8959     if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
   8960         (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
   8961       SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
   8962 
   8963       SDValue CmpOp0 = Cmp.getOperand(0);
   8964       // Apply further optimizations for special cases
   8965       // (select (x != 0), -1, 0) -> neg & sbb
   8966       // (select (x == 0), 0, -1) -> neg & sbb
   8967       if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
   8968         if (YC->isNullValue() &&
   8969             (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
   8970           SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
   8971           SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
   8972                                     DAG.getConstant(0, CmpOp0.getValueType()),
   8973                                     CmpOp0);
   8974           SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   8975                                     DAG.getConstant(X86::COND_B, MVT::i8),
   8976                                     SDValue(Neg.getNode(), 1));
   8977           return Res;
   8978         }
   8979 
   8980       Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
   8981                         CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
   8982       Cmp = ConvertCmpIfNecessary(Cmp, DAG);
   8983 
   8984       SDValue Res =   // Res = 0 or -1.
   8985         DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   8986                     DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
   8987 
   8988       if (isAllOnes(Op1) != (CondCode == X86::COND_E))
   8989         Res = DAG.getNOT(DL, Res, Res.getValueType());
   8990 
   8991       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
   8992       if (N2C == 0 || !N2C->isNullValue())
   8993         Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
   8994       return Res;
   8995     }
   8996   }
   8997 
   8998   // Look past (and (setcc_carry (cmp ...)), 1).
   8999   if (Cond.getOpcode() == ISD::AND &&
   9000       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
   9001     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   9002     if (C && C->getAPIntValue() == 1)
   9003       Cond = Cond.getOperand(0);
   9004   }
   9005 
   9006   // If condition flag is set by a X86ISD::CMP, then use it as the condition
   9007   // setting operand in place of the X86ISD::SETCC.
   9008   unsigned CondOpcode = Cond.getOpcode();
   9009   if (CondOpcode == X86ISD::SETCC ||
   9010       CondOpcode == X86ISD::SETCC_CARRY) {
   9011     CC = Cond.getOperand(0);
   9012 
   9013     SDValue Cmp = Cond.getOperand(1);
   9014     unsigned Opc = Cmp.getOpcode();
   9015     EVT VT = Op.getValueType();
   9016 
   9017     bool IllegalFPCMov = false;
   9018     if (VT.isFloatingPoint() && !VT.isVector() &&
   9019         !isScalarFPTypeInSSEReg(VT))  // FPStack?
   9020       IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
   9021 
   9022     if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
   9023         Opc == X86ISD::BT) { // FIXME
   9024       Cond = Cmp;
   9025       addTest = false;
   9026     }
   9027   } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
   9028              CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
   9029              ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
   9030               Cond.getOperand(0).getValueType() != MVT::i8)) {
   9031     SDValue LHS = Cond.getOperand(0);
   9032     SDValue RHS = Cond.getOperand(1);
   9033     unsigned X86Opcode;
   9034     unsigned X86Cond;
   9035     SDVTList VTs;
   9036     switch (CondOpcode) {
   9037     case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
   9038     case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
   9039     case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
   9040     case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
   9041     case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
   9042     case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
   9043     default: llvm_unreachable("unexpected overflowing operator");
   9044     }
   9045     if (CondOpcode == ISD::UMULO)
   9046       VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
   9047                           MVT::i32);
   9048     else
   9049       VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
   9050 
   9051     SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
   9052 
   9053     if (CondOpcode == ISD::UMULO)
   9054       Cond = X86Op.getValue(2);
   9055     else
   9056       Cond = X86Op.getValue(1);
   9057 
   9058     CC = DAG.getConstant(X86Cond, MVT::i8);
   9059     addTest = false;
   9060   }
   9061 
   9062   if (addTest) {
   9063     // Look pass the truncate if the high bits are known zero.
   9064     if (isTruncWithZeroHighBitsInput(Cond, DAG))
   9065         Cond = Cond.getOperand(0);
   9066 
   9067     // We know the result of AND is compared against zero. Try to match
   9068     // it to BT.
   9069     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
   9070       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
   9071       if (NewSetCC.getNode()) {
   9072         CC = NewSetCC.getOperand(0);
   9073         Cond = NewSetCC.getOperand(1);
   9074         addTest = false;
   9075       }
   9076     }
   9077   }
   9078 
   9079   if (addTest) {
   9080     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   9081     Cond = EmitTest(Cond, X86::COND_NE, DAG);
   9082   }
   9083 
   9084   // a <  b ? -1 :  0 -> RES = ~setcc_carry
   9085   // a <  b ?  0 : -1 -> RES = setcc_carry
   9086   // a >= b ? -1 :  0 -> RES = setcc_carry
   9087   // a >= b ?  0 : -1 -> RES = ~setcc_carry
   9088   if (Cond.getOpcode() == X86ISD::SUB) {
   9089     Cond = ConvertCmpIfNecessary(Cond, DAG);
   9090     unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
   9091 
   9092     if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
   9093         (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
   9094       SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
   9095                                 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
   9096       if (isAllOnes(Op1) != (CondCode == X86::COND_B))
   9097         return DAG.getNOT(DL, Res, Res.getValueType());
   9098       return Res;
   9099     }
   9100   }
   9101 
   9102   // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
   9103   // condition is true.
   9104   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
   9105   SDValue Ops[] = { Op2, Op1, CC, Cond };
   9106   return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
   9107 }
   9108 
   9109 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
   9110 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
   9111 // from the AND / OR.
   9112 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
   9113   Opc = Op.getOpcode();
   9114   if (Opc != ISD::OR && Opc != ISD::AND)
   9115     return false;
   9116   return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
   9117           Op.getOperand(0).hasOneUse() &&
   9118           Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
   9119           Op.getOperand(1).hasOneUse());
   9120 }
   9121 
   9122 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
   9123 // 1 and that the SETCC node has a single use.
   9124 static bool isXor1OfSetCC(SDValue Op) {
   9125   if (Op.getOpcode() != ISD::XOR)
   9126     return false;
   9127   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   9128   if (N1C && N1C->getAPIntValue() == 1) {
   9129     return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
   9130       Op.getOperand(0).hasOneUse();
   9131   }
   9132   return false;
   9133 }
   9134 
   9135 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
   9136   bool addTest = true;
   9137   SDValue Chain = Op.getOperand(0);
   9138   SDValue Cond  = Op.getOperand(1);
   9139   SDValue Dest  = Op.getOperand(2);
   9140   DebugLoc dl = Op.getDebugLoc();
   9141   SDValue CC;
   9142   bool Inverted = false;
   9143 
   9144   if (Cond.getOpcode() == ISD::SETCC) {
   9145     // Check for setcc([su]{add,sub,mul}o == 0).
   9146     if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
   9147         isa<ConstantSDNode>(Cond.getOperand(1)) &&
   9148         cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
   9149         Cond.getOperand(0).getResNo() == 1 &&
   9150         (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
   9151          Cond.getOperand(0).getOpcode() == ISD::UADDO ||
   9152          Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
   9153          Cond.getOperand(0).getOpcode() == ISD::USUBO ||
   9154          Cond.getOperand(0).getOpcode() == ISD::SMULO ||
   9155          Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
   9156       Inverted = true;
   9157       Cond = Cond.getOperand(0);
   9158     } else {
   9159       SDValue NewCond = LowerSETCC(Cond, DAG);
   9160       if (NewCond.getNode())
   9161         Cond = NewCond;
   9162     }
   9163   }
   9164 #if 0
   9165   // FIXME: LowerXALUO doesn't handle these!!
   9166   else if (Cond.getOpcode() == X86ISD::ADD  ||
   9167            Cond.getOpcode() == X86ISD::SUB  ||
   9168            Cond.getOpcode() == X86ISD::SMUL ||
   9169            Cond.getOpcode() == X86ISD::UMUL)
   9170     Cond = LowerXALUO(Cond, DAG);
   9171 #endif
   9172 
   9173   // Look pass (and (setcc_carry (cmp ...)), 1).
   9174   if (Cond.getOpcode() == ISD::AND &&
   9175       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
   9176     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   9177     if (C && C->getAPIntValue() == 1)
   9178       Cond = Cond.getOperand(0);
   9179   }
   9180 
   9181   // If condition flag is set by a X86ISD::CMP, then use it as the condition
   9182   // setting operand in place of the X86ISD::SETCC.
   9183   unsigned CondOpcode = Cond.getOpcode();
   9184   if (CondOpcode == X86ISD::SETCC ||
   9185       CondOpcode == X86ISD::SETCC_CARRY) {
   9186     CC = Cond.getOperand(0);
   9187 
   9188     SDValue Cmp = Cond.getOperand(1);
   9189     unsigned Opc = Cmp.getOpcode();
   9190     // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
   9191     if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
   9192       Cond = Cmp;
   9193       addTest = false;
   9194     } else {
   9195       switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
   9196       default: break;
   9197       case X86::COND_O:
   9198       case X86::COND_B:
   9199         // These can only come from an arithmetic instruction with overflow,
   9200         // e.g. SADDO, UADDO.
   9201         Cond = Cond.getNode()->getOperand(1);
   9202         addTest = false;
   9203         break;
   9204       }
   9205     }
   9206   }
   9207   CondOpcode = Cond.getOpcode();
   9208   if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
   9209       CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
   9210       ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
   9211        Cond.getOperand(0).getValueType() != MVT::i8)) {
   9212     SDValue LHS = Cond.getOperand(0);
   9213     SDValue RHS = Cond.getOperand(1);
   9214     unsigned X86Opcode;
   9215     unsigned X86Cond;
   9216     SDVTList VTs;
   9217     switch (CondOpcode) {
   9218     case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
   9219     case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
   9220     case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
   9221     case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
   9222     case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
   9223     case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
   9224     default: llvm_unreachable("unexpected overflowing operator");
   9225     }
   9226     if (Inverted)
   9227       X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
   9228     if (CondOpcode == ISD::UMULO)
   9229       VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
   9230                           MVT::i32);
   9231     else
   9232       VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
   9233 
   9234     SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
   9235 
   9236     if (CondOpcode == ISD::UMULO)
   9237       Cond = X86Op.getValue(2);
   9238     else
   9239       Cond = X86Op.getValue(1);
   9240 
   9241     CC = DAG.getConstant(X86Cond, MVT::i8);
   9242     addTest = false;
   9243   } else {
   9244     unsigned CondOpc;
   9245     if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
   9246       SDValue Cmp = Cond.getOperand(0).getOperand(1);
   9247       if (CondOpc == ISD::OR) {
   9248         // Also, recognize the pattern generated by an FCMP_UNE. We can emit
   9249         // two branches instead of an explicit OR instruction with a
   9250         // separate test.
   9251         if (Cmp == Cond.getOperand(1).getOperand(1) &&
   9252             isX86LogicalCmp(Cmp)) {
   9253           CC = Cond.getOperand(0).getOperand(0);
   9254           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   9255                               Chain, Dest, CC, Cmp);
   9256           CC = Cond.getOperand(1).getOperand(0);
   9257           Cond = Cmp;
   9258           addTest = false;
   9259         }
   9260       } else { // ISD::AND
   9261         // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
   9262         // two branches instead of an explicit AND instruction with a
   9263         // separate test. However, we only do this if this block doesn't
   9264         // have a fall-through edge, because this requires an explicit
   9265         // jmp when the condition is false.
   9266         if (Cmp == Cond.getOperand(1).getOperand(1) &&
   9267             isX86LogicalCmp(Cmp) &&
   9268             Op.getNode()->hasOneUse()) {
   9269           X86::CondCode CCode =
   9270             (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
   9271           CCode = X86::GetOppositeBranchCondition(CCode);
   9272           CC = DAG.getConstant(CCode, MVT::i8);
   9273           SDNode *User = *Op.getNode()->use_begin();
   9274           // Look for an unconditional branch following this conditional branch.
   9275           // We need this because we need to reverse the successors in order
   9276           // to implement FCMP_OEQ.
   9277           if (User->getOpcode() == ISD::BR) {
   9278             SDValue FalseBB = User->getOperand(1);
   9279             SDNode *NewBR =
   9280               DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
   9281             assert(NewBR == User);
   9282             (void)NewBR;
   9283             Dest = FalseBB;
   9284 
   9285             Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   9286                                 Chain, Dest, CC, Cmp);
   9287             X86::CondCode CCode =
   9288               (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
   9289             CCode = X86::GetOppositeBranchCondition(CCode);
   9290             CC = DAG.getConstant(CCode, MVT::i8);
   9291             Cond = Cmp;
   9292             addTest = false;
   9293           }
   9294         }
   9295       }
   9296     } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
   9297       // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
   9298       // It should be transformed during dag combiner except when the condition
   9299       // is set by a arithmetics with overflow node.
   9300       X86::CondCode CCode =
   9301         (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
   9302       CCode = X86::GetOppositeBranchCondition(CCode);
   9303       CC = DAG.getConstant(CCode, MVT::i8);
   9304       Cond = Cond.getOperand(0).getOperand(1);
   9305       addTest = false;
   9306     } else if (Cond.getOpcode() == ISD::SETCC &&
   9307                cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
   9308       // For FCMP_OEQ, we can emit
   9309       // two branches instead of an explicit AND instruction with a
   9310       // separate test. However, we only do this if this block doesn't
   9311       // have a fall-through edge, because this requires an explicit
   9312       // jmp when the condition is false.
   9313       if (Op.getNode()->hasOneUse()) {
   9314         SDNode *User = *Op.getNode()->use_begin();
   9315         // Look for an unconditional branch following this conditional branch.
   9316         // We need this because we need to reverse the successors in order
   9317         // to implement FCMP_OEQ.
   9318         if (User->getOpcode() == ISD::BR) {
   9319           SDValue FalseBB = User->getOperand(1);
   9320           SDNode *NewBR =
   9321             DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
   9322           assert(NewBR == User);
   9323           (void)NewBR;
   9324           Dest = FalseBB;
   9325 
   9326           SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
   9327                                     Cond.getOperand(0), Cond.getOperand(1));
   9328           Cmp = ConvertCmpIfNecessary(Cmp, DAG);
   9329           CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   9330           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   9331                               Chain, Dest, CC, Cmp);
   9332           CC = DAG.getConstant(X86::COND_P, MVT::i8);
   9333           Cond = Cmp;
   9334           addTest = false;
   9335         }
   9336       }
   9337     } else if (Cond.getOpcode() == ISD::SETCC &&
   9338                cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
   9339       // For FCMP_UNE, we can emit
   9340       // two branches instead of an explicit AND instruction with a
   9341       // separate test. However, we only do this if this block doesn't
   9342       // have a fall-through edge, because this requires an explicit
   9343       // jmp when the condition is false.
   9344       if (Op.getNode()->hasOneUse()) {
   9345         SDNode *User = *Op.getNode()->use_begin();
   9346         // Look for an unconditional branch following this conditional branch.
   9347         // We need this because we need to reverse the successors in order
   9348         // to implement FCMP_UNE.
   9349         if (User->getOpcode() == ISD::BR) {
   9350           SDValue FalseBB = User->getOperand(1);
   9351           SDNode *NewBR =
   9352             DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
   9353           assert(NewBR == User);
   9354           (void)NewBR;
   9355 
   9356           SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
   9357                                     Cond.getOperand(0), Cond.getOperand(1));
   9358           Cmp = ConvertCmpIfNecessary(Cmp, DAG);
   9359           CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   9360           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   9361                               Chain, Dest, CC, Cmp);
   9362           CC = DAG.getConstant(X86::COND_NP, MVT::i8);
   9363           Cond = Cmp;
   9364           addTest = false;
   9365           Dest = FalseBB;
   9366         }
   9367       }
   9368     }
   9369   }
   9370 
   9371   if (addTest) {
   9372     // Look pass the truncate if the high bits are known zero.
   9373     if (isTruncWithZeroHighBitsInput(Cond, DAG))
   9374         Cond = Cond.getOperand(0);
   9375 
   9376     // We know the result of AND is compared against zero. Try to match
   9377     // it to BT.
   9378     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
   9379       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
   9380       if (NewSetCC.getNode()) {
   9381         CC = NewSetCC.getOperand(0);
   9382         Cond = NewSetCC.getOperand(1);
   9383         addTest = false;
   9384       }
   9385     }
   9386   }
   9387 
   9388   if (addTest) {
   9389     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
   9390     Cond = EmitTest(Cond, X86::COND_NE, DAG);
   9391   }
   9392   Cond = ConvertCmpIfNecessary(Cond, DAG);
   9393   return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
   9394                      Chain, Dest, CC, Cond);
   9395 }
   9396 
   9397 
   9398 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
   9399 // Calls to _alloca is needed to probe the stack when allocating more than 4k
   9400 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
   9401 // that the guard pages used by the OS virtual memory manager are allocated in
   9402 // correct sequence.
   9403 SDValue
   9404 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
   9405                                            SelectionDAG &DAG) const {
   9406   assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
   9407           getTargetMachine().Options.EnableSegmentedStacks) &&
   9408          "This should be used only on Windows targets or when segmented stacks "
   9409          "are being used");
   9410   assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
   9411   DebugLoc dl = Op.getDebugLoc();
   9412 
   9413   // Get the inputs.
   9414   SDValue Chain = Op.getOperand(0);
   9415   SDValue Size  = Op.getOperand(1);
   9416   // FIXME: Ensure alignment here
   9417 
   9418   bool Is64Bit = Subtarget->is64Bit();
   9419   EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
   9420 
   9421   if (getTargetMachine().Options.EnableSegmentedStacks) {
   9422     MachineFunction &MF = DAG.getMachineFunction();
   9423     MachineRegisterInfo &MRI = MF.getRegInfo();
   9424 
   9425     if (Is64Bit) {
   9426       // The 64 bit implementation of segmented stacks needs to clobber both r10
   9427       // r11. This makes it impossible to use it along with nested parameters.
   9428       const Function *F = MF.getFunction();
   9429 
   9430       for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   9431            I != E; ++I)
   9432         if (I->hasNestAttr())
   9433           report_fatal_error("Cannot use segmented stacks with functions that "
   9434                              "have nested arguments.");
   9435     }
   9436 
   9437     const TargetRegisterClass *AddrRegClass =
   9438       getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
   9439     unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
   9440     Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
   9441     SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
   9442                                 DAG.getRegister(Vreg, SPTy));
   9443     SDValue Ops1[2] = { Value, Chain };
   9444     return DAG.getMergeValues(Ops1, 2, dl);
   9445   } else {
   9446     SDValue Flag;
   9447     unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
   9448 
   9449     Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
   9450     Flag = Chain.getValue(1);
   9451     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   9452 
   9453     Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
   9454     Flag = Chain.getValue(1);
   9455 
   9456     Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
   9457 
   9458     SDValue Ops1[2] = { Chain.getValue(0), Chain };
   9459     return DAG.getMergeValues(Ops1, 2, dl);
   9460   }
   9461 }
   9462 
   9463 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
   9464   MachineFunction &MF = DAG.getMachineFunction();
   9465   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
   9466 
   9467   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   9468   DebugLoc DL = Op.getDebugLoc();
   9469 
   9470   if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
   9471     // vastart just stores the address of the VarArgsFrameIndex slot into the
   9472     // memory location argument.
   9473     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   9474                                    getPointerTy());
   9475     return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
   9476                         MachinePointerInfo(SV), false, false, 0);
   9477   }
   9478 
   9479   // __va_list_tag:
   9480   //   gp_offset         (0 - 6 * 8)
   9481   //   fp_offset         (48 - 48 + 8 * 16)
   9482   //   overflow_arg_area (point to parameters coming in memory).
   9483   //   reg_save_area
   9484   SmallVector<SDValue, 8> MemOps;
   9485   SDValue FIN = Op.getOperand(1);
   9486   // Store gp_offset
   9487   SDValue Store = DAG.getStore(Op.getOperand(0), DL,
   9488                                DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
   9489                                                MVT::i32),
   9490                                FIN, MachinePointerInfo(SV), false, false, 0);
   9491   MemOps.push_back(Store);
   9492 
   9493   // Store fp_offset
   9494   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   9495                     FIN, DAG.getIntPtrConstant(4));
   9496   Store = DAG.getStore(Op.getOperand(0), DL,
   9497                        DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
   9498                                        MVT::i32),
   9499                        FIN, MachinePointerInfo(SV, 4), false, false, 0);
   9500   MemOps.push_back(Store);
   9501 
   9502   // Store ptr to overflow_arg_area
   9503   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   9504                     FIN, DAG.getIntPtrConstant(4));
   9505   SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
   9506                                     getPointerTy());
   9507   Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
   9508                        MachinePointerInfo(SV, 8),
   9509                        false, false, 0);
   9510   MemOps.push_back(Store);
   9511 
   9512   // Store ptr to reg_save_area.
   9513   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
   9514                     FIN, DAG.getIntPtrConstant(8));
   9515   SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
   9516                                     getPointerTy());
   9517   Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
   9518                        MachinePointerInfo(SV, 16), false, false, 0);
   9519   MemOps.push_back(Store);
   9520   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
   9521                      &MemOps[0], MemOps.size());
   9522 }
   9523 
   9524 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
   9525   assert(Subtarget->is64Bit() &&
   9526          "LowerVAARG only handles 64-bit va_arg!");
   9527   assert((Subtarget->isTargetLinux() ||
   9528           Subtarget->isTargetDarwin()) &&
   9529           "Unhandled target in LowerVAARG");
   9530   assert(Op.getNode()->getNumOperands() == 4);
   9531   SDValue Chain = Op.getOperand(0);
   9532   SDValue SrcPtr = Op.getOperand(1);
   9533   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   9534   unsigned Align = Op.getConstantOperandVal(3);
   9535   DebugLoc dl = Op.getDebugLoc();
   9536 
   9537   EVT ArgVT = Op.getNode()->getValueType(0);
   9538   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   9539   uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
   9540   uint8_t ArgMode;
   9541 
   9542   // Decide which area this value should be read from.
   9543   // TODO: Implement the AMD64 ABI in its entirety. This simple
   9544   // selection mechanism works only for the basic types.
   9545   if (ArgVT == MVT::f80) {
   9546     llvm_unreachable("va_arg for f80 not yet implemented");
   9547   } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
   9548     ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
   9549   } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
   9550     ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
   9551   } else {
   9552     llvm_unreachable("Unhandled argument type in LowerVAARG");
   9553   }
   9554 
   9555   if (ArgMode == 2) {
   9556     // Sanity Check: Make sure using fp_offset makes sense.
   9557     assert(!getTargetMachine().Options.UseSoftFloat &&
   9558            !(DAG.getMachineFunction()
   9559                 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
   9560            Subtarget->hasSSE1());
   9561   }
   9562 
   9563   // Insert VAARG_64 node into the DAG
   9564   // VAARG_64 returns two values: Variable Argument Address, Chain
   9565   SmallVector<SDValue, 11> InstOps;
   9566   InstOps.push_back(Chain);
   9567   InstOps.push_back(SrcPtr);
   9568   InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
   9569   InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
   9570   InstOps.push_back(DAG.getConstant(Align, MVT::i32));
   9571   SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
   9572   SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
   9573                                           VTs, &InstOps[0], InstOps.size(),
   9574                                           MVT::i64,
   9575                                           MachinePointerInfo(SV),
   9576                                           /*Align=*/0,
   9577                                           /*Volatile=*/false,
   9578                                           /*ReadMem=*/true,
   9579                                           /*WriteMem=*/true);
   9580   Chain = VAARG.getValue(1);
   9581 
   9582   // Load the next argument and return it
   9583   return DAG.getLoad(ArgVT, dl,
   9584                      Chain,
   9585                      VAARG,
   9586                      MachinePointerInfo(),
   9587                      false, false, false, 0);
   9588 }
   9589 
   9590 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
   9591   // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
   9592   assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
   9593   SDValue Chain = Op.getOperand(0);
   9594   SDValue DstPtr = Op.getOperand(1);
   9595   SDValue SrcPtr = Op.getOperand(2);
   9596   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
   9597   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   9598   DebugLoc DL = Op.getDebugLoc();
   9599 
   9600   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
   9601                        DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
   9602                        false,
   9603                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
   9604 }
   9605 
   9606 // getTargetVShiftNOde - Handle vector element shifts where the shift amount
   9607 // may or may not be a constant. Takes immediate version of shift as input.
   9608 static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
   9609                                    SDValue SrcOp, SDValue ShAmt,
   9610                                    SelectionDAG &DAG) {
   9611   assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
   9612 
   9613   if (isa<ConstantSDNode>(ShAmt)) {
   9614     // Constant may be a TargetConstant. Use a regular constant.
   9615     uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
   9616     switch (Opc) {
   9617       default: llvm_unreachable("Unknown target vector shift node");
   9618       case X86ISD::VSHLI:
   9619       case X86ISD::VSRLI:
   9620       case X86ISD::VSRAI:
   9621         return DAG.getNode(Opc, dl, VT, SrcOp,
   9622                            DAG.getConstant(ShiftAmt, MVT::i32));
   9623     }
   9624   }
   9625 
   9626   // Change opcode to non-immediate version
   9627   switch (Opc) {
   9628     default: llvm_unreachable("Unknown target vector shift node");
   9629     case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
   9630     case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
   9631     case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
   9632   }
   9633 
   9634   // Need to build a vector containing shift amount
   9635   // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
   9636   SDValue ShOps[4];
   9637   ShOps[0] = ShAmt;
   9638   ShOps[1] = DAG.getConstant(0, MVT::i32);
   9639   ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
   9640   ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
   9641 
   9642   // The return type has to be a 128-bit type with the same element
   9643   // type as the input type.
   9644   MVT EltVT = VT.getVectorElementType().getSimpleVT();
   9645   EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
   9646 
   9647   ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
   9648   return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
   9649 }
   9650 
   9651 SDValue
   9652 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
   9653   DebugLoc dl = Op.getDebugLoc();
   9654   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   9655   switch (IntNo) {
   9656   default: return SDValue();    // Don't custom lower most intrinsics.
   9657   // Comparison intrinsics.
   9658   case Intrinsic::x86_sse_comieq_ss:
   9659   case Intrinsic::x86_sse_comilt_ss:
   9660   case Intrinsic::x86_sse_comile_ss:
   9661   case Intrinsic::x86_sse_comigt_ss:
   9662   case Intrinsic::x86_sse_comige_ss:
   9663   case Intrinsic::x86_sse_comineq_ss:
   9664   case Intrinsic::x86_sse_ucomieq_ss:
   9665   case Intrinsic::x86_sse_ucomilt_ss:
   9666   case Intrinsic::x86_sse_ucomile_ss:
   9667   case Intrinsic::x86_sse_ucomigt_ss:
   9668   case Intrinsic::x86_sse_ucomige_ss:
   9669   case Intrinsic::x86_sse_ucomineq_ss:
   9670   case Intrinsic::x86_sse2_comieq_sd:
   9671   case Intrinsic::x86_sse2_comilt_sd:
   9672   case Intrinsic::x86_sse2_comile_sd:
   9673   case Intrinsic::x86_sse2_comigt_sd:
   9674   case Intrinsic::x86_sse2_comige_sd:
   9675   case Intrinsic::x86_sse2_comineq_sd:
   9676   case Intrinsic::x86_sse2_ucomieq_sd:
   9677   case Intrinsic::x86_sse2_ucomilt_sd:
   9678   case Intrinsic::x86_sse2_ucomile_sd:
   9679   case Intrinsic::x86_sse2_ucomigt_sd:
   9680   case Intrinsic::x86_sse2_ucomige_sd:
   9681   case Intrinsic::x86_sse2_ucomineq_sd: {
   9682     unsigned Opc;
   9683     ISD::CondCode CC;
   9684     switch (IntNo) {
   9685     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   9686     case Intrinsic::x86_sse_comieq_ss:
   9687     case Intrinsic::x86_sse2_comieq_sd:
   9688       Opc = X86ISD::COMI;
   9689       CC = ISD::SETEQ;
   9690       break;
   9691     case Intrinsic::x86_sse_comilt_ss:
   9692     case Intrinsic::x86_sse2_comilt_sd:
   9693       Opc = X86ISD::COMI;
   9694       CC = ISD::SETLT;
   9695       break;
   9696     case Intrinsic::x86_sse_comile_ss:
   9697     case Intrinsic::x86_sse2_comile_sd:
   9698       Opc = X86ISD::COMI;
   9699       CC = ISD::SETLE;
   9700       break;
   9701     case Intrinsic::x86_sse_comigt_ss:
   9702     case Intrinsic::x86_sse2_comigt_sd:
   9703       Opc = X86ISD::COMI;
   9704       CC = ISD::SETGT;
   9705       break;
   9706     case Intrinsic::x86_sse_comige_ss:
   9707     case Intrinsic::x86_sse2_comige_sd:
   9708       Opc = X86ISD::COMI;
   9709       CC = ISD::SETGE;
   9710       break;
   9711     case Intrinsic::x86_sse_comineq_ss:
   9712     case Intrinsic::x86_sse2_comineq_sd:
   9713       Opc = X86ISD::COMI;
   9714       CC = ISD::SETNE;
   9715       break;
   9716     case Intrinsic::x86_sse_ucomieq_ss:
   9717     case Intrinsic::x86_sse2_ucomieq_sd:
   9718       Opc = X86ISD::UCOMI;
   9719       CC = ISD::SETEQ;
   9720       break;
   9721     case Intrinsic::x86_sse_ucomilt_ss:
   9722     case Intrinsic::x86_sse2_ucomilt_sd:
   9723       Opc = X86ISD::UCOMI;
   9724       CC = ISD::SETLT;
   9725       break;
   9726     case Intrinsic::x86_sse_ucomile_ss:
   9727     case Intrinsic::x86_sse2_ucomile_sd:
   9728       Opc = X86ISD::UCOMI;
   9729       CC = ISD::SETLE;
   9730       break;
   9731     case Intrinsic::x86_sse_ucomigt_ss:
   9732     case Intrinsic::x86_sse2_ucomigt_sd:
   9733       Opc = X86ISD::UCOMI;
   9734       CC = ISD::SETGT;
   9735       break;
   9736     case Intrinsic::x86_sse_ucomige_ss:
   9737     case Intrinsic::x86_sse2_ucomige_sd:
   9738       Opc = X86ISD::UCOMI;
   9739       CC = ISD::SETGE;
   9740       break;
   9741     case Intrinsic::x86_sse_ucomineq_ss:
   9742     case Intrinsic::x86_sse2_ucomineq_sd:
   9743       Opc = X86ISD::UCOMI;
   9744       CC = ISD::SETNE;
   9745       break;
   9746     }
   9747 
   9748     SDValue LHS = Op.getOperand(1);
   9749     SDValue RHS = Op.getOperand(2);
   9750     unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
   9751     assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
   9752     SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
   9753     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   9754                                 DAG.getConstant(X86CC, MVT::i8), Cond);
   9755     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   9756   }
   9757 
   9758   // Arithmetic intrinsics.
   9759   case Intrinsic::x86_sse2_pmulu_dq:
   9760   case Intrinsic::x86_avx2_pmulu_dq:
   9761     return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
   9762                        Op.getOperand(1), Op.getOperand(2));
   9763 
   9764   // SSE3/AVX horizontal add/sub intrinsics
   9765   case Intrinsic::x86_sse3_hadd_ps:
   9766   case Intrinsic::x86_sse3_hadd_pd:
   9767   case Intrinsic::x86_avx_hadd_ps_256:
   9768   case Intrinsic::x86_avx_hadd_pd_256:
   9769   case Intrinsic::x86_sse3_hsub_ps:
   9770   case Intrinsic::x86_sse3_hsub_pd:
   9771   case Intrinsic::x86_avx_hsub_ps_256:
   9772   case Intrinsic::x86_avx_hsub_pd_256:
   9773   case Intrinsic::x86_ssse3_phadd_w_128:
   9774   case Intrinsic::x86_ssse3_phadd_d_128:
   9775   case Intrinsic::x86_avx2_phadd_w:
   9776   case Intrinsic::x86_avx2_phadd_d:
   9777   case Intrinsic::x86_ssse3_phsub_w_128:
   9778   case Intrinsic::x86_ssse3_phsub_d_128:
   9779   case Intrinsic::x86_avx2_phsub_w:
   9780   case Intrinsic::x86_avx2_phsub_d: {
   9781     unsigned Opcode;
   9782     switch (IntNo) {
   9783     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   9784     case Intrinsic::x86_sse3_hadd_ps:
   9785     case Intrinsic::x86_sse3_hadd_pd:
   9786     case Intrinsic::x86_avx_hadd_ps_256:
   9787     case Intrinsic::x86_avx_hadd_pd_256:
   9788       Opcode = X86ISD::FHADD;
   9789       break;
   9790     case Intrinsic::x86_sse3_hsub_ps:
   9791     case Intrinsic::x86_sse3_hsub_pd:
   9792     case Intrinsic::x86_avx_hsub_ps_256:
   9793     case Intrinsic::x86_avx_hsub_pd_256:
   9794       Opcode = X86ISD::FHSUB;
   9795       break;
   9796     case Intrinsic::x86_ssse3_phadd_w_128:
   9797     case Intrinsic::x86_ssse3_phadd_d_128:
   9798     case Intrinsic::x86_avx2_phadd_w:
   9799     case Intrinsic::x86_avx2_phadd_d:
   9800       Opcode = X86ISD::HADD;
   9801       break;
   9802     case Intrinsic::x86_ssse3_phsub_w_128:
   9803     case Intrinsic::x86_ssse3_phsub_d_128:
   9804     case Intrinsic::x86_avx2_phsub_w:
   9805     case Intrinsic::x86_avx2_phsub_d:
   9806       Opcode = X86ISD::HSUB;
   9807       break;
   9808     }
   9809     return DAG.getNode(Opcode, dl, Op.getValueType(),
   9810                        Op.getOperand(1), Op.getOperand(2));
   9811   }
   9812 
   9813   // AVX2 variable shift intrinsics
   9814   case Intrinsic::x86_avx2_psllv_d:
   9815   case Intrinsic::x86_avx2_psllv_q:
   9816   case Intrinsic::x86_avx2_psllv_d_256:
   9817   case Intrinsic::x86_avx2_psllv_q_256:
   9818   case Intrinsic::x86_avx2_psrlv_d:
   9819   case Intrinsic::x86_avx2_psrlv_q:
   9820   case Intrinsic::x86_avx2_psrlv_d_256:
   9821   case Intrinsic::x86_avx2_psrlv_q_256:
   9822   case Intrinsic::x86_avx2_psrav_d:
   9823   case Intrinsic::x86_avx2_psrav_d_256: {
   9824     unsigned Opcode;
   9825     switch (IntNo) {
   9826     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   9827     case Intrinsic::x86_avx2_psllv_d:
   9828     case Intrinsic::x86_avx2_psllv_q:
   9829     case Intrinsic::x86_avx2_psllv_d_256:
   9830     case Intrinsic::x86_avx2_psllv_q_256:
   9831       Opcode = ISD::SHL;
   9832       break;
   9833     case Intrinsic::x86_avx2_psrlv_d:
   9834     case Intrinsic::x86_avx2_psrlv_q:
   9835     case Intrinsic::x86_avx2_psrlv_d_256:
   9836     case Intrinsic::x86_avx2_psrlv_q_256:
   9837       Opcode = ISD::SRL;
   9838       break;
   9839     case Intrinsic::x86_avx2_psrav_d:
   9840     case Intrinsic::x86_avx2_psrav_d_256:
   9841       Opcode = ISD::SRA;
   9842       break;
   9843     }
   9844     return DAG.getNode(Opcode, dl, Op.getValueType(),
   9845                        Op.getOperand(1), Op.getOperand(2));
   9846   }
   9847 
   9848   case Intrinsic::x86_ssse3_pshuf_b_128:
   9849   case Intrinsic::x86_avx2_pshuf_b:
   9850     return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
   9851                        Op.getOperand(1), Op.getOperand(2));
   9852 
   9853   case Intrinsic::x86_ssse3_psign_b_128:
   9854   case Intrinsic::x86_ssse3_psign_w_128:
   9855   case Intrinsic::x86_ssse3_psign_d_128:
   9856   case Intrinsic::x86_avx2_psign_b:
   9857   case Intrinsic::x86_avx2_psign_w:
   9858   case Intrinsic::x86_avx2_psign_d:
   9859     return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
   9860                        Op.getOperand(1), Op.getOperand(2));
   9861 
   9862   case Intrinsic::x86_sse41_insertps:
   9863     return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
   9864                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   9865 
   9866   case Intrinsic::x86_avx_vperm2f128_ps_256:
   9867   case Intrinsic::x86_avx_vperm2f128_pd_256:
   9868   case Intrinsic::x86_avx_vperm2f128_si_256:
   9869   case Intrinsic::x86_avx2_vperm2i128:
   9870     return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
   9871                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   9872 
   9873   case Intrinsic::x86_avx2_permd:
   9874   case Intrinsic::x86_avx2_permps:
   9875     // Operands intentionally swapped. Mask is last operand to intrinsic,
   9876     // but second operand for node/intruction.
   9877     return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
   9878                        Op.getOperand(2), Op.getOperand(1));
   9879 
   9880   // ptest and testp intrinsics. The intrinsic these come from are designed to
   9881   // return an integer value, not just an instruction so lower it to the ptest
   9882   // or testp pattern and a setcc for the result.
   9883   case Intrinsic::x86_sse41_ptestz:
   9884   case Intrinsic::x86_sse41_ptestc:
   9885   case Intrinsic::x86_sse41_ptestnzc:
   9886   case Intrinsic::x86_avx_ptestz_256:
   9887   case Intrinsic::x86_avx_ptestc_256:
   9888   case Intrinsic::x86_avx_ptestnzc_256:
   9889   case Intrinsic::x86_avx_vtestz_ps:
   9890   case Intrinsic::x86_avx_vtestc_ps:
   9891   case Intrinsic::x86_avx_vtestnzc_ps:
   9892   case Intrinsic::x86_avx_vtestz_pd:
   9893   case Intrinsic::x86_avx_vtestc_pd:
   9894   case Intrinsic::x86_avx_vtestnzc_pd:
   9895   case Intrinsic::x86_avx_vtestz_ps_256:
   9896   case Intrinsic::x86_avx_vtestc_ps_256:
   9897   case Intrinsic::x86_avx_vtestnzc_ps_256:
   9898   case Intrinsic::x86_avx_vtestz_pd_256:
   9899   case Intrinsic::x86_avx_vtestc_pd_256:
   9900   case Intrinsic::x86_avx_vtestnzc_pd_256: {
   9901     bool IsTestPacked = false;
   9902     unsigned X86CC;
   9903     switch (IntNo) {
   9904     default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
   9905     case Intrinsic::x86_avx_vtestz_ps:
   9906     case Intrinsic::x86_avx_vtestz_pd:
   9907     case Intrinsic::x86_avx_vtestz_ps_256:
   9908     case Intrinsic::x86_avx_vtestz_pd_256:
   9909       IsTestPacked = true; // Fallthrough
   9910     case Intrinsic::x86_sse41_ptestz:
   9911     case Intrinsic::x86_avx_ptestz_256:
   9912       // ZF = 1
   9913       X86CC = X86::COND_E;
   9914       break;
   9915     case Intrinsic::x86_avx_vtestc_ps:
   9916     case Intrinsic::x86_avx_vtestc_pd:
   9917     case Intrinsic::x86_avx_vtestc_ps_256:
   9918     case Intrinsic::x86_avx_vtestc_pd_256:
   9919       IsTestPacked = true; // Fallthrough
   9920     case Intrinsic::x86_sse41_ptestc:
   9921     case Intrinsic::x86_avx_ptestc_256:
   9922       // CF = 1
   9923       X86CC = X86::COND_B;
   9924       break;
   9925     case Intrinsic::x86_avx_vtestnzc_ps:
   9926     case Intrinsic::x86_avx_vtestnzc_pd:
   9927     case Intrinsic::x86_avx_vtestnzc_ps_256:
   9928     case Intrinsic::x86_avx_vtestnzc_pd_256:
   9929       IsTestPacked = true; // Fallthrough
   9930     case Intrinsic::x86_sse41_ptestnzc:
   9931     case Intrinsic::x86_avx_ptestnzc_256:
   9932       // ZF and CF = 0
   9933       X86CC = X86::COND_A;
   9934       break;
   9935     }
   9936 
   9937     SDValue LHS = Op.getOperand(1);
   9938     SDValue RHS = Op.getOperand(2);
   9939     unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
   9940     SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
   9941     SDValue CC = DAG.getConstant(X86CC, MVT::i8);
   9942     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
   9943     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   9944   }
   9945 
   9946   // SSE/AVX shift intrinsics
   9947   case Intrinsic::x86_sse2_psll_w:
   9948   case Intrinsic::x86_sse2_psll_d:
   9949   case Intrinsic::x86_sse2_psll_q:
   9950   case Intrinsic::x86_avx2_psll_w:
   9951   case Intrinsic::x86_avx2_psll_d:
   9952   case Intrinsic::x86_avx2_psll_q:
   9953   case Intrinsic::x86_sse2_psrl_w:
   9954   case Intrinsic::x86_sse2_psrl_d:
   9955   case Intrinsic::x86_sse2_psrl_q:
   9956   case Intrinsic::x86_avx2_psrl_w:
   9957   case Intrinsic::x86_avx2_psrl_d:
   9958   case Intrinsic::x86_avx2_psrl_q:
   9959   case Intrinsic::x86_sse2_psra_w:
   9960   case Intrinsic::x86_sse2_psra_d:
   9961   case Intrinsic::x86_avx2_psra_w:
   9962   case Intrinsic::x86_avx2_psra_d: {
   9963     unsigned Opcode;
   9964     switch (IntNo) {
   9965     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   9966     case Intrinsic::x86_sse2_psll_w:
   9967     case Intrinsic::x86_sse2_psll_d:
   9968     case Intrinsic::x86_sse2_psll_q:
   9969     case Intrinsic::x86_avx2_psll_w:
   9970     case Intrinsic::x86_avx2_psll_d:
   9971     case Intrinsic::x86_avx2_psll_q:
   9972       Opcode = X86ISD::VSHL;
   9973       break;
   9974     case Intrinsic::x86_sse2_psrl_w:
   9975     case Intrinsic::x86_sse2_psrl_d:
   9976     case Intrinsic::x86_sse2_psrl_q:
   9977     case Intrinsic::x86_avx2_psrl_w:
   9978     case Intrinsic::x86_avx2_psrl_d:
   9979     case Intrinsic::x86_avx2_psrl_q:
   9980       Opcode = X86ISD::VSRL;
   9981       break;
   9982     case Intrinsic::x86_sse2_psra_w:
   9983     case Intrinsic::x86_sse2_psra_d:
   9984     case Intrinsic::x86_avx2_psra_w:
   9985     case Intrinsic::x86_avx2_psra_d:
   9986       Opcode = X86ISD::VSRA;
   9987       break;
   9988     }
   9989     return DAG.getNode(Opcode, dl, Op.getValueType(),
   9990                        Op.getOperand(1), Op.getOperand(2));
   9991   }
   9992 
   9993   // SSE/AVX immediate shift intrinsics
   9994   case Intrinsic::x86_sse2_pslli_w:
   9995   case Intrinsic::x86_sse2_pslli_d:
   9996   case Intrinsic::x86_sse2_pslli_q:
   9997   case Intrinsic::x86_avx2_pslli_w:
   9998   case Intrinsic::x86_avx2_pslli_d:
   9999   case Intrinsic::x86_avx2_pslli_q:
   10000   case Intrinsic::x86_sse2_psrli_w:
   10001   case Intrinsic::x86_sse2_psrli_d:
   10002   case Intrinsic::x86_sse2_psrli_q:
   10003   case Intrinsic::x86_avx2_psrli_w:
   10004   case Intrinsic::x86_avx2_psrli_d:
   10005   case Intrinsic::x86_avx2_psrli_q:
   10006   case Intrinsic::x86_sse2_psrai_w:
   10007   case Intrinsic::x86_sse2_psrai_d:
   10008   case Intrinsic::x86_avx2_psrai_w:
   10009   case Intrinsic::x86_avx2_psrai_d: {
   10010     unsigned Opcode;
   10011     switch (IntNo) {
   10012     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   10013     case Intrinsic::x86_sse2_pslli_w:
   10014     case Intrinsic::x86_sse2_pslli_d:
   10015     case Intrinsic::x86_sse2_pslli_q:
   10016     case Intrinsic::x86_avx2_pslli_w:
   10017     case Intrinsic::x86_avx2_pslli_d:
   10018     case Intrinsic::x86_avx2_pslli_q:
   10019       Opcode = X86ISD::VSHLI;
   10020       break;
   10021     case Intrinsic::x86_sse2_psrli_w:
   10022     case Intrinsic::x86_sse2_psrli_d:
   10023     case Intrinsic::x86_sse2_psrli_q:
   10024     case Intrinsic::x86_avx2_psrli_w:
   10025     case Intrinsic::x86_avx2_psrli_d:
   10026     case Intrinsic::x86_avx2_psrli_q:
   10027       Opcode = X86ISD::VSRLI;
   10028       break;
   10029     case Intrinsic::x86_sse2_psrai_w:
   10030     case Intrinsic::x86_sse2_psrai_d:
   10031     case Intrinsic::x86_avx2_psrai_w:
   10032     case Intrinsic::x86_avx2_psrai_d:
   10033       Opcode = X86ISD::VSRAI;
   10034       break;
   10035     }
   10036     return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
   10037                                Op.getOperand(1), Op.getOperand(2), DAG);
   10038   }
   10039 
   10040   case Intrinsic::x86_sse42_pcmpistria128:
   10041   case Intrinsic::x86_sse42_pcmpestria128:
   10042   case Intrinsic::x86_sse42_pcmpistric128:
   10043   case Intrinsic::x86_sse42_pcmpestric128:
   10044   case Intrinsic::x86_sse42_pcmpistrio128:
   10045   case Intrinsic::x86_sse42_pcmpestrio128:
   10046   case Intrinsic::x86_sse42_pcmpistris128:
   10047   case Intrinsic::x86_sse42_pcmpestris128:
   10048   case Intrinsic::x86_sse42_pcmpistriz128:
   10049   case Intrinsic::x86_sse42_pcmpestriz128: {
   10050     unsigned Opcode;
   10051     unsigned X86CC;
   10052     switch (IntNo) {
   10053     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   10054     case Intrinsic::x86_sse42_pcmpistria128:
   10055       Opcode = X86ISD::PCMPISTRI;
   10056       X86CC = X86::COND_A;
   10057       break;
   10058     case Intrinsic::x86_sse42_pcmpestria128:
   10059       Opcode = X86ISD::PCMPESTRI;
   10060       X86CC = X86::COND_A;
   10061       break;
   10062     case Intrinsic::x86_sse42_pcmpistric128:
   10063       Opcode = X86ISD::PCMPISTRI;
   10064       X86CC = X86::COND_B;
   10065       break;
   10066     case Intrinsic::x86_sse42_pcmpestric128:
   10067       Opcode = X86ISD::PCMPESTRI;
   10068       X86CC = X86::COND_B;
   10069       break;
   10070     case Intrinsic::x86_sse42_pcmpistrio128:
   10071       Opcode = X86ISD::PCMPISTRI;
   10072       X86CC = X86::COND_O;
   10073       break;
   10074     case Intrinsic::x86_sse42_pcmpestrio128:
   10075       Opcode = X86ISD::PCMPESTRI;
   10076       X86CC = X86::COND_O;
   10077       break;
   10078     case Intrinsic::x86_sse42_pcmpistris128:
   10079       Opcode = X86ISD::PCMPISTRI;
   10080       X86CC = X86::COND_S;
   10081       break;
   10082     case Intrinsic::x86_sse42_pcmpestris128:
   10083       Opcode = X86ISD::PCMPESTRI;
   10084       X86CC = X86::COND_S;
   10085       break;
   10086     case Intrinsic::x86_sse42_pcmpistriz128:
   10087       Opcode = X86ISD::PCMPISTRI;
   10088       X86CC = X86::COND_E;
   10089       break;
   10090     case Intrinsic::x86_sse42_pcmpestriz128:
   10091       Opcode = X86ISD::PCMPESTRI;
   10092       X86CC = X86::COND_E;
   10093       break;
   10094     }
   10095     SmallVector<SDValue, 5> NewOps;
   10096     NewOps.append(Op->op_begin()+1, Op->op_end());
   10097     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   10098     SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
   10099     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
   10100                                 DAG.getConstant(X86CC, MVT::i8),
   10101                                 SDValue(PCMP.getNode(), 1));
   10102     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
   10103   }
   10104 
   10105   case Intrinsic::x86_sse42_pcmpistri128:
   10106   case Intrinsic::x86_sse42_pcmpestri128: {
   10107     unsigned Opcode;
   10108     if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
   10109       Opcode = X86ISD::PCMPISTRI;
   10110     else
   10111       Opcode = X86ISD::PCMPESTRI;
   10112 
   10113     SmallVector<SDValue, 5> NewOps;
   10114     NewOps.append(Op->op_begin()+1, Op->op_end());
   10115     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   10116     return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
   10117   }
   10118   case Intrinsic::x86_fma_vfmadd_ps:
   10119   case Intrinsic::x86_fma_vfmadd_pd:
   10120   case Intrinsic::x86_fma_vfmsub_ps:
   10121   case Intrinsic::x86_fma_vfmsub_pd:
   10122   case Intrinsic::x86_fma_vfnmadd_ps:
   10123   case Intrinsic::x86_fma_vfnmadd_pd:
   10124   case Intrinsic::x86_fma_vfnmsub_ps:
   10125   case Intrinsic::x86_fma_vfnmsub_pd:
   10126   case Intrinsic::x86_fma_vfmaddsub_ps:
   10127   case Intrinsic::x86_fma_vfmaddsub_pd:
   10128   case Intrinsic::x86_fma_vfmsubadd_ps:
   10129   case Intrinsic::x86_fma_vfmsubadd_pd:
   10130   case Intrinsic::x86_fma_vfmadd_ps_256:
   10131   case Intrinsic::x86_fma_vfmadd_pd_256:
   10132   case Intrinsic::x86_fma_vfmsub_ps_256:
   10133   case Intrinsic::x86_fma_vfmsub_pd_256:
   10134   case Intrinsic::x86_fma_vfnmadd_ps_256:
   10135   case Intrinsic::x86_fma_vfnmadd_pd_256:
   10136   case Intrinsic::x86_fma_vfnmsub_ps_256:
   10137   case Intrinsic::x86_fma_vfnmsub_pd_256:
   10138   case Intrinsic::x86_fma_vfmaddsub_ps_256:
   10139   case Intrinsic::x86_fma_vfmaddsub_pd_256:
   10140   case Intrinsic::x86_fma_vfmsubadd_ps_256:
   10141   case Intrinsic::x86_fma_vfmsubadd_pd_256: {
   10142     unsigned Opc;
   10143     switch (IntNo) {
   10144     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   10145     case Intrinsic::x86_fma_vfmadd_ps:
   10146     case Intrinsic::x86_fma_vfmadd_pd:
   10147     case Intrinsic::x86_fma_vfmadd_ps_256:
   10148     case Intrinsic::x86_fma_vfmadd_pd_256:
   10149       Opc = X86ISD::FMADD;
   10150       break;
   10151     case Intrinsic::x86_fma_vfmsub_ps:
   10152     case Intrinsic::x86_fma_vfmsub_pd:
   10153     case Intrinsic::x86_fma_vfmsub_ps_256:
   10154     case Intrinsic::x86_fma_vfmsub_pd_256:
   10155       Opc = X86ISD::FMSUB;
   10156       break;
   10157     case Intrinsic::x86_fma_vfnmadd_ps:
   10158     case Intrinsic::x86_fma_vfnmadd_pd:
   10159     case Intrinsic::x86_fma_vfnmadd_ps_256:
   10160     case Intrinsic::x86_fma_vfnmadd_pd_256:
   10161       Opc = X86ISD::FNMADD;
   10162       break;
   10163     case Intrinsic::x86_fma_vfnmsub_ps:
   10164     case Intrinsic::x86_fma_vfnmsub_pd:
   10165     case Intrinsic::x86_fma_vfnmsub_ps_256:
   10166     case Intrinsic::x86_fma_vfnmsub_pd_256:
   10167       Opc = X86ISD::FNMSUB;
   10168       break;
   10169     case Intrinsic::x86_fma_vfmaddsub_ps:
   10170     case Intrinsic::x86_fma_vfmaddsub_pd:
   10171     case Intrinsic::x86_fma_vfmaddsub_ps_256:
   10172     case Intrinsic::x86_fma_vfmaddsub_pd_256:
   10173       Opc = X86ISD::FMADDSUB;
   10174       break;
   10175     case Intrinsic::x86_fma_vfmsubadd_ps:
   10176     case Intrinsic::x86_fma_vfmsubadd_pd:
   10177     case Intrinsic::x86_fma_vfmsubadd_ps_256:
   10178     case Intrinsic::x86_fma_vfmsubadd_pd_256:
   10179       Opc = X86ISD::FMSUBADD;
   10180       break;
   10181     }
   10182 
   10183     return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
   10184                        Op.getOperand(2), Op.getOperand(3));
   10185   }
   10186   }
   10187 }
   10188 
   10189 SDValue
   10190 X86TargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const {
   10191   DebugLoc dl = Op.getDebugLoc();
   10192   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   10193   switch (IntNo) {
   10194   default: return SDValue();    // Don't custom lower most intrinsics.
   10195 
   10196   // RDRAND intrinsics.
   10197   case Intrinsic::x86_rdrand_16:
   10198   case Intrinsic::x86_rdrand_32:
   10199   case Intrinsic::x86_rdrand_64: {
   10200     // Emit the node with the right value type.
   10201     SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
   10202     SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
   10203 
   10204     // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
   10205     // return the value from Rand, which is always 0, casted to i32.
   10206     SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
   10207                       DAG.getConstant(1, Op->getValueType(1)),
   10208                       DAG.getConstant(X86::COND_B, MVT::i32),
   10209                       SDValue(Result.getNode(), 1) };
   10210     SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
   10211                                   DAG.getVTList(Op->getValueType(1), MVT::Glue),
   10212                                   Ops, 4);
   10213 
   10214     // Return { result, isValid, chain }.
   10215     return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
   10216                        SDValue(Result.getNode(), 2));
   10217   }
   10218   }
   10219 }
   10220 
   10221 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
   10222                                            SelectionDAG &DAG) const {
   10223   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   10224   MFI->setReturnAddressIsTaken(true);
   10225 
   10226   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   10227   DebugLoc dl = Op.getDebugLoc();
   10228 
   10229   if (Depth > 0) {
   10230     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   10231     SDValue Offset =
   10232       DAG.getConstant(TD->getPointerSize(),
   10233                       Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
   10234     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   10235                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
   10236                                    FrameAddr, Offset),
   10237                        MachinePointerInfo(), false, false, false, 0);
   10238   }
   10239 
   10240   // Just load the return address.
   10241   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
   10242   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
   10243                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
   10244 }
   10245 
   10246 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   10247   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   10248   MFI->setFrameAddressIsTaken(true);
   10249 
   10250   EVT VT = Op.getValueType();
   10251   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
   10252   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   10253   unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
   10254   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   10255   while (Depth--)
   10256     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   10257                             MachinePointerInfo(),
   10258                             false, false, false, 0);
   10259   return FrameAddr;
   10260 }
   10261 
   10262 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
   10263                                                      SelectionDAG &DAG) const {
   10264   return DAG.getIntPtrConstant(2*TD->getPointerSize());
   10265 }
   10266 
   10267 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
   10268   SDValue Chain     = Op.getOperand(0);
   10269   SDValue Offset    = Op.getOperand(1);
   10270   SDValue Handler   = Op.getOperand(2);
   10271   DebugLoc dl       = Op.getDebugLoc();
   10272 
   10273   SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
   10274                                      Subtarget->is64Bit() ? X86::RBP : X86::EBP,
   10275                                      getPointerTy());
   10276   unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
   10277 
   10278   SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
   10279                                   DAG.getIntPtrConstant(TD->getPointerSize()));
   10280   StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
   10281   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
   10282                        false, false, 0);
   10283   Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
   10284 
   10285   return DAG.getNode(X86ISD::EH_RETURN, dl,
   10286                      MVT::Other,
   10287                      Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
   10288 }
   10289 
   10290 SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
   10291                                                   SelectionDAG &DAG) const {
   10292   return Op.getOperand(0);
   10293 }
   10294 
   10295 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
   10296                                                 SelectionDAG &DAG) const {
   10297   SDValue Root = Op.getOperand(0);
   10298   SDValue Trmp = Op.getOperand(1); // trampoline
   10299   SDValue FPtr = Op.getOperand(2); // nested function
   10300   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
   10301   DebugLoc dl  = Op.getDebugLoc();
   10302 
   10303   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
   10304 
   10305   if (Subtarget->is64Bit()) {
   10306     SDValue OutChains[6];
   10307 
   10308     // Large code-model.
   10309     const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
   10310     const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
   10311 
   10312     const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
   10313     const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
   10314 
   10315     const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
   10316 
   10317     // Load the pointer to the nested function into R11.
   10318     unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
   10319     SDValue Addr = Trmp;
   10320     OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   10321                                 Addr, MachinePointerInfo(TrmpAddr),
   10322                                 false, false, 0);
   10323 
   10324     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   10325                        DAG.getConstant(2, MVT::i64));
   10326     OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
   10327                                 MachinePointerInfo(TrmpAddr, 2),
   10328                                 false, false, 2);
   10329 
   10330     // Load the 'nest' parameter value into R10.
   10331     // R10 is specified in X86CallingConv.td
   10332     OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
   10333     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   10334                        DAG.getConstant(10, MVT::i64));
   10335     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   10336                                 Addr, MachinePointerInfo(TrmpAddr, 10),
   10337                                 false, false, 0);
   10338 
   10339     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   10340                        DAG.getConstant(12, MVT::i64));
   10341     OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
   10342                                 MachinePointerInfo(TrmpAddr, 12),
   10343                                 false, false, 2);
   10344 
   10345     // Jump to the nested function.
   10346     OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
   10347     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   10348                        DAG.getConstant(20, MVT::i64));
   10349     OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
   10350                                 Addr, MachinePointerInfo(TrmpAddr, 20),
   10351                                 false, false, 0);
   10352 
   10353     unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
   10354     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
   10355                        DAG.getConstant(22, MVT::i64));
   10356     OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
   10357                                 MachinePointerInfo(TrmpAddr, 22),
   10358                                 false, false, 0);
   10359 
   10360     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
   10361   } else {
   10362     const Function *Func =
   10363       cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
   10364     CallingConv::ID CC = Func->getCallingConv();
   10365     unsigned NestReg;
   10366 
   10367     switch (CC) {
   10368     default:
   10369       llvm_unreachable("Unsupported calling convention");
   10370     case CallingConv::C:
   10371     case CallingConv::X86_StdCall: {
   10372       // Pass 'nest' parameter in ECX.
   10373       // Must be kept in sync with X86CallingConv.td
   10374       NestReg = X86::ECX;
   10375 
   10376       // Check that ECX wasn't needed by an 'inreg' parameter.
   10377       FunctionType *FTy = Func->getFunctionType();
   10378       const AttrListPtr &Attrs = Func->getAttributes();
   10379 
   10380       if (!Attrs.isEmpty() && !Func->isVarArg()) {
   10381         unsigned InRegCount = 0;
   10382         unsigned Idx = 1;
   10383 
   10384         for (FunctionType::param_iterator I = FTy->param_begin(),
   10385              E = FTy->param_end(); I != E; ++I, ++Idx)
   10386           if (Attrs.paramHasAttr(Idx, Attribute::InReg))
   10387             // FIXME: should only count parameters that are lowered to integers.
   10388             InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
   10389 
   10390         if (InRegCount > 2) {
   10391           report_fatal_error("Nest register in use - reduce number of inreg"
   10392                              " parameters!");
   10393         }
   10394       }
   10395       break;
   10396     }
   10397     case CallingConv::X86_FastCall:
   10398     case CallingConv::X86_ThisCall:
   10399     case CallingConv::Fast:
   10400       // Pass 'nest' parameter in EAX.
   10401       // Must be kept in sync with X86CallingConv.td
   10402       NestReg = X86::EAX;
   10403       break;
   10404     }
   10405 
   10406     SDValue OutChains[4];
   10407     SDValue Addr, Disp;
   10408 
   10409     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   10410                        DAG.getConstant(10, MVT::i32));
   10411     Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
   10412 
   10413     // This is storing the opcode for MOV32ri.
   10414     const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
   10415     const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
   10416     OutChains[0] = DAG.getStore(Root, dl,
   10417                                 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
   10418                                 Trmp, MachinePointerInfo(TrmpAddr),
   10419                                 false, false, 0);
   10420 
   10421     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   10422                        DAG.getConstant(1, MVT::i32));
   10423     OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
   10424                                 MachinePointerInfo(TrmpAddr, 1),
   10425                                 false, false, 1);
   10426 
   10427     const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
   10428     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   10429                        DAG.getConstant(5, MVT::i32));
   10430     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
   10431                                 MachinePointerInfo(TrmpAddr, 5),
   10432                                 false, false, 1);
   10433 
   10434     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
   10435                        DAG.getConstant(6, MVT::i32));
   10436     OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
   10437                                 MachinePointerInfo(TrmpAddr, 6),
   10438                                 false, false, 1);
   10439 
   10440     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
   10441   }
   10442 }
   10443 
   10444 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   10445                                             SelectionDAG &DAG) const {
   10446   /*
   10447    The rounding mode is in bits 11:10 of FPSR, and has the following
   10448    settings:
   10449      00 Round to nearest
   10450      01 Round to -inf
   10451      10 Round to +inf
   10452      11 Round to 0
   10453 
   10454   FLT_ROUNDS, on the other hand, expects the following:
   10455     -1 Undefined
   10456      0 Round to 0
   10457      1 Round to nearest
   10458      2 Round to +inf
   10459      3 Round to -inf
   10460 
   10461   To perform the conversion, we do:
   10462     (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
   10463   */
   10464 
   10465   MachineFunction &MF = DAG.getMachineFunction();
   10466   const TargetMachine &TM = MF.getTarget();
   10467   const TargetFrameLowering &TFI = *TM.getFrameLowering();
   10468   unsigned StackAlignment = TFI.getStackAlignment();
   10469   EVT VT = Op.getValueType();
   10470   DebugLoc DL = Op.getDebugLoc();
   10471 
   10472   // Save FP Control Word to stack slot
   10473   int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
   10474   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
   10475 
   10476 
   10477   MachineMemOperand *MMO =
   10478    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
   10479                            MachineMemOperand::MOStore, 2, 2);
   10480 
   10481   SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
   10482   SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
   10483                                           DAG.getVTList(MVT::Other),
   10484                                           Ops, 2, MVT::i16, MMO);
   10485 
   10486   // Load FP Control Word from stack slot
   10487   SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
   10488                             MachinePointerInfo(), false, false, false, 0);
   10489 
   10490   // Transform as necessary
   10491   SDValue CWD1 =
   10492     DAG.getNode(ISD::SRL, DL, MVT::i16,
   10493                 DAG.getNode(ISD::AND, DL, MVT::i16,
   10494                             CWD, DAG.getConstant(0x800, MVT::i16)),
   10495                 DAG.getConstant(11, MVT::i8));
   10496   SDValue CWD2 =
   10497     DAG.getNode(ISD::SRL, DL, MVT::i16,
   10498                 DAG.getNode(ISD::AND, DL, MVT::i16,
   10499                             CWD, DAG.getConstant(0x400, MVT::i16)),
   10500                 DAG.getConstant(9, MVT::i8));
   10501 
   10502   SDValue RetVal =
   10503     DAG.getNode(ISD::AND, DL, MVT::i16,
   10504                 DAG.getNode(ISD::ADD, DL, MVT::i16,
   10505                             DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
   10506                             DAG.getConstant(1, MVT::i16)),
   10507                 DAG.getConstant(3, MVT::i16));
   10508 
   10509 
   10510   return DAG.getNode((VT.getSizeInBits() < 16 ?
   10511                       ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
   10512 }
   10513 
   10514 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
   10515   EVT VT = Op.getValueType();
   10516   EVT OpVT = VT;
   10517   unsigned NumBits = VT.getSizeInBits();
   10518   DebugLoc dl = Op.getDebugLoc();
   10519 
   10520   Op = Op.getOperand(0);
   10521   if (VT == MVT::i8) {
   10522     // Zero extend to i32 since there is not an i8 bsr.
   10523     OpVT = MVT::i32;
   10524     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
   10525   }
   10526 
   10527   // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
   10528   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
   10529   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
   10530 
   10531   // If src is zero (i.e. bsr sets ZF), returns NumBits.
   10532   SDValue Ops[] = {
   10533     Op,
   10534     DAG.getConstant(NumBits+NumBits-1, OpVT),
   10535     DAG.getConstant(X86::COND_E, MVT::i8),
   10536     Op.getValue(1)
   10537   };
   10538   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
   10539 
   10540   // Finally xor with NumBits-1.
   10541   Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
   10542 
   10543   if (VT == MVT::i8)
   10544     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
   10545   return Op;
   10546 }
   10547 
   10548 SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
   10549                                                 SelectionDAG &DAG) const {
   10550   EVT VT = Op.getValueType();
   10551   EVT OpVT = VT;
   10552   unsigned NumBits = VT.getSizeInBits();
   10553   DebugLoc dl = Op.getDebugLoc();
   10554 
   10555   Op = Op.getOperand(0);
   10556   if (VT == MVT::i8) {
   10557     // Zero extend to i32 since there is not an i8 bsr.
   10558     OpVT = MVT::i32;
   10559     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
   10560   }
   10561 
   10562   // Issue a bsr (scan bits in reverse).
   10563   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
   10564   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
   10565 
   10566   // And xor with NumBits-1.
   10567   Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
   10568 
   10569   if (VT == MVT::i8)
   10570     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
   10571   return Op;
   10572 }
   10573 
   10574 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
   10575   EVT VT = Op.getValueType();
   10576   unsigned NumBits = VT.getSizeInBits();
   10577   DebugLoc dl = Op.getDebugLoc();
   10578   Op = Op.getOperand(0);
   10579 
   10580   // Issue a bsf (scan bits forward) which also sets EFLAGS.
   10581   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   10582   Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
   10583 
   10584   // If src is zero (i.e. bsf sets ZF), returns NumBits.
   10585   SDValue Ops[] = {
   10586     Op,
   10587     DAG.getConstant(NumBits, VT),
   10588     DAG.getConstant(X86::COND_E, MVT::i8),
   10589     Op.getValue(1)
   10590   };
   10591   return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
   10592 }
   10593 
   10594 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
   10595 // ones, and then concatenate the result back.
   10596 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
   10597   EVT VT = Op.getValueType();
   10598 
   10599   assert(VT.is256BitVector() && VT.isInteger() &&
   10600          "Unsupported value type for operation");
   10601 
   10602   unsigned NumElems = VT.getVectorNumElements();
   10603   DebugLoc dl = Op.getDebugLoc();
   10604 
   10605   // Extract the LHS vectors
   10606   SDValue LHS = Op.getOperand(0);
   10607   SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
   10608   SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
   10609 
   10610   // Extract the RHS vectors
   10611   SDValue RHS = Op.getOperand(1);
   10612   SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
   10613   SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
   10614 
   10615   MVT EltVT = VT.getVectorElementType().getSimpleVT();
   10616   EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   10617 
   10618   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
   10619                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
   10620                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
   10621 }
   10622 
   10623 SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
   10624   assert(Op.getValueType().is256BitVector() &&
   10625          Op.getValueType().isInteger() &&
   10626          "Only handle AVX 256-bit vector integer operation");
   10627   return Lower256IntArith(Op, DAG);
   10628 }
   10629 
   10630 SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
   10631   assert(Op.getValueType().is256BitVector() &&
   10632          Op.getValueType().isInteger() &&
   10633          "Only handle AVX 256-bit vector integer operation");
   10634   return Lower256IntArith(Op, DAG);
   10635 }
   10636 
   10637 SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
   10638   EVT VT = Op.getValueType();
   10639 
   10640   // Decompose 256-bit ops into smaller 128-bit ops.
   10641   if (VT.is256BitVector() && !Subtarget->hasAVX2())
   10642     return Lower256IntArith(Op, DAG);
   10643 
   10644   assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
   10645          "Only know how to lower V2I64/V4I64 multiply");
   10646 
   10647   DebugLoc dl = Op.getDebugLoc();
   10648 
   10649   //  Ahi = psrlqi(a, 32);
   10650   //  Bhi = psrlqi(b, 32);
   10651   //
   10652   //  AloBlo = pmuludq(a, b);
   10653   //  AloBhi = pmuludq(a, Bhi);
   10654   //  AhiBlo = pmuludq(Ahi, b);
   10655 
   10656   //  AloBhi = psllqi(AloBhi, 32);
   10657   //  AhiBlo = psllqi(AhiBlo, 32);
   10658   //  return AloBlo + AloBhi + AhiBlo;
   10659 
   10660   SDValue A = Op.getOperand(0);
   10661   SDValue B = Op.getOperand(1);
   10662 
   10663   SDValue ShAmt = DAG.getConstant(32, MVT::i32);
   10664 
   10665   SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
   10666   SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
   10667 
   10668   // Bit cast to 32-bit vectors for MULUDQ
   10669   EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
   10670   A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
   10671   B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
   10672   Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
   10673   Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
   10674 
   10675   SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
   10676   SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
   10677   SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
   10678 
   10679   AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
   10680   AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
   10681 
   10682   SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
   10683   return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
   10684 }
   10685 
   10686 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
   10687 
   10688   EVT VT = Op.getValueType();
   10689   DebugLoc dl = Op.getDebugLoc();
   10690   SDValue R = Op.getOperand(0);
   10691   SDValue Amt = Op.getOperand(1);
   10692   LLVMContext *Context = DAG.getContext();
   10693 
   10694   if (!Subtarget->hasSSE2())
   10695     return SDValue();
   10696 
   10697   // Optimize shl/srl/sra with constant shift amount.
   10698   if (isSplatVector(Amt.getNode())) {
   10699     SDValue SclrAmt = Amt->getOperand(0);
   10700     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
   10701       uint64_t ShiftAmt = C->getZExtValue();
   10702 
   10703       if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
   10704           (Subtarget->hasAVX2() &&
   10705            (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
   10706         if (Op.getOpcode() == ISD::SHL)
   10707           return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
   10708                              DAG.getConstant(ShiftAmt, MVT::i32));
   10709         if (Op.getOpcode() == ISD::SRL)
   10710           return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
   10711                              DAG.getConstant(ShiftAmt, MVT::i32));
   10712         if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
   10713           return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
   10714                              DAG.getConstant(ShiftAmt, MVT::i32));
   10715       }
   10716 
   10717       if (VT == MVT::v16i8) {
   10718         if (Op.getOpcode() == ISD::SHL) {
   10719           // Make a large shift.
   10720           SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
   10721                                     DAG.getConstant(ShiftAmt, MVT::i32));
   10722           SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
   10723           // Zero out the rightmost bits.
   10724           SmallVector<SDValue, 16> V(16,
   10725                                      DAG.getConstant(uint8_t(-1U << ShiftAmt),
   10726                                                      MVT::i8));
   10727           return DAG.getNode(ISD::AND, dl, VT, SHL,
   10728                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
   10729         }
   10730         if (Op.getOpcode() == ISD::SRL) {
   10731           // Make a large shift.
   10732           SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
   10733                                     DAG.getConstant(ShiftAmt, MVT::i32));
   10734           SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
   10735           // Zero out the leftmost bits.
   10736           SmallVector<SDValue, 16> V(16,
   10737                                      DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
   10738                                                      MVT::i8));
   10739           return DAG.getNode(ISD::AND, dl, VT, SRL,
   10740                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
   10741         }
   10742         if (Op.getOpcode() == ISD::SRA) {
   10743           if (ShiftAmt == 7) {
   10744             // R s>> 7  ===  R s< 0
   10745             SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
   10746             return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
   10747           }
   10748 
   10749           // R s>> a === ((R u>> a) ^ m) - m
   10750           SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
   10751           SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
   10752                                                          MVT::i8));
   10753           SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
   10754           Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
   10755           Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
   10756           return Res;
   10757         }
   10758         llvm_unreachable("Unknown shift opcode.");
   10759       }
   10760 
   10761       if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
   10762         if (Op.getOpcode() == ISD::SHL) {
   10763           // Make a large shift.
   10764           SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
   10765                                     DAG.getConstant(ShiftAmt, MVT::i32));
   10766           SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
   10767           // Zero out the rightmost bits.
   10768           SmallVector<SDValue, 32> V(32,
   10769                                      DAG.getConstant(uint8_t(-1U << ShiftAmt),
   10770                                                      MVT::i8));
   10771           return DAG.getNode(ISD::AND, dl, VT, SHL,
   10772                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
   10773         }
   10774         if (Op.getOpcode() == ISD::SRL) {
   10775           // Make a large shift.
   10776           SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
   10777                                     DAG.getConstant(ShiftAmt, MVT::i32));
   10778           SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
   10779           // Zero out the leftmost bits.
   10780           SmallVector<SDValue, 32> V(32,
   10781                                      DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
   10782                                                      MVT::i8));
   10783           return DAG.getNode(ISD::AND, dl, VT, SRL,
   10784                              DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
   10785         }
   10786         if (Op.getOpcode() == ISD::SRA) {
   10787           if (ShiftAmt == 7) {
   10788             // R s>> 7  ===  R s< 0
   10789             SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
   10790             return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
   10791           }
   10792 
   10793           // R s>> a === ((R u>> a) ^ m) - m
   10794           SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
   10795           SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
   10796                                                          MVT::i8));
   10797           SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
   10798           Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
   10799           Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
   10800           return Res;
   10801         }
   10802         llvm_unreachable("Unknown shift opcode.");
   10803       }
   10804     }
   10805   }
   10806 
   10807   // Lower SHL with variable shift amount.
   10808   if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
   10809     Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
   10810                      DAG.getConstant(23, MVT::i32));
   10811 
   10812     const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
   10813     Constant *C = ConstantDataVector::get(*Context, CV);
   10814     SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
   10815     SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
   10816                                  MachinePointerInfo::getConstantPool(),
   10817                                  false, false, false, 16);
   10818 
   10819     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
   10820     Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
   10821     Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
   10822     return DAG.getNode(ISD::MUL, dl, VT, Op, R);
   10823   }
   10824   if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
   10825     assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
   10826 
   10827     // a = a << 5;
   10828     Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
   10829                      DAG.getConstant(5, MVT::i32));
   10830     Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
   10831 
   10832     // Turn 'a' into a mask suitable for VSELECT
   10833     SDValue VSelM = DAG.getConstant(0x80, VT);
   10834     SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
   10835     OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
   10836 
   10837     SDValue CM1 = DAG.getConstant(0x0f, VT);
   10838     SDValue CM2 = DAG.getConstant(0x3f, VT);
   10839 
   10840     // r = VSELECT(r, psllw(r & (char16)15, 4), a);
   10841     SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
   10842     M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
   10843                             DAG.getConstant(4, MVT::i32), DAG);
   10844     M = DAG.getNode(ISD::BITCAST, dl, VT, M);
   10845     R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
   10846 
   10847     // a += a
   10848     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
   10849     OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
   10850     OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
   10851 
   10852     // r = VSELECT(r, psllw(r & (char16)63, 2), a);
   10853     M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
   10854     M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
   10855                             DAG.getConstant(2, MVT::i32), DAG);
   10856     M = DAG.getNode(ISD::BITCAST, dl, VT, M);
   10857     R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
   10858 
   10859     // a += a
   10860     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
   10861     OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
   10862     OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
   10863 
   10864     // return VSELECT(r, r+r, a);
   10865     R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
   10866                     DAG.getNode(ISD::ADD, dl, VT, R, R), R);
   10867     return R;
   10868   }
   10869 
   10870   // Decompose 256-bit shifts into smaller 128-bit shifts.
   10871   if (VT.is256BitVector()) {
   10872     unsigned NumElems = VT.getVectorNumElements();
   10873     MVT EltVT = VT.getVectorElementType().getSimpleVT();
   10874     EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   10875 
   10876     // Extract the two vectors
   10877     SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
   10878     SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
   10879 
   10880     // Recreate the shift amount vectors
   10881     SDValue Amt1, Amt2;
   10882     if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
   10883       // Constant shift amount
   10884       SmallVector<SDValue, 4> Amt1Csts;
   10885       SmallVector<SDValue, 4> Amt2Csts;
   10886       for (unsigned i = 0; i != NumElems/2; ++i)
   10887         Amt1Csts.push_back(Amt->getOperand(i));
   10888       for (unsigned i = NumElems/2; i != NumElems; ++i)
   10889         Amt2Csts.push_back(Amt->getOperand(i));
   10890 
   10891       Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
   10892                                  &Amt1Csts[0], NumElems/2);
   10893       Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
   10894                                  &Amt2Csts[0], NumElems/2);
   10895     } else {
   10896       // Variable shift amount
   10897       Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
   10898       Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
   10899     }
   10900 
   10901     // Issue new vector shifts for the smaller types
   10902     V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
   10903     V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
   10904 
   10905     // Concatenate the result back
   10906     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
   10907   }
   10908 
   10909   return SDValue();
   10910 }
   10911 
   10912 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
   10913   // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
   10914   // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
   10915   // looks for this combo and may remove the "setcc" instruction if the "setcc"
   10916   // has only one use.
   10917   SDNode *N = Op.getNode();
   10918   SDValue LHS = N->getOperand(0);
   10919   SDValue RHS = N->getOperand(1);
   10920   unsigned BaseOp = 0;
   10921   unsigned Cond = 0;
   10922   DebugLoc DL = Op.getDebugLoc();
   10923   switch (Op.getOpcode()) {
   10924   default: llvm_unreachable("Unknown ovf instruction!");
   10925   case ISD::SADDO:
   10926     // A subtract of one will be selected as a INC. Note that INC doesn't
   10927     // set CF, so we can't do this for UADDO.
   10928     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
   10929       if (C->isOne()) {
   10930         BaseOp = X86ISD::INC;
   10931         Cond = X86::COND_O;
   10932         break;
   10933       }
   10934     BaseOp = X86ISD::ADD;
   10935     Cond = X86::COND_O;
   10936     break;
   10937   case ISD::UADDO:
   10938     BaseOp = X86ISD::ADD;
   10939     Cond = X86::COND_B;
   10940     break;
   10941   case ISD::SSUBO:
   10942     // A subtract of one will be selected as a DEC. Note that DEC doesn't
   10943     // set CF, so we can't do this for USUBO.
   10944     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
   10945       if (C->isOne()) {
   10946         BaseOp = X86ISD::DEC;
   10947         Cond = X86::COND_O;
   10948         break;
   10949       }
   10950     BaseOp = X86ISD::SUB;
   10951     Cond = X86::COND_O;
   10952     break;
   10953   case ISD::USUBO:
   10954     BaseOp = X86ISD::SUB;
   10955     Cond = X86::COND_B;
   10956     break;
   10957   case ISD::SMULO:
   10958     BaseOp = X86ISD::SMUL;
   10959     Cond = X86::COND_O;
   10960     break;
   10961   case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
   10962     SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
   10963                                  MVT::i32);
   10964     SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
   10965 
   10966     SDValue SetCC =
   10967       DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   10968                   DAG.getConstant(X86::COND_O, MVT::i32),
   10969                   SDValue(Sum.getNode(), 2));
   10970 
   10971     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
   10972   }
   10973   }
   10974 
   10975   // Also sets EFLAGS.
   10976   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
   10977   SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
   10978 
   10979   SDValue SetCC =
   10980     DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
   10981                 DAG.getConstant(Cond, MVT::i32),
   10982                 SDValue(Sum.getNode(), 1));
   10983 
   10984   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
   10985 }
   10986 
   10987 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
   10988                                                   SelectionDAG &DAG) const {
   10989   DebugLoc dl = Op.getDebugLoc();
   10990   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   10991   EVT VT = Op.getValueType();
   10992 
   10993   if (!Subtarget->hasSSE2() || !VT.isVector())
   10994     return SDValue();
   10995 
   10996   unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
   10997                       ExtraVT.getScalarType().getSizeInBits();
   10998   SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
   10999 
   11000   switch (VT.getSimpleVT().SimpleTy) {
   11001     default: return SDValue();
   11002     case MVT::v8i32:
   11003     case MVT::v16i16:
   11004       if (!Subtarget->hasAVX())
   11005         return SDValue();
   11006       if (!Subtarget->hasAVX2()) {
   11007         // needs to be split
   11008         unsigned NumElems = VT.getVectorNumElements();
   11009 
   11010         // Extract the LHS vectors
   11011         SDValue LHS = Op.getOperand(0);
   11012         SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
   11013         SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
   11014 
   11015         MVT EltVT = VT.getVectorElementType().getSimpleVT();
   11016         EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
   11017 
   11018         EVT ExtraEltVT = ExtraVT.getVectorElementType();
   11019         unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
   11020         ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
   11021                                    ExtraNumElems/2);
   11022         SDValue Extra = DAG.getValueType(ExtraVT);
   11023 
   11024         LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
   11025         LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
   11026 
   11027         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
   11028       }
   11029       // fall through
   11030     case MVT::v4i32:
   11031     case MVT::v8i16: {
   11032       SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
   11033                                          Op.getOperand(0), ShAmt, DAG);
   11034       return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
   11035     }
   11036   }
   11037 }
   11038 
   11039 
   11040 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
   11041   DebugLoc dl = Op.getDebugLoc();
   11042 
   11043   // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
   11044   // There isn't any reason to disable it if the target processor supports it.
   11045   if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
   11046     SDValue Chain = Op.getOperand(0);
   11047     SDValue Zero = DAG.getConstant(0, MVT::i32);
   11048     SDValue Ops[] = {
   11049       DAG.getRegister(X86::ESP, MVT::i32), // Base
   11050       DAG.getTargetConstant(1, MVT::i8),   // Scale
   11051       DAG.getRegister(0, MVT::i32),        // Index
   11052       DAG.getTargetConstant(0, MVT::i32),  // Disp
   11053       DAG.getRegister(0, MVT::i32),        // Segment.
   11054       Zero,
   11055       Chain
   11056     };
   11057     SDNode *Res =
   11058       DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
   11059                           array_lengthof(Ops));
   11060     return SDValue(Res, 0);
   11061   }
   11062 
   11063   unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
   11064   if (!isDev)
   11065     return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
   11066 
   11067   unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
   11068   unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
   11069   unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
   11070   unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   11071 
   11072   // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
   11073   if (!Op1 && !Op2 && !Op3 && Op4)
   11074     return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
   11075 
   11076   // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
   11077   if (Op1 && !Op2 && !Op3 && !Op4)
   11078     return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
   11079 
   11080   // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
   11081   //           (MFENCE)>;
   11082   return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
   11083 }
   11084 
   11085 SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
   11086                                              SelectionDAG &DAG) const {
   11087   DebugLoc dl = Op.getDebugLoc();
   11088   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
   11089     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
   11090   SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
   11091     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
   11092 
   11093   // The only fence that needs an instruction is a sequentially-consistent
   11094   // cross-thread fence.
   11095   if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
   11096     // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
   11097     // no-sse2). There isn't any reason to disable it if the target processor
   11098     // supports it.
   11099     if (Subtarget->hasSSE2() || Subtarget->is64Bit())
   11100       return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
   11101 
   11102     SDValue Chain = Op.getOperand(0);
   11103     SDValue Zero = DAG.getConstant(0, MVT::i32);
   11104     SDValue Ops[] = {
   11105       DAG.getRegister(X86::ESP, MVT::i32), // Base
   11106       DAG.getTargetConstant(1, MVT::i8),   // Scale
   11107       DAG.getRegister(0, MVT::i32),        // Index
   11108       DAG.getTargetConstant(0, MVT::i32),  // Disp
   11109       DAG.getRegister(0, MVT::i32),        // Segment.
   11110       Zero,
   11111       Chain
   11112     };
   11113     SDNode *Res =
   11114       DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
   11115                          array_lengthof(Ops));
   11116     return SDValue(Res, 0);
   11117   }
   11118 
   11119   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
   11120   return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
   11121 }
   11122 
   11123 
   11124 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
   11125   EVT T = Op.getValueType();
   11126   DebugLoc DL = Op.getDebugLoc();
   11127   unsigned Reg = 0;
   11128   unsigned size = 0;
   11129   switch(T.getSimpleVT().SimpleTy) {
   11130   default: llvm_unreachable("Invalid value type!");
   11131   case MVT::i8:  Reg = X86::AL;  size = 1; break;
   11132   case MVT::i16: Reg = X86::AX;  size = 2; break;
   11133   case MVT::i32: Reg = X86::EAX; size = 4; break;
   11134   case MVT::i64:
   11135     assert(Subtarget->is64Bit() && "Node not type legal!");
   11136     Reg = X86::RAX; size = 8;
   11137     break;
   11138   }
   11139   SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
   11140                                     Op.getOperand(2), SDValue());
   11141   SDValue Ops[] = { cpIn.getValue(0),
   11142                     Op.getOperand(1),
   11143                     Op.getOperand(3),
   11144                     DAG.getTargetConstant(size, MVT::i8),
   11145                     cpIn.getValue(1) };
   11146   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   11147   MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
   11148   SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
   11149                                            Ops, 5, T, MMO);
   11150   SDValue cpOut =
   11151     DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
   11152   return cpOut;
   11153 }
   11154 
   11155 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
   11156                                                  SelectionDAG &DAG) const {
   11157   assert(Subtarget->is64Bit() && "Result not type legalized?");
   11158   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   11159   SDValue TheChain = Op.getOperand(0);
   11160   DebugLoc dl = Op.getDebugLoc();
   11161   SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
   11162   SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
   11163   SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
   11164                                    rax.getValue(2));
   11165   SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
   11166                             DAG.getConstant(32, MVT::i8));
   11167   SDValue Ops[] = {
   11168     DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
   11169     rdx.getValue(1)
   11170   };
   11171   return DAG.getMergeValues(Ops, 2, dl);
   11172 }
   11173 
   11174 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
   11175                                             SelectionDAG &DAG) const {
   11176   EVT SrcVT = Op.getOperand(0).getValueType();
   11177   EVT DstVT = Op.getValueType();
   11178   assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
   11179          Subtarget->hasMMX() && "Unexpected custom BITCAST");
   11180   assert((DstVT == MVT::i64 ||
   11181           (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
   11182          "Unexpected custom BITCAST");
   11183   // i64 <=> MMX conversions are Legal.
   11184   if (SrcVT==MVT::i64 && DstVT.isVector())
   11185     return Op;
   11186   if (DstVT==MVT::i64 && SrcVT.isVector())
   11187     return Op;
   11188   // MMX <=> MMX conversions are Legal.
   11189   if (SrcVT.isVector() && DstVT.isVector())
   11190     return Op;
   11191   // All other conversions need to be expanded.
   11192   return SDValue();
   11193 }
   11194 
   11195 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
   11196   SDNode *Node = Op.getNode();
   11197   DebugLoc dl = Node->getDebugLoc();
   11198   EVT T = Node->getValueType(0);
   11199   SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
   11200                               DAG.getConstant(0, T), Node->getOperand(2));
   11201   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
   11202                        cast<AtomicSDNode>(Node)->getMemoryVT(),
   11203                        Node->getOperand(0),
   11204                        Node->getOperand(1), negOp,
   11205                        cast<AtomicSDNode>(Node)->getSrcValue(),
   11206                        cast<AtomicSDNode>(Node)->getAlignment(),
   11207                        cast<AtomicSDNode>(Node)->getOrdering(),
   11208                        cast<AtomicSDNode>(Node)->getSynchScope());
   11209 }
   11210 
   11211 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
   11212   SDNode *Node = Op.getNode();
   11213   DebugLoc dl = Node->getDebugLoc();
   11214   EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
   11215 
   11216   // Convert seq_cst store -> xchg
   11217   // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
   11218   // FIXME: On 32-bit, store -> fist or movq would be more efficient
   11219   //        (The only way to get a 16-byte store is cmpxchg16b)
   11220   // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
   11221   if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
   11222       !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   11223     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
   11224                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
   11225                                  Node->getOperand(0),
   11226                                  Node->getOperand(1), Node->getOperand(2),
   11227                                  cast<AtomicSDNode>(Node)->getMemOperand(),
   11228                                  cast<AtomicSDNode>(Node)->getOrdering(),
   11229                                  cast<AtomicSDNode>(Node)->getSynchScope());
   11230     return Swap.getValue(1);
   11231   }
   11232   // Other atomic stores have a simple pattern.
   11233   return Op;
   11234 }
   11235 
   11236 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   11237   EVT VT = Op.getNode()->getValueType(0);
   11238 
   11239   // Let legalize expand this if it isn't a legal type yet.
   11240   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   11241     return SDValue();
   11242 
   11243   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   11244 
   11245   unsigned Opc;
   11246   bool ExtraOp = false;
   11247   switch (Op.getOpcode()) {
   11248   default: llvm_unreachable("Invalid code");
   11249   case ISD::ADDC: Opc = X86ISD::ADD; break;
   11250   case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
   11251   case ISD::SUBC: Opc = X86ISD::SUB; break;
   11252   case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
   11253   }
   11254 
   11255   if (!ExtraOp)
   11256     return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   11257                        Op.getOperand(1));
   11258   return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
   11259                      Op.getOperand(1), Op.getOperand(2));
   11260 }
   11261 
   11262 /// LowerOperation - Provide custom lowering hooks for some operations.
   11263 ///
   11264 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   11265   switch (Op.getOpcode()) {
   11266   default: llvm_unreachable("Should not custom lower this!");
   11267   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
   11268   case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
   11269   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
   11270   case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
   11271   case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
   11272   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
   11273   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
   11274   case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
   11275   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
   11276   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   11277   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
   11278   case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
   11279   case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
   11280   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
   11281   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
   11282   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
   11283   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
   11284   case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
   11285   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
   11286   case ISD::SHL_PARTS:
   11287   case ISD::SRA_PARTS:
   11288   case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
   11289   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
   11290   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
   11291   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
   11292   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
   11293   case ISD::FABS:               return LowerFABS(Op, DAG);
   11294   case ISD::FNEG:               return LowerFNEG(Op, DAG);
   11295   case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
   11296   case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
   11297   case ISD::SETCC:              return LowerSETCC(Op, DAG);
   11298   case ISD::SELECT:             return LowerSELECT(Op, DAG);
   11299   case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
   11300   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
   11301   case ISD::VASTART:            return LowerVASTART(Op, DAG);
   11302   case ISD::VAARG:              return LowerVAARG(Op, DAG);
   11303   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
   11304   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
   11305   case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
   11306   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
   11307   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
   11308   case ISD::FRAME_TO_ARGS_OFFSET:
   11309                                 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
   11310   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
   11311   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
   11312   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
   11313   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
   11314   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
   11315   case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
   11316   case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
   11317   case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
   11318   case ISD::MUL:                return LowerMUL(Op, DAG);
   11319   case ISD::SRA:
   11320   case ISD::SRL:
   11321   case ISD::SHL:                return LowerShift(Op, DAG);
   11322   case ISD::SADDO:
   11323   case ISD::UADDO:
   11324   case ISD::SSUBO:
   11325   case ISD::USUBO:
   11326   case ISD::SMULO:
   11327   case ISD::UMULO:              return LowerXALUO(Op, DAG);
   11328   case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
   11329   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
   11330   case ISD::ADDC:
   11331   case ISD::ADDE:
   11332   case ISD::SUBC:
   11333   case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   11334   case ISD::ADD:                return LowerADD(Op, DAG);
   11335   case ISD::SUB:                return LowerSUB(Op, DAG);
   11336   }
   11337 }
   11338 
   11339 static void ReplaceATOMIC_LOAD(SDNode *Node,
   11340                                   SmallVectorImpl<SDValue> &Results,
   11341                                   SelectionDAG &DAG) {
   11342   DebugLoc dl = Node->getDebugLoc();
   11343   EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
   11344 
   11345   // Convert wide load -> cmpxchg8b/cmpxchg16b
   11346   // FIXME: On 32-bit, load -> fild or movq would be more efficient
   11347   //        (The only way to get a 16-byte load is cmpxchg16b)
   11348   // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
   11349   SDValue Zero = DAG.getConstant(0, VT);
   11350   SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
   11351                                Node->getOperand(0),
   11352                                Node->getOperand(1), Zero, Zero,
   11353                                cast<AtomicSDNode>(Node)->getMemOperand(),
   11354                                cast<AtomicSDNode>(Node)->getOrdering(),
   11355                                cast<AtomicSDNode>(Node)->getSynchScope());
   11356   Results.push_back(Swap.getValue(0));
   11357   Results.push_back(Swap.getValue(1));
   11358 }
   11359 
   11360 static void
   11361 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
   11362                         SelectionDAG &DAG, unsigned NewOp) {
   11363   DebugLoc dl = Node->getDebugLoc();
   11364   assert (Node->getValueType(0) == MVT::i64 &&
   11365           "Only know how to expand i64 atomics");
   11366 
   11367   SDValue Chain = Node->getOperand(0);
   11368   SDValue In1 = Node->getOperand(1);
   11369   SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   11370                              Node->getOperand(2), DAG.getIntPtrConstant(0));
   11371   SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
   11372                              Node->getOperand(2), DAG.getIntPtrConstant(1));
   11373   SDValue Ops[] = { Chain, In1, In2L, In2H };
   11374   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
   11375   SDValue Result =
   11376     DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
   11377                             cast<MemSDNode>(Node)->getMemOperand());
   11378   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
   11379   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
   11380   Results.push_back(Result.getValue(2));
   11381 }
   11382 
   11383 /// ReplaceNodeResults - Replace a node with an illegal result type
   11384 /// with a new node built out of custom code.
   11385 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
   11386                                            SmallVectorImpl<SDValue>&Results,
   11387                                            SelectionDAG &DAG) const {
   11388   DebugLoc dl = N->getDebugLoc();
   11389   switch (N->getOpcode()) {
   11390   default:
   11391     llvm_unreachable("Do not know how to custom type legalize this operation!");
   11392   case ISD::SIGN_EXTEND_INREG:
   11393   case ISD::ADDC:
   11394   case ISD::ADDE:
   11395   case ISD::SUBC:
   11396   case ISD::SUBE:
   11397     // We don't want to expand or promote these.
   11398     return;
   11399   case ISD::FP_TO_SINT:
   11400   case ISD::FP_TO_UINT: {
   11401     bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
   11402 
   11403     if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
   11404       return;
   11405 
   11406     std::pair<SDValue,SDValue> Vals =
   11407         FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
   11408     SDValue FIST = Vals.first, StackSlot = Vals.second;
   11409     if (FIST.getNode() != 0) {
   11410       EVT VT = N->getValueType(0);
   11411       // Return a load from the stack slot.
   11412       if (StackSlot.getNode() != 0)
   11413         Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
   11414                                       MachinePointerInfo(),
   11415                                       false, false, false, 0));
   11416       else
   11417         Results.push_back(FIST);
   11418     }
   11419     return;
   11420   }
   11421   case ISD::READCYCLECOUNTER: {
   11422     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   11423     SDValue TheChain = N->getOperand(0);
   11424     SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
   11425     SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
   11426                                      rd.getValue(1));
   11427     SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
   11428                                      eax.getValue(2));
   11429     // Use a buildpair to merge the two 32-bit values into a 64-bit one.
   11430     SDValue Ops[] = { eax, edx };
   11431     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
   11432     Results.push_back(edx.getValue(1));
   11433     return;
   11434   }
   11435   case ISD::ATOMIC_CMP_SWAP: {
   11436     EVT T = N->getValueType(0);
   11437     assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
   11438     bool Regs64bit = T == MVT::i128;
   11439     EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
   11440     SDValue cpInL, cpInH;
   11441     cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
   11442                         DAG.getConstant(0, HalfT));
   11443     cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
   11444                         DAG.getConstant(1, HalfT));
   11445     cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
   11446                              Regs64bit ? X86::RAX : X86::EAX,
   11447                              cpInL, SDValue());
   11448     cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
   11449                              Regs64bit ? X86::RDX : X86::EDX,
   11450                              cpInH, cpInL.getValue(1));
   11451     SDValue swapInL, swapInH;
   11452     swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
   11453                           DAG.getConstant(0, HalfT));
   11454     swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
   11455                           DAG.getConstant(1, HalfT));
   11456     swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
   11457                                Regs64bit ? X86::RBX : X86::EBX,
   11458                                swapInL, cpInH.getValue(1));
   11459     swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
   11460                                Regs64bit ? X86::RCX : X86::ECX,
   11461                                swapInH, swapInL.getValue(1));
   11462     SDValue Ops[] = { swapInH.getValue(0),
   11463                       N->getOperand(1),
   11464                       swapInH.getValue(1) };
   11465     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
   11466     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
   11467     unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
   11468                                   X86ISD::LCMPXCHG8_DAG;
   11469     SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
   11470                                              Ops, 3, T, MMO);
   11471     SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
   11472                                         Regs64bit ? X86::RAX : X86::EAX,
   11473                                         HalfT, Result.getValue(1));
   11474     SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
   11475                                         Regs64bit ? X86::RDX : X86::EDX,
   11476                                         HalfT, cpOutL.getValue(2));
   11477     SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
   11478     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
   11479     Results.push_back(cpOutH.getValue(1));
   11480     return;
   11481   }
   11482   case ISD::ATOMIC_LOAD_ADD:
   11483   case ISD::ATOMIC_LOAD_AND:
   11484   case ISD::ATOMIC_LOAD_NAND:
   11485   case ISD::ATOMIC_LOAD_OR:
   11486   case ISD::ATOMIC_LOAD_SUB:
   11487   case ISD::ATOMIC_LOAD_XOR:
   11488   case ISD::ATOMIC_SWAP: {
   11489     unsigned Opc;
   11490     switch (N->getOpcode()) {
   11491     default: llvm_unreachable("Unexpected opcode");
   11492     case ISD::ATOMIC_LOAD_ADD:
   11493       Opc = X86ISD::ATOMADD64_DAG;
   11494       break;
   11495     case ISD::ATOMIC_LOAD_AND:
   11496       Opc = X86ISD::ATOMAND64_DAG;
   11497       break;
   11498     case ISD::ATOMIC_LOAD_NAND:
   11499       Opc = X86ISD::ATOMNAND64_DAG;
   11500       break;
   11501     case ISD::ATOMIC_LOAD_OR:
   11502       Opc = X86ISD::ATOMOR64_DAG;
   11503       break;
   11504     case ISD::ATOMIC_LOAD_SUB:
   11505       Opc = X86ISD::ATOMSUB64_DAG;
   11506       break;
   11507     case ISD::ATOMIC_LOAD_XOR:
   11508       Opc = X86ISD::ATOMXOR64_DAG;
   11509       break;
   11510     case ISD::ATOMIC_SWAP:
   11511       Opc = X86ISD::ATOMSWAP64_DAG;
   11512       break;
   11513     }
   11514     ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
   11515     return;
   11516   }
   11517   case ISD::ATOMIC_LOAD:
   11518     ReplaceATOMIC_LOAD(N, Results, DAG);
   11519   }
   11520 }
   11521 
   11522 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
   11523   switch (Opcode) {
   11524   default: return NULL;
   11525   case X86ISD::BSF:                return "X86ISD::BSF";
   11526   case X86ISD::BSR:                return "X86ISD::BSR";
   11527   case X86ISD::SHLD:               return "X86ISD::SHLD";
   11528   case X86ISD::SHRD:               return "X86ISD::SHRD";
   11529   case X86ISD::FAND:               return "X86ISD::FAND";
   11530   case X86ISD::FOR:                return "X86ISD::FOR";
   11531   case X86ISD::FXOR:               return "X86ISD::FXOR";
   11532   case X86ISD::FSRL:               return "X86ISD::FSRL";
   11533   case X86ISD::FILD:               return "X86ISD::FILD";
   11534   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
   11535   case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
   11536   case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
   11537   case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
   11538   case X86ISD::FLD:                return "X86ISD::FLD";
   11539   case X86ISD::FST:                return "X86ISD::FST";
   11540   case X86ISD::CALL:               return "X86ISD::CALL";
   11541   case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
   11542   case X86ISD::BT:                 return "X86ISD::BT";
   11543   case X86ISD::CMP:                return "X86ISD::CMP";
   11544   case X86ISD::COMI:               return "X86ISD::COMI";
   11545   case X86ISD::UCOMI:              return "X86ISD::UCOMI";
   11546   case X86ISD::SETCC:              return "X86ISD::SETCC";
   11547   case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
   11548   case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
   11549   case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
   11550   case X86ISD::CMOV:               return "X86ISD::CMOV";
   11551   case X86ISD::BRCOND:             return "X86ISD::BRCOND";
   11552   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
   11553   case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
   11554   case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
   11555   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
   11556   case X86ISD::Wrapper:            return "X86ISD::Wrapper";
   11557   case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
   11558   case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
   11559   case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
   11560   case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
   11561   case X86ISD::PINSRB:             return "X86ISD::PINSRB";
   11562   case X86ISD::PINSRW:             return "X86ISD::PINSRW";
   11563   case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
   11564   case X86ISD::ANDNP:              return "X86ISD::ANDNP";
   11565   case X86ISD::PSIGN:              return "X86ISD::PSIGN";
   11566   case X86ISD::BLENDV:             return "X86ISD::BLENDV";
   11567   case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
   11568   case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
   11569   case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
   11570   case X86ISD::HADD:               return "X86ISD::HADD";
   11571   case X86ISD::HSUB:               return "X86ISD::HSUB";
   11572   case X86ISD::FHADD:              return "X86ISD::FHADD";
   11573   case X86ISD::FHSUB:              return "X86ISD::FHSUB";
   11574   case X86ISD::FMAX:               return "X86ISD::FMAX";
   11575   case X86ISD::FMIN:               return "X86ISD::FMIN";
   11576   case X86ISD::FMAXC:              return "X86ISD::FMAXC";
   11577   case X86ISD::FMINC:              return "X86ISD::FMINC";
   11578   case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
   11579   case X86ISD::FRCP:               return "X86ISD::FRCP";
   11580   case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
   11581   case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
   11582   case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
   11583   case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
   11584   case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
   11585   case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
   11586   case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
   11587   case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
   11588   case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
   11589   case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
   11590   case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
   11591   case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
   11592   case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
   11593   case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
   11594   case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
   11595   case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
   11596   case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
   11597   case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
   11598   case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
   11599   case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
   11600   case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
   11601   case X86ISD::VSHL:               return "X86ISD::VSHL";
   11602   case X86ISD::VSRL:               return "X86ISD::VSRL";
   11603   case X86ISD::VSRA:               return "X86ISD::VSRA";
   11604   case X86ISD::VSHLI:              return "X86ISD::VSHLI";
   11605   case X86ISD::VSRLI:              return "X86ISD::VSRLI";
   11606   case X86ISD::VSRAI:              return "X86ISD::VSRAI";
   11607   case X86ISD::CMPP:               return "X86ISD::CMPP";
   11608   case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
   11609   case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
   11610   case X86ISD::ADD:                return "X86ISD::ADD";
   11611   case X86ISD::SUB:                return "X86ISD::SUB";
   11612   case X86ISD::ADC:                return "X86ISD::ADC";
   11613   case X86ISD::SBB:                return "X86ISD::SBB";
   11614   case X86ISD::SMUL:               return "X86ISD::SMUL";
   11615   case X86ISD::UMUL:               return "X86ISD::UMUL";
   11616   case X86ISD::INC:                return "X86ISD::INC";
   11617   case X86ISD::DEC:                return "X86ISD::DEC";
   11618   case X86ISD::OR:                 return "X86ISD::OR";
   11619   case X86ISD::XOR:                return "X86ISD::XOR";
   11620   case X86ISD::AND:                return "X86ISD::AND";
   11621   case X86ISD::ANDN:               return "X86ISD::ANDN";
   11622   case X86ISD::BLSI:               return "X86ISD::BLSI";
   11623   case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
   11624   case X86ISD::BLSR:               return "X86ISD::BLSR";
   11625   case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
   11626   case X86ISD::PTEST:              return "X86ISD::PTEST";
   11627   case X86ISD::TESTP:              return "X86ISD::TESTP";
   11628   case X86ISD::PALIGN:             return "X86ISD::PALIGN";
   11629   case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
   11630   case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
   11631   case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
   11632   case X86ISD::SHUFP:              return "X86ISD::SHUFP";
   11633   case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
   11634   case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
   11635   case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
   11636   case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
   11637   case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
   11638   case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
   11639   case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
   11640   case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
   11641   case X86ISD::MOVSD:              return "X86ISD::MOVSD";
   11642   case X86ISD::MOVSS:              return "X86ISD::MOVSS";
   11643   case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
   11644   case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
   11645   case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
   11646   case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
   11647   case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
   11648   case X86ISD::VPERMV:             return "X86ISD::VPERMV";
   11649   case X86ISD::VPERMI:             return "X86ISD::VPERMI";
   11650   case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
   11651   case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
   11652   case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
   11653   case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
   11654   case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
   11655   case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
   11656   case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
   11657   case X86ISD::SAHF:               return "X86ISD::SAHF";
   11658   case X86ISD::RDRAND:             return "X86ISD::RDRAND";
   11659   case X86ISD::FMADD:              return "X86ISD::FMADD";
   11660   case X86ISD::FMSUB:              return "X86ISD::FMSUB";
   11661   case X86ISD::FNMADD:             return "X86ISD::FNMADD";
   11662   case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
   11663   case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
   11664   case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
   11665   }
   11666 }
   11667 
   11668 // isLegalAddressingMode - Return true if the addressing mode represented
   11669 // by AM is legal for this target, for a load/store of the specified type.
   11670 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
   11671                                               Type *Ty) const {
   11672   // X86 supports extremely general addressing modes.
   11673   CodeModel::Model M = getTargetMachine().getCodeModel();
   11674   Reloc::Model R = getTargetMachine().getRelocationModel();
   11675 
   11676   // X86 allows a sign-extended 32-bit immediate field as a displacement.
   11677   if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
   11678     return false;
   11679 
   11680   if (AM.BaseGV) {
   11681     unsigned GVFlags =
   11682       Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
   11683 
   11684     // If a reference to this global requires an extra load, we can't fold it.
   11685     if (isGlobalStubReference(GVFlags))
   11686       return false;
   11687 
   11688     // If BaseGV requires a register for the PIC base, we cannot also have a
   11689     // BaseReg specified.
   11690     if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
   11691       return false;
   11692 
   11693     // If lower 4G is not available, then we must use rip-relative addressing.
   11694     if ((M != CodeModel::Small || R != Reloc::Static) &&
   11695         Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
   11696       return false;
   11697   }
   11698 
   11699   switch (AM.Scale) {
   11700   case 0:
   11701   case 1:
   11702   case 2:
   11703   case 4:
   11704   case 8:
   11705     // These scales always work.
   11706     break;
   11707   case 3:
   11708   case 5:
   11709   case 9:
   11710     // These scales are formed with basereg+scalereg.  Only accept if there is
   11711     // no basereg yet.
   11712     if (AM.HasBaseReg)
   11713       return false;
   11714     break;
   11715   default:  // Other stuff never works.
   11716     return false;
   11717   }
   11718 
   11719   return true;
   11720 }
   11721 
   11722 
   11723 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
   11724   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   11725     return false;
   11726   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
   11727   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
   11728   if (NumBits1 <= NumBits2)
   11729     return false;
   11730   return true;
   11731 }
   11732 
   11733 bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   11734   return Imm == (int32_t)Imm;
   11735 }
   11736 
   11737 bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
   11738   // Can also use sub to handle negated immediates.
   11739   return Imm == (int32_t)Imm;
   11740 }
   11741 
   11742 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
   11743   if (!VT1.isInteger() || !VT2.isInteger())
   11744     return false;
   11745   unsigned NumBits1 = VT1.getSizeInBits();
   11746   unsigned NumBits2 = VT2.getSizeInBits();
   11747   if (NumBits1 <= NumBits2)
   11748     return false;
   11749   return true;
   11750 }
   11751 
   11752 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
   11753   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
   11754   return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
   11755 }
   11756 
   11757 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
   11758   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
   11759   return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
   11760 }
   11761 
   11762 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
   11763   // i16 instructions are longer (0x66 prefix) and potentially slower.
   11764   return !(VT1 == MVT::i32 && VT2 == MVT::i16);
   11765 }
   11766 
   11767 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   11768 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   11769 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   11770 /// are assumed to be legal.
   11771 bool
   11772 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   11773                                       EVT VT) const {
   11774   // Very little shuffling can be done for 64-bit vectors right now.
   11775   if (VT.getSizeInBits() == 64)
   11776     return false;
   11777 
   11778   // FIXME: pshufb, blends, shifts.
   11779   return (VT.getVectorNumElements() == 2 ||
   11780           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   11781           isMOVLMask(M, VT) ||
   11782           isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
   11783           isPSHUFDMask(M, VT) ||
   11784           isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
   11785           isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
   11786           isPALIGNRMask(M, VT, Subtarget) ||
   11787           isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
   11788           isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
   11789           isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
   11790           isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
   11791 }
   11792 
   11793 bool
   11794 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
   11795                                           EVT VT) const {
   11796   unsigned NumElts = VT.getVectorNumElements();
   11797   // FIXME: This collection of masks seems suspect.
   11798   if (NumElts == 2)
   11799     return true;
   11800   if (NumElts == 4 && VT.is128BitVector()) {
   11801     return (isMOVLMask(Mask, VT)  ||
   11802             isCommutedMOVLMask(Mask, VT, true) ||
   11803             isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
   11804             isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
   11805   }
   11806   return false;
   11807 }
   11808 
   11809 //===----------------------------------------------------------------------===//
   11810 //                           X86 Scheduler Hooks
   11811 //===----------------------------------------------------------------------===//
   11812 
   11813 // private utility function
   11814 MachineBasicBlock *
   11815 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
   11816                                                        MachineBasicBlock *MBB,
   11817                                                        unsigned regOpc,
   11818                                                        unsigned immOpc,
   11819                                                        unsigned LoadOpc,
   11820                                                        unsigned CXchgOpc,
   11821                                                        unsigned notOpc,
   11822                                                        unsigned EAXreg,
   11823                                                  const TargetRegisterClass *RC,
   11824                                                        bool Invert) const {
   11825   // For the atomic bitwise operator, we generate
   11826   //   thisMBB:
   11827   //   newMBB:
   11828   //     ld  t1 = [bitinstr.addr]
   11829   //     op  t2 = t1, [bitinstr.val]
   11830   //     not t3 = t2  (if Invert)
   11831   //     mov EAX = t1
   11832   //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
   11833   //     bz  newMBB
   11834   //     fallthrough -->nextMBB
   11835   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11836   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   11837   MachineFunction::iterator MBBIter = MBB;
   11838   ++MBBIter;
   11839 
   11840   /// First build the CFG
   11841   MachineFunction *F = MBB->getParent();
   11842   MachineBasicBlock *thisMBB = MBB;
   11843   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11844   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11845   F->insert(MBBIter, newMBB);
   11846   F->insert(MBBIter, nextMBB);
   11847 
   11848   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   11849   nextMBB->splice(nextMBB->begin(), thisMBB,
   11850                   llvm::next(MachineBasicBlock::iterator(bInstr)),
   11851                   thisMBB->end());
   11852   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   11853 
   11854   // Update thisMBB to fall through to newMBB
   11855   thisMBB->addSuccessor(newMBB);
   11856 
   11857   // newMBB jumps to itself and fall through to nextMBB
   11858   newMBB->addSuccessor(nextMBB);
   11859   newMBB->addSuccessor(newMBB);
   11860 
   11861   // Insert instructions into newMBB based on incoming instruction
   11862   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
   11863          "unexpected number of operands");
   11864   DebugLoc dl = bInstr->getDebugLoc();
   11865   MachineOperand& destOper = bInstr->getOperand(0);
   11866   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   11867   int numArgs = bInstr->getNumOperands() - 1;
   11868   for (int i=0; i < numArgs; ++i)
   11869     argOpers[i] = &bInstr->getOperand(i+1);
   11870 
   11871   // x86 address has 4 operands: base, index, scale, and displacement
   11872   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   11873   int valArgIndx = lastAddrIndx + 1;
   11874 
   11875   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
   11876   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
   11877   for (int i=0; i <= lastAddrIndx; ++i)
   11878     (*MIB).addOperand(*argOpers[i]);
   11879 
   11880   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
   11881   assert((argOpers[valArgIndx]->isReg() ||
   11882           argOpers[valArgIndx]->isImm()) &&
   11883          "invalid operand");
   11884   if (argOpers[valArgIndx]->isReg())
   11885     MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
   11886   else
   11887     MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
   11888   MIB.addReg(t1);
   11889   (*MIB).addOperand(*argOpers[valArgIndx]);
   11890 
   11891   unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
   11892   if (Invert) {
   11893     MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
   11894   }
   11895   else
   11896     t3 = t2;
   11897 
   11898   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
   11899   MIB.addReg(t1);
   11900 
   11901   MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
   11902   for (int i=0; i <= lastAddrIndx; ++i)
   11903     (*MIB).addOperand(*argOpers[i]);
   11904   MIB.addReg(t3);
   11905   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   11906   (*MIB).setMemRefs(bInstr->memoperands_begin(),
   11907                     bInstr->memoperands_end());
   11908 
   11909   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
   11910   MIB.addReg(EAXreg);
   11911 
   11912   // insert branch
   11913   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   11914 
   11915   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
   11916   return nextMBB;
   11917 }
   11918 
   11919 // private utility function:  64 bit atomics on 32 bit host.
   11920 MachineBasicBlock *
   11921 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
   11922                                                        MachineBasicBlock *MBB,
   11923                                                        unsigned regOpcL,
   11924                                                        unsigned regOpcH,
   11925                                                        unsigned immOpcL,
   11926                                                        unsigned immOpcH,
   11927                                                        bool Invert) const {
   11928   // For the atomic bitwise operator, we generate
   11929   //   thisMBB (instructions are in pairs, except cmpxchg8b)
   11930   //     ld t1,t2 = [bitinstr.addr]
   11931   //   newMBB:
   11932   //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
   11933   //     op  t5, t6 <- out1, out2, [bitinstr.val]
   11934   //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
   11935   //     neg t7, t8 < t5, t6  (if Invert)
   11936   //     mov ECX, EBX <- t5, t6
   11937   //     mov EAX, EDX <- t1, t2
   11938   //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
   11939   //     mov t3, t4 <- EAX, EDX
   11940   //     bz  newMBB
   11941   //     result in out1, out2
   11942   //     fallthrough -->nextMBB
   11943 
   11944   const TargetRegisterClass *RC = &X86::GR32RegClass;
   11945   const unsigned LoadOpc = X86::MOV32rm;
   11946   const unsigned NotOpc = X86::NOT32r;
   11947   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   11948   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   11949   MachineFunction::iterator MBBIter = MBB;
   11950   ++MBBIter;
   11951 
   11952   /// First build the CFG
   11953   MachineFunction *F = MBB->getParent();
   11954   MachineBasicBlock *thisMBB = MBB;
   11955   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11956   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   11957   F->insert(MBBIter, newMBB);
   11958   F->insert(MBBIter, nextMBB);
   11959 
   11960   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   11961   nextMBB->splice(nextMBB->begin(), thisMBB,
   11962                   llvm::next(MachineBasicBlock::iterator(bInstr)),
   11963                   thisMBB->end());
   11964   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   11965 
   11966   // Update thisMBB to fall through to newMBB
   11967   thisMBB->addSuccessor(newMBB);
   11968 
   11969   // newMBB jumps to itself and fall through to nextMBB
   11970   newMBB->addSuccessor(nextMBB);
   11971   newMBB->addSuccessor(newMBB);
   11972 
   11973   DebugLoc dl = bInstr->getDebugLoc();
   11974   // Insert instructions into newMBB based on incoming instruction
   11975   // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
   11976   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
   11977          "unexpected number of operands");
   11978   MachineOperand& dest1Oper = bInstr->getOperand(0);
   11979   MachineOperand& dest2Oper = bInstr->getOperand(1);
   11980   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   11981   for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
   11982     argOpers[i] = &bInstr->getOperand(i+2);
   11983 
   11984     // We use some of the operands multiple times, so conservatively just
   11985     // clear any kill flags that might be present.
   11986     if (argOpers[i]->isReg() && argOpers[i]->isUse())
   11987       argOpers[i]->setIsKill(false);
   11988   }
   11989 
   11990   // x86 address has 5 operands: base, index, scale, displacement, and segment.
   11991   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   11992 
   11993   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
   11994   MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
   11995   for (int i=0; i <= lastAddrIndx; ++i)
   11996     (*MIB).addOperand(*argOpers[i]);
   11997   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
   11998   MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
   11999   // add 4 to displacement.
   12000   for (int i=0; i <= lastAddrIndx-2; ++i)
   12001     (*MIB).addOperand(*argOpers[i]);
   12002   MachineOperand newOp3 = *(argOpers[3]);
   12003   if (newOp3.isImm())
   12004     newOp3.setImm(newOp3.getImm()+4);
   12005   else
   12006     newOp3.setOffset(newOp3.getOffset()+4);
   12007   (*MIB).addOperand(newOp3);
   12008   (*MIB).addOperand(*argOpers[lastAddrIndx]);
   12009 
   12010   // t3/4 are defined later, at the bottom of the loop
   12011   unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
   12012   unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
   12013   BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
   12014     .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
   12015   BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
   12016     .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
   12017 
   12018   // The subsequent operations should be using the destination registers of
   12019   // the PHI instructions.
   12020   t1 = dest1Oper.getReg();
   12021   t2 = dest2Oper.getReg();
   12022 
   12023   int valArgIndx = lastAddrIndx + 1;
   12024   assert((argOpers[valArgIndx]->isReg() ||
   12025           argOpers[valArgIndx]->isImm()) &&
   12026          "invalid operand");
   12027   unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
   12028   unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
   12029   if (argOpers[valArgIndx]->isReg())
   12030     MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
   12031   else
   12032     MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
   12033   if (regOpcL != X86::MOV32rr)
   12034     MIB.addReg(t1);
   12035   (*MIB).addOperand(*argOpers[valArgIndx]);
   12036   assert(argOpers[valArgIndx + 1]->isReg() ==
   12037          argOpers[valArgIndx]->isReg());
   12038   assert(argOpers[valArgIndx + 1]->isImm() ==
   12039          argOpers[valArgIndx]->isImm());
   12040   if (argOpers[valArgIndx + 1]->isReg())
   12041     MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
   12042   else
   12043     MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
   12044   if (regOpcH != X86::MOV32rr)
   12045     MIB.addReg(t2);
   12046   (*MIB).addOperand(*argOpers[valArgIndx + 1]);
   12047 
   12048   unsigned t7, t8;
   12049   if (Invert) {
   12050     t7 = F->getRegInfo().createVirtualRegister(RC);
   12051     t8 = F->getRegInfo().createVirtualRegister(RC);
   12052     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
   12053     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
   12054   } else {
   12055     t7 = t5;
   12056     t8 = t6;
   12057   }
   12058 
   12059   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
   12060   MIB.addReg(t1);
   12061   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
   12062   MIB.addReg(t2);
   12063 
   12064   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
   12065   MIB.addReg(t7);
   12066   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
   12067   MIB.addReg(t8);
   12068 
   12069   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
   12070   for (int i=0; i <= lastAddrIndx; ++i)
   12071     (*MIB).addOperand(*argOpers[i]);
   12072 
   12073   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   12074   (*MIB).setMemRefs(bInstr->memoperands_begin(),
   12075                     bInstr->memoperands_end());
   12076 
   12077   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
   12078   MIB.addReg(X86::EAX);
   12079   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
   12080   MIB.addReg(X86::EDX);
   12081 
   12082   // insert branch
   12083   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   12084 
   12085   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
   12086   return nextMBB;
   12087 }
   12088 
   12089 // private utility function
   12090 MachineBasicBlock *
   12091 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
   12092                                                       MachineBasicBlock *MBB,
   12093                                                       unsigned cmovOpc) const {
   12094   // For the atomic min/max operator, we generate
   12095   //   thisMBB:
   12096   //   newMBB:
   12097   //     ld t1 = [min/max.addr]
   12098   //     mov t2 = [min/max.val]
   12099   //     cmp  t1, t2
   12100   //     cmov[cond] t2 = t1
   12101   //     mov EAX = t1
   12102   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
   12103   //     bz   newMBB
   12104   //     fallthrough -->nextMBB
   12105   //
   12106   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   12107   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   12108   MachineFunction::iterator MBBIter = MBB;
   12109   ++MBBIter;
   12110 
   12111   /// First build the CFG
   12112   MachineFunction *F = MBB->getParent();
   12113   MachineBasicBlock *thisMBB = MBB;
   12114   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
   12115   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
   12116   F->insert(MBBIter, newMBB);
   12117   F->insert(MBBIter, nextMBB);
   12118 
   12119   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
   12120   nextMBB->splice(nextMBB->begin(), thisMBB,
   12121                   llvm::next(MachineBasicBlock::iterator(mInstr)),
   12122                   thisMBB->end());
   12123   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   12124 
   12125   // Update thisMBB to fall through to newMBB
   12126   thisMBB->addSuccessor(newMBB);
   12127 
   12128   // newMBB jumps to newMBB and fall through to nextMBB
   12129   newMBB->addSuccessor(nextMBB);
   12130   newMBB->addSuccessor(newMBB);
   12131 
   12132   DebugLoc dl = mInstr->getDebugLoc();
   12133   // Insert instructions into newMBB based on incoming instruction
   12134   assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
   12135          "unexpected number of operands");
   12136   MachineOperand& destOper = mInstr->getOperand(0);
   12137   MachineOperand* argOpers[2 + X86::AddrNumOperands];
   12138   int numArgs = mInstr->getNumOperands() - 1;
   12139   for (int i=0; i < numArgs; ++i)
   12140     argOpers[i] = &mInstr->getOperand(i+1);
   12141 
   12142   // x86 address has 4 operands: base, index, scale, and displacement
   12143   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
   12144   int valArgIndx = lastAddrIndx + 1;
   12145 
   12146   unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
   12147   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
   12148   for (int i=0; i <= lastAddrIndx; ++i)
   12149     (*MIB).addOperand(*argOpers[i]);
   12150 
   12151   // We only support register and immediate values
   12152   assert((argOpers[valArgIndx]->isReg() ||
   12153           argOpers[valArgIndx]->isImm()) &&
   12154          "invalid operand");
   12155 
   12156   unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
   12157   if (argOpers[valArgIndx]->isReg())
   12158     MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
   12159   else
   12160     MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
   12161   (*MIB).addOperand(*argOpers[valArgIndx]);
   12162 
   12163   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
   12164   MIB.addReg(t1);
   12165 
   12166   MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
   12167   MIB.addReg(t1);
   12168   MIB.addReg(t2);
   12169 
   12170   // Generate movc
   12171   unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
   12172   MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
   12173   MIB.addReg(t2);
   12174   MIB.addReg(t1);
   12175 
   12176   // Cmp and exchange if none has modified the memory location
   12177   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
   12178   for (int i=0; i <= lastAddrIndx; ++i)
   12179     (*MIB).addOperand(*argOpers[i]);
   12180   MIB.addReg(t3);
   12181   assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
   12182   (*MIB).setMemRefs(mInstr->memoperands_begin(),
   12183                     mInstr->memoperands_end());
   12184 
   12185   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
   12186   MIB.addReg(X86::EAX);
   12187 
   12188   // insert branch
   12189   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
   12190 
   12191   mInstr->eraseFromParent();   // The pseudo instruction is gone now.
   12192   return nextMBB;
   12193 }
   12194 
   12195 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
   12196 // or XMM0_V32I8 in AVX all of this code can be replaced with that
   12197 // in the .td file.
   12198 MachineBasicBlock *
   12199 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
   12200                             unsigned numArgs, bool memArg) const {
   12201   assert(Subtarget->hasSSE42() &&
   12202          "Target must have SSE4.2 or AVX features enabled");
   12203 
   12204   DebugLoc dl = MI->getDebugLoc();
   12205   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   12206   unsigned Opc;
   12207   if (!Subtarget->hasAVX()) {
   12208     if (memArg)
   12209       Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
   12210     else
   12211       Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
   12212   } else {
   12213     if (memArg)
   12214       Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
   12215     else
   12216       Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
   12217   }
   12218 
   12219   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
   12220   for (unsigned i = 0; i < numArgs; ++i) {
   12221     MachineOperand &Op = MI->getOperand(i+1);
   12222     if (!(Op.isReg() && Op.isImplicit()))
   12223       MIB.addOperand(Op);
   12224   }
   12225   BuildMI(*BB, MI, dl,
   12226     TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
   12227     .addReg(X86::XMM0);
   12228 
   12229   MI->eraseFromParent();
   12230   return BB;
   12231 }
   12232 
   12233 MachineBasicBlock *
   12234 X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
   12235   DebugLoc dl = MI->getDebugLoc();
   12236   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   12237 
   12238   // Address into RAX/EAX, other two args into ECX, EDX.
   12239   unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
   12240   unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
   12241   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
   12242   for (int i = 0; i < X86::AddrNumOperands; ++i)
   12243     MIB.addOperand(MI->getOperand(i));
   12244 
   12245   unsigned ValOps = X86::AddrNumOperands;
   12246   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
   12247     .addReg(MI->getOperand(ValOps).getReg());
   12248   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
   12249     .addReg(MI->getOperand(ValOps+1).getReg());
   12250 
   12251   // The instruction doesn't actually take any operands though.
   12252   BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
   12253 
   12254   MI->eraseFromParent(); // The pseudo is gone now.
   12255   return BB;
   12256 }
   12257 
   12258 MachineBasicBlock *
   12259 X86TargetLowering::EmitVAARG64WithCustomInserter(
   12260                    MachineInstr *MI,
   12261                    MachineBasicBlock *MBB) const {
   12262   // Emit va_arg instruction on X86-64.
   12263 
   12264   // Operands to this pseudo-instruction:
   12265   // 0  ) Output        : destination address (reg)
   12266   // 1-5) Input         : va_list address (addr, i64mem)
   12267   // 6  ) ArgSize       : Size (in bytes) of vararg type
   12268   // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
   12269   // 8  ) Align         : Alignment of type
   12270   // 9  ) EFLAGS (implicit-def)
   12271 
   12272   assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
   12273   assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
   12274 
   12275   unsigned DestReg = MI->getOperand(0).getReg();
   12276   MachineOperand &Base = MI->getOperand(1);
   12277   MachineOperand &Scale = MI->getOperand(2);
   12278   MachineOperand &Index = MI->getOperand(3);
   12279   MachineOperand &Disp = MI->getOperand(4);
   12280   MachineOperand &Segment = MI->getOperand(5);
   12281   unsigned ArgSize = MI->getOperand(6).getImm();
   12282   unsigned ArgMode = MI->getOperand(7).getImm();
   12283   unsigned Align = MI->getOperand(8).getImm();
   12284 
   12285   // Memory Reference
   12286   assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
   12287   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
   12288   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
   12289 
   12290   // Machine Information
   12291   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   12292   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
   12293   const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
   12294   const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
   12295   DebugLoc DL = MI->getDebugLoc();
   12296 
   12297   // struct va_list {
   12298   //   i32   gp_offset
   12299   //   i32   fp_offset
   12300   //   i64   overflow_area (address)
   12301   //   i64   reg_save_area (address)
   12302   // }
   12303   // sizeof(va_list) = 24
   12304   // alignment(va_list) = 8
   12305 
   12306   unsigned TotalNumIntRegs = 6;
   12307   unsigned TotalNumXMMRegs = 8;
   12308   bool UseGPOffset = (ArgMode == 1);
   12309   bool UseFPOffset = (ArgMode == 2);
   12310   unsigned MaxOffset = TotalNumIntRegs * 8 +
   12311                        (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
   12312 
   12313   /* Align ArgSize to a multiple of 8 */
   12314   unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
   12315   bool NeedsAlign = (Align > 8);
   12316 
   12317   MachineBasicBlock *thisMBB = MBB;
   12318   MachineBasicBlock *overflowMBB;
   12319   MachineBasicBlock *offsetMBB;
   12320   MachineBasicBlock *endMBB;
   12321 
   12322   unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
   12323   unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
   12324   unsigned OffsetReg = 0;
   12325 
   12326   if (!UseGPOffset && !UseFPOffset) {
   12327     // If we only pull from the overflow region, we don't create a branch.
   12328     // We don't need to alter control flow.
   12329     OffsetDestReg = 0; // unused
   12330     OverflowDestReg = DestReg;
   12331 
   12332     offsetMBB = NULL;
   12333     overflowMBB = thisMBB;
   12334     endMBB = thisMBB;
   12335   } else {
   12336     // First emit code to check if gp_offset (or fp_offset) is below the bound.
   12337     // If so, pull the argument from reg_save_area. (branch to offsetMBB)
   12338     // If not, pull from overflow_area. (branch to overflowMBB)
   12339     //
   12340     //       thisMBB
   12341     //         |     .
   12342     //         |        .
   12343     //     offsetMBB   overflowMBB
   12344     //         |        .
   12345     //         |     .
   12346     //        endMBB
   12347 
   12348     // Registers for the PHI in endMBB
   12349     OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
   12350     OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
   12351 
   12352     const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   12353     MachineFunction *MF = MBB->getParent();
   12354     overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   12355     offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   12356     endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   12357 
   12358     MachineFunction::iterator MBBIter = MBB;
   12359     ++MBBIter;
   12360 
   12361     // Insert the new basic blocks
   12362     MF->insert(MBBIter, offsetMBB);
   12363     MF->insert(MBBIter, overflowMBB);
   12364     MF->insert(MBBIter, endMBB);
   12365 
   12366     // Transfer the remainder of MBB and its successor edges to endMBB.
   12367     endMBB->splice(endMBB->begin(), thisMBB,
   12368                     llvm::next(MachineBasicBlock::iterator(MI)),
   12369                     thisMBB->end());
   12370     endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
   12371 
   12372     // Make offsetMBB and overflowMBB successors of thisMBB
   12373     thisMBB->addSuccessor(offsetMBB);
   12374     thisMBB->addSuccessor(overflowMBB);
   12375 
   12376     // endMBB is a successor of both offsetMBB and overflowMBB
   12377     offsetMBB->addSuccessor(endMBB);
   12378     overflowMBB->addSuccessor(endMBB);
   12379 
   12380     // Load the offset value into a register
   12381     OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
   12382     BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
   12383       .addOperand(Base)
   12384       .addOperand(Scale)
   12385       .addOperand(Index)
   12386       .addDisp(Disp, UseFPOffset ? 4 : 0)
   12387       .addOperand(Segment)
   12388       .setMemRefs(MMOBegin, MMOEnd);
   12389 
   12390     // Check if there is enough room left to pull this argument.
   12391     BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
   12392       .addReg(OffsetReg)
   12393       .addImm(MaxOffset + 8 - ArgSizeA8);
   12394 
   12395     // Branch to "overflowMBB" if offset >= max
   12396     // Fall through to "offsetMBB" otherwise
   12397     BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
   12398       .addMBB(overflowMBB);
   12399   }
   12400 
   12401   // In offsetMBB, emit code to use the reg_save_area.
   12402   if (offsetMBB) {
   12403     assert(OffsetReg != 0);
   12404 
   12405     // Read the reg_save_area address.
   12406     unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
   12407     BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
   12408       .addOperand(Base)
   12409       .addOperand(Scale)
   12410       .addOperand(Index)
   12411       .addDisp(Disp, 16)
   12412       .addOperand(Segment)
   12413       .setMemRefs(MMOBegin, MMOEnd);
   12414 
   12415     // Zero-extend the offset
   12416     unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
   12417       BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
   12418         .addImm(0)
   12419         .addReg(OffsetReg)
   12420         .addImm(X86::sub_32bit);
   12421 
   12422     // Add the offset to the reg_save_area to get the final address.
   12423     BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
   12424       .addReg(OffsetReg64)
   12425       .addReg(RegSaveReg);
   12426 
   12427     // Compute the offset for the next argument
   12428     unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
   12429     BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
   12430       .addReg(OffsetReg)
   12431       .addImm(UseFPOffset ? 16 : 8);
   12432 
   12433     // Store it back into the va_list.
   12434     BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
   12435       .addOperand(Base)
   12436       .addOperand(Scale)
   12437       .addOperand(Index)
   12438       .addDisp(Disp, UseFPOffset ? 4 : 0)
   12439       .addOperand(Segment)
   12440       .addReg(NextOffsetReg)
   12441       .setMemRefs(MMOBegin, MMOEnd);
   12442 
   12443     // Jump to endMBB
   12444     BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
   12445       .addMBB(endMBB);
   12446   }
   12447 
   12448   //
   12449   // Emit code to use overflow area
   12450   //
   12451 
   12452   // Load the overflow_area address into a register.
   12453   unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
   12454   BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
   12455     .addOperand(Base)
   12456     .addOperand(Scale)
   12457     .addOperand(Index)
   12458     .addDisp(Disp, 8)
   12459     .addOperand(Segment)
   12460     .setMemRefs(MMOBegin, MMOEnd);
   12461 
   12462   // If we need to align it, do so. Otherwise, just copy the address
   12463   // to OverflowDestReg.
   12464   if (NeedsAlign) {
   12465     // Align the overflow address
   12466     assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
   12467     unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
   12468 
   12469     // aligned_addr = (addr + (align-1)) & ~(align-1)
   12470     BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
   12471       .addReg(OverflowAddrReg)
   12472       .addImm(Align-1);
   12473 
   12474     BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
   12475       .addReg(TmpReg)
   12476       .addImm(~(uint64_t)(Align-1));
   12477   } else {
   12478     BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
   12479       .addReg(OverflowAddrReg);
   12480   }
   12481 
   12482   // Compute the next overflow address after this argument.
   12483   // (the overflow address should be kept 8-byte aligned)
   12484   unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
   12485   BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
   12486     .addReg(OverflowDestReg)
   12487     .addImm(ArgSizeA8);
   12488 
   12489   // Store the new overflow address.
   12490   BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
   12491     .addOperand(Base)
   12492     .addOperand(Scale)
   12493     .addOperand(Index)
   12494     .addDisp(Disp, 8)
   12495     .addOperand(Segment)
   12496     .addReg(NextAddrReg)
   12497     .setMemRefs(MMOBegin, MMOEnd);
   12498 
   12499   // If we branched, emit the PHI to the front of endMBB.
   12500   if (offsetMBB) {
   12501     BuildMI(*endMBB, endMBB->begin(), DL,
   12502             TII->get(X86::PHI), DestReg)
   12503       .addReg(OffsetDestReg).addMBB(offsetMBB)
   12504       .addReg(OverflowDestReg).addMBB(overflowMBB);
   12505   }
   12506 
   12507   // Erase the pseudo instruction
   12508   MI->eraseFromParent();
   12509 
   12510   return endMBB;
   12511 }
   12512 
   12513 MachineBasicBlock *
   12514 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
   12515                                                  MachineInstr *MI,
   12516                                                  MachineBasicBlock *MBB) const {
   12517   // Emit code to save XMM registers to the stack. The ABI says that the
   12518   // number of registers to save is given in %al, so it's theoretically
   12519   // possible to do an indirect jump trick to avoid saving all of them,
   12520   // however this code takes a simpler approach and just executes all
   12521   // of the stores if %al is non-zero. It's less code, and it's probably
   12522   // easier on the hardware branch predictor, and stores aren't all that
   12523   // expensive anyway.
   12524 
   12525   // Create the new basic blocks. One block contains all the XMM stores,
   12526   // and one block is the final destination regardless of whether any
   12527   // stores were performed.
   12528   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
   12529   MachineFunction *F = MBB->getParent();
   12530   MachineFunction::iterator MBBIter = MBB;
   12531   ++MBBIter;
   12532   MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
   12533   MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
   12534   F->insert(MBBIter, XMMSaveMBB);
   12535   F->insert(MBBIter, EndMBB);
   12536 
   12537   // Transfer the remainder of MBB and its successor edges to EndMBB.
   12538   EndMBB->splice(EndMBB->begin(), MBB,
   12539                  llvm::next(MachineBasicBlock::iterator(MI)),
   12540                  MBB->end());
   12541   EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
   12542 
   12543   // The original block will now fall through to the XMM save block.
   12544   MBB->addSuccessor(XMMSaveMBB);
   12545   // The XMMSaveMBB will fall through to the end block.
   12546   XMMSaveMBB->addSuccessor(EndMBB);
   12547 
   12548   // Now add the instructions.
   12549   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   12550   DebugLoc DL = MI->getDebugLoc();
   12551 
   12552   unsigned CountReg = MI->getOperand(0).getReg();
   12553   int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
   12554   int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
   12555 
   12556   if (!Subtarget->isTargetWin64()) {
   12557     // If %al is 0, branch around the XMM save block.
   12558     BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
   12559     BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
   12560     MBB->addSuccessor(EndMBB);
   12561   }
   12562 
   12563   unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
   12564   // In the XMM save block, save all the XMM argument registers.
   12565   for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
   12566     int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
   12567     MachineMemOperand *MMO =
   12568       F->getMachineMemOperand(
   12569           MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
   12570         MachineMemOperand::MOStore,
   12571         /*Size=*/16, /*Align=*/16);
   12572     BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
   12573       .addFrameIndex(RegSaveFrameIndex)
   12574       .addImm(/*Scale=*/1)
   12575       .addReg(/*IndexReg=*/0)
   12576       .addImm(/*Disp=*/Offset)
   12577       .addReg(/*Segment=*/0)
   12578       .addReg(MI->getOperand(i).getReg())
   12579       .addMemOperand(MMO);
   12580   }
   12581 
   12582   MI->eraseFromParent();   // The pseudo instruction is gone now.
   12583 
   12584   return EndMBB;
   12585 }
   12586 
   12587 // The EFLAGS operand of SelectItr might be missing a kill marker
   12588 // because there were multiple uses of EFLAGS, and ISel didn't know
   12589 // which to mark. Figure out whether SelectItr should have had a
   12590 // kill marker, and set it if it should. Returns the correct kill
   12591 // marker value.
   12592 static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
   12593                                      MachineBasicBlock* BB,
   12594                                      const TargetRegisterInfo* TRI) {
   12595   // Scan forward through BB for a use/def of EFLAGS.
   12596   MachineBasicBlock::iterator miI(llvm::next(SelectItr));
   12597   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
   12598     const MachineInstr& mi = *miI;
   12599     if (mi.readsRegister(X86::EFLAGS))
   12600       return false;
   12601     if (mi.definesRegister(X86::EFLAGS))
   12602       break; // Should have kill-flag - update below.
   12603   }
   12604 
   12605   // If we hit the end of the block, check whether EFLAGS is live into a
   12606   // successor.
   12607   if (miI == BB->end()) {
   12608     for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
   12609                                           sEnd = BB->succ_end();
   12610          sItr != sEnd; ++sItr) {
   12611       MachineBasicBlock* succ = *sItr;
   12612       if (succ->isLiveIn(X86::EFLAGS))
   12613         return false;
   12614     }
   12615   }
   12616 
   12617   // We found a def, or hit the end of the basic block and EFLAGS wasn't live
   12618   // out. SelectMI should have a kill flag on EFLAGS.
   12619   SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
   12620   return true;
   12621 }
   12622 
   12623 MachineBasicBlock *
   12624 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
   12625                                      MachineBasicBlock *BB) const {
   12626   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   12627   DebugLoc DL = MI->getDebugLoc();
   12628 
   12629   // To "insert" a SELECT_CC instruction, we actually have to insert the
   12630   // diamond control-flow pattern.  The incoming instruction knows the
   12631   // destination vreg to set, the condition code register to branch on, the
   12632   // true/false values to select between, and a branch opcode to use.
   12633   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   12634   MachineFunction::iterator It = BB;
   12635   ++It;
   12636 
   12637   //  thisMBB:
   12638   //  ...
   12639   //   TrueVal = ...
   12640   //   cmpTY ccX, r1, r2
   12641   //   bCC copy1MBB
   12642   //   fallthrough --> copy0MBB
   12643   MachineBasicBlock *thisMBB = BB;
   12644   MachineFunction *F = BB->getParent();
   12645   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   12646   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
   12647   F->insert(It, copy0MBB);
   12648   F->insert(It, sinkMBB);
   12649 
   12650   // If the EFLAGS register isn't dead in the terminator, then claim that it's
   12651   // live into the sink and copy blocks.
   12652   const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
   12653   if (!MI->killsRegister(X86::EFLAGS) &&
   12654       !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
   12655     copy0MBB->addLiveIn(X86::EFLAGS);
   12656     sinkMBB->addLiveIn(X86::EFLAGS);
   12657   }
   12658 
   12659   // Transfer the remainder of BB and its successor edges to sinkMBB.
   12660   sinkMBB->splice(sinkMBB->begin(), BB,
   12661                   llvm::next(MachineBasicBlock::iterator(MI)),
   12662                   BB->end());
   12663   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   12664 
   12665   // Add the true and fallthrough blocks as its successors.
   12666   BB->addSuccessor(copy0MBB);
   12667   BB->addSuccessor(sinkMBB);
   12668 
   12669   // Create the conditional branch instruction.
   12670   unsigned Opc =
   12671     X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
   12672   BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
   12673 
   12674   //  copy0MBB:
   12675   //   %FalseValue = ...
   12676   //   # fallthrough to sinkMBB
   12677   copy0MBB->addSuccessor(sinkMBB);
   12678 
   12679   //  sinkMBB:
   12680   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   12681   //  ...
   12682   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
   12683           TII->get(X86::PHI), MI->getOperand(0).getReg())
   12684     .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
   12685     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   12686 
   12687   MI->eraseFromParent();   // The pseudo instruction is gone now.
   12688   return sinkMBB;
   12689 }
   12690 
   12691 MachineBasicBlock *
   12692 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
   12693                                         bool Is64Bit) const {
   12694   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   12695   DebugLoc DL = MI->getDebugLoc();
   12696   MachineFunction *MF = BB->getParent();
   12697   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   12698 
   12699   assert(getTargetMachine().Options.EnableSegmentedStacks);
   12700 
   12701   unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
   12702   unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
   12703 
   12704   // BB:
   12705   //  ... [Till the alloca]
   12706   // If stacklet is not large enough, jump to mallocMBB
   12707   //
   12708   // bumpMBB:
   12709   //  Allocate by subtracting from RSP
   12710   //  Jump to continueMBB
   12711   //
   12712   // mallocMBB:
   12713   //  Allocate by call to runtime
   12714   //
   12715   // continueMBB:
   12716   //  ...
   12717   //  [rest of original BB]
   12718   //
   12719 
   12720   MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   12721   MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   12722   MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   12723 
   12724   MachineRegisterInfo &MRI = MF->getRegInfo();
   12725   const TargetRegisterClass *AddrRegClass =
   12726     getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
   12727 
   12728   unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
   12729     bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
   12730     tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
   12731     SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
   12732     sizeVReg = MI->getOperand(1).getReg(),
   12733     physSPReg = Is64Bit ? X86::RSP : X86::ESP;
   12734 
   12735   MachineFunction::iterator MBBIter = BB;
   12736   ++MBBIter;
   12737 
   12738   MF->insert(MBBIter, bumpMBB);
   12739   MF->insert(MBBIter, mallocMBB);
   12740   MF->insert(MBBIter, continueMBB);
   12741 
   12742   continueMBB->splice(continueMBB->begin(), BB, llvm::next
   12743                       (MachineBasicBlock::iterator(MI)), BB->end());
   12744   continueMBB->transferSuccessorsAndUpdatePHIs(BB);
   12745 
   12746   // Add code to the main basic block to check if the stack limit has been hit,
   12747   // and if so, jump to mallocMBB otherwise to bumpMBB.
   12748   BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
   12749   BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
   12750     .addReg(tmpSPVReg).addReg(sizeVReg);
   12751   BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
   12752     .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
   12753     .addReg(SPLimitVReg);
   12754   BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
   12755 
   12756   // bumpMBB simply decreases the stack pointer, since we know the current
   12757   // stacklet has enough space.
   12758   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
   12759     .addReg(SPLimitVReg);
   12760   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
   12761     .addReg(SPLimitVReg);
   12762   BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
   12763 
   12764   // Calls into a routine in libgcc to allocate more space from the heap.
   12765   const uint32_t *RegMask =
   12766     getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
   12767   if (Is64Bit) {
   12768     BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
   12769       .addReg(sizeVReg);
   12770     BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
   12771       .addExternalSymbol("__morestack_allocate_stack_space")
   12772       .addRegMask(RegMask)
   12773       .addReg(X86::RDI, RegState::Implicit)
   12774       .addReg(X86::RAX, RegState::ImplicitDefine);
   12775   } else {
   12776     BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
   12777       .addImm(12);
   12778     BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
   12779     BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
   12780       .addExternalSymbol("__morestack_allocate_stack_space")
   12781       .addRegMask(RegMask)
   12782       .addReg(X86::EAX, RegState::ImplicitDefine);
   12783   }
   12784 
   12785   if (!Is64Bit)
   12786     BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
   12787       .addImm(16);
   12788 
   12789   BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
   12790     .addReg(Is64Bit ? X86::RAX : X86::EAX);
   12791   BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
   12792 
   12793   // Set up the CFG correctly.
   12794   BB->addSuccessor(bumpMBB);
   12795   BB->addSuccessor(mallocMBB);
   12796   mallocMBB->addSuccessor(continueMBB);
   12797   bumpMBB->addSuccessor(continueMBB);
   12798 
   12799   // Take care of the PHI nodes.
   12800   BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
   12801           MI->getOperand(0).getReg())
   12802     .addReg(mallocPtrVReg).addMBB(mallocMBB)
   12803     .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
   12804 
   12805   // Delete the original pseudo instruction.
   12806   MI->eraseFromParent();
   12807 
   12808   // And we're done.
   12809   return continueMBB;
   12810 }
   12811 
   12812 MachineBasicBlock *
   12813 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
   12814                                           MachineBasicBlock *BB) const {
   12815   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   12816   DebugLoc DL = MI->getDebugLoc();
   12817 
   12818   assert(!Subtarget->isTargetEnvMacho());
   12819 
   12820   // The lowering is pretty easy: we're just emitting the call to _alloca.  The
   12821   // non-trivial part is impdef of ESP.
   12822 
   12823   if (Subtarget->isTargetWin64()) {
   12824     if (Subtarget->isTargetCygMing()) {
   12825       // ___chkstk(Mingw64):
   12826       // Clobbers R10, R11, RAX and EFLAGS.
   12827       // Updates RSP.
   12828       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
   12829         .addExternalSymbol("___chkstk")
   12830         .addReg(X86::RAX, RegState::Implicit)
   12831         .addReg(X86::RSP, RegState::Implicit)
   12832         .addReg(X86::RAX, RegState::Define | RegState::Implicit)
   12833         .addReg(X86::RSP, RegState::Define | RegState::Implicit)
   12834         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   12835     } else {
   12836       // __chkstk(MSVCRT): does not update stack pointer.
   12837       // Clobbers R10, R11 and EFLAGS.
   12838       // FIXME: RAX(allocated size) might be reused and not killed.
   12839       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
   12840         .addExternalSymbol("__chkstk")
   12841         .addReg(X86::RAX, RegState::Implicit)
   12842         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   12843       // RAX has the offset to subtracted from RSP.
   12844       BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
   12845         .addReg(X86::RSP)
   12846         .addReg(X86::RAX);
   12847     }
   12848   } else {
   12849     const char *StackProbeSymbol =
   12850       Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
   12851 
   12852     BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
   12853       .addExternalSymbol(StackProbeSymbol)
   12854       .addReg(X86::EAX, RegState::Implicit)
   12855       .addReg(X86::ESP, RegState::Implicit)
   12856       .addReg(X86::EAX, RegState::Define | RegState::Implicit)
   12857       .addReg(X86::ESP, RegState::Define | RegState::Implicit)
   12858       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
   12859   }
   12860 
   12861   MI->eraseFromParent();   // The pseudo instruction is gone now.
   12862   return BB;
   12863 }
   12864 
   12865 MachineBasicBlock *
   12866 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
   12867                                       MachineBasicBlock *BB) const {
   12868   // This is pretty easy.  We're taking the value that we received from
   12869   // our load from the relocation, sticking it in either RDI (x86-64)
   12870   // or EAX and doing an indirect call.  The return value will then
   12871   // be in the normal return register.
   12872   const X86InstrInfo *TII
   12873     = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
   12874   DebugLoc DL = MI->getDebugLoc();
   12875   MachineFunction *F = BB->getParent();
   12876 
   12877   assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
   12878   assert(MI->getOperand(3).isGlobal() && "This should be a global");
   12879 
   12880   // Get a register mask for the lowered call.
   12881   // FIXME: The 32-bit calls have non-standard calling conventions. Use a
   12882   // proper register mask.
   12883   const uint32_t *RegMask =
   12884     getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
   12885   if (Subtarget->is64Bit()) {
   12886     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   12887                                       TII->get(X86::MOV64rm), X86::RDI)
   12888     .addReg(X86::RIP)
   12889     .addImm(0).addReg(0)
   12890     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   12891                       MI->getOperand(3).getTargetFlags())
   12892     .addReg(0);
   12893     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
   12894     addDirectMem(MIB, X86::RDI);
   12895     MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
   12896   } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
   12897     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   12898                                       TII->get(X86::MOV32rm), X86::EAX)
   12899     .addReg(0)
   12900     .addImm(0).addReg(0)
   12901     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   12902                       MI->getOperand(3).getTargetFlags())
   12903     .addReg(0);
   12904     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
   12905     addDirectMem(MIB, X86::EAX);
   12906     MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
   12907   } else {
   12908     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
   12909                                       TII->get(X86::MOV32rm), X86::EAX)
   12910     .addReg(TII->getGlobalBaseReg(F))
   12911     .addImm(0).addReg(0)
   12912     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
   12913                       MI->getOperand(3).getTargetFlags())
   12914     .addReg(0);
   12915     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
   12916     addDirectMem(MIB, X86::EAX);
   12917     MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
   12918   }
   12919 
   12920   MI->eraseFromParent(); // The pseudo instruction is gone now.
   12921   return BB;
   12922 }
   12923 
   12924 MachineBasicBlock *
   12925 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   12926                                                MachineBasicBlock *BB) const {
   12927   switch (MI->getOpcode()) {
   12928   default: llvm_unreachable("Unexpected instr type to insert");
   12929   case X86::TAILJMPd64:
   12930   case X86::TAILJMPr64:
   12931   case X86::TAILJMPm64:
   12932     llvm_unreachable("TAILJMP64 would not be touched here.");
   12933   case X86::TCRETURNdi64:
   12934   case X86::TCRETURNri64:
   12935   case X86::TCRETURNmi64:
   12936     return BB;
   12937   case X86::WIN_ALLOCA:
   12938     return EmitLoweredWinAlloca(MI, BB);
   12939   case X86::SEG_ALLOCA_32:
   12940     return EmitLoweredSegAlloca(MI, BB, false);
   12941   case X86::SEG_ALLOCA_64:
   12942     return EmitLoweredSegAlloca(MI, BB, true);
   12943   case X86::TLSCall_32:
   12944   case X86::TLSCall_64:
   12945     return EmitLoweredTLSCall(MI, BB);
   12946   case X86::CMOV_GR8:
   12947   case X86::CMOV_FR32:
   12948   case X86::CMOV_FR64:
   12949   case X86::CMOV_V4F32:
   12950   case X86::CMOV_V2F64:
   12951   case X86::CMOV_V2I64:
   12952   case X86::CMOV_V8F32:
   12953   case X86::CMOV_V4F64:
   12954   case X86::CMOV_V4I64:
   12955   case X86::CMOV_GR16:
   12956   case X86::CMOV_GR32:
   12957   case X86::CMOV_RFP32:
   12958   case X86::CMOV_RFP64:
   12959   case X86::CMOV_RFP80:
   12960     return EmitLoweredSelect(MI, BB);
   12961 
   12962   case X86::FP32_TO_INT16_IN_MEM:
   12963   case X86::FP32_TO_INT32_IN_MEM:
   12964   case X86::FP32_TO_INT64_IN_MEM:
   12965   case X86::FP64_TO_INT16_IN_MEM:
   12966   case X86::FP64_TO_INT32_IN_MEM:
   12967   case X86::FP64_TO_INT64_IN_MEM:
   12968   case X86::FP80_TO_INT16_IN_MEM:
   12969   case X86::FP80_TO_INT32_IN_MEM:
   12970   case X86::FP80_TO_INT64_IN_MEM: {
   12971     const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
   12972     DebugLoc DL = MI->getDebugLoc();
   12973 
   12974     // Change the floating point control register to use "round towards zero"
   12975     // mode when truncating to an integer value.
   12976     MachineFunction *F = BB->getParent();
   12977     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
   12978     addFrameReference(BuildMI(*BB, MI, DL,
   12979                               TII->get(X86::FNSTCW16m)), CWFrameIdx);
   12980 
   12981     // Load the old value of the high byte of the control word...
   12982     unsigned OldCW =
   12983       F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
   12984     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
   12985                       CWFrameIdx);
   12986 
   12987     // Set the high part to be round to zero...
   12988     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
   12989       .addImm(0xC7F);
   12990 
   12991     // Reload the modified control word now...
   12992     addFrameReference(BuildMI(*BB, MI, DL,
   12993                               TII->get(X86::FLDCW16m)), CWFrameIdx);
   12994 
   12995     // Restore the memory image of control word to original value
   12996     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
   12997       .addReg(OldCW);
   12998 
   12999     // Get the X86 opcode to use.
   13000     unsigned Opc;
   13001     switch (MI->getOpcode()) {
   13002     default: llvm_unreachable("illegal opcode!");
   13003     case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
   13004     case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
   13005     case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
   13006     case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
   13007     case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
   13008     case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
   13009     case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
   13010     case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
   13011     case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
   13012     }
   13013 
   13014     X86AddressMode AM;
   13015     MachineOperand &Op = MI->getOperand(0);
   13016     if (Op.isReg()) {
   13017       AM.BaseType = X86AddressMode::RegBase;
   13018       AM.Base.Reg = Op.getReg();
   13019     } else {
   13020       AM.BaseType = X86AddressMode::FrameIndexBase;
   13021       AM.Base.FrameIndex = Op.getIndex();
   13022     }
   13023     Op = MI->getOperand(1);
   13024     if (Op.isImm())
   13025       AM.Scale = Op.getImm();
   13026     Op = MI->getOperand(2);
   13027     if (Op.isImm())
   13028       AM.IndexReg = Op.getImm();
   13029     Op = MI->getOperand(3);
   13030     if (Op.isGlobal()) {
   13031       AM.GV = Op.getGlobal();
   13032     } else {
   13033       AM.Disp = Op.getImm();
   13034     }
   13035     addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
   13036                       .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
   13037 
   13038     // Reload the original control word now.
   13039     addFrameReference(BuildMI(*BB, MI, DL,
   13040                               TII->get(X86::FLDCW16m)), CWFrameIdx);
   13041 
   13042     MI->eraseFromParent();   // The pseudo instruction is gone now.
   13043     return BB;
   13044   }
   13045     // String/text processing lowering.
   13046   case X86::PCMPISTRM128REG:
   13047   case X86::VPCMPISTRM128REG:
   13048   case X86::PCMPISTRM128MEM:
   13049   case X86::VPCMPISTRM128MEM:
   13050   case X86::PCMPESTRM128REG:
   13051   case X86::VPCMPESTRM128REG:
   13052   case X86::PCMPESTRM128MEM:
   13053   case X86::VPCMPESTRM128MEM: {
   13054     unsigned NumArgs;
   13055     bool MemArg;
   13056     switch (MI->getOpcode()) {
   13057     default: llvm_unreachable("illegal opcode!");
   13058     case X86::PCMPISTRM128REG:
   13059     case X86::VPCMPISTRM128REG:
   13060       NumArgs = 3; MemArg = false; break;
   13061     case X86::PCMPISTRM128MEM:
   13062     case X86::VPCMPISTRM128MEM:
   13063       NumArgs = 3; MemArg = true; break;
   13064     case X86::PCMPESTRM128REG:
   13065     case X86::VPCMPESTRM128REG:
   13066       NumArgs = 5; MemArg = false; break;
   13067     case X86::PCMPESTRM128MEM:
   13068     case X86::VPCMPESTRM128MEM:
   13069       NumArgs = 5; MemArg = true; break;
   13070     }
   13071     return EmitPCMP(MI, BB, NumArgs, MemArg);
   13072   }
   13073 
   13074     // Thread synchronization.
   13075   case X86::MONITOR:
   13076     return EmitMonitor(MI, BB);
   13077 
   13078     // Atomic Lowering.
   13079   case X86::ATOMMIN32:
   13080   case X86::ATOMMAX32:
   13081   case X86::ATOMUMIN32:
   13082   case X86::ATOMUMAX32:
   13083   case X86::ATOMMIN16:
   13084   case X86::ATOMMAX16:
   13085   case X86::ATOMUMIN16:
   13086   case X86::ATOMUMAX16:
   13087   case X86::ATOMMIN64:
   13088   case X86::ATOMMAX64:
   13089   case X86::ATOMUMIN64:
   13090   case X86::ATOMUMAX64: {
   13091     unsigned Opc;
   13092     switch (MI->getOpcode()) {
   13093     default: llvm_unreachable("illegal opcode!");
   13094     case X86::ATOMMIN32:  Opc = X86::CMOVL32rr; break;
   13095     case X86::ATOMMAX32:  Opc = X86::CMOVG32rr; break;
   13096     case X86::ATOMUMIN32: Opc = X86::CMOVB32rr; break;
   13097     case X86::ATOMUMAX32: Opc = X86::CMOVA32rr; break;
   13098     case X86::ATOMMIN16:  Opc = X86::CMOVL16rr; break;
   13099     case X86::ATOMMAX16:  Opc = X86::CMOVG16rr; break;
   13100     case X86::ATOMUMIN16: Opc = X86::CMOVB16rr; break;
   13101     case X86::ATOMUMAX16: Opc = X86::CMOVA16rr; break;
   13102     case X86::ATOMMIN64:  Opc = X86::CMOVL64rr; break;
   13103     case X86::ATOMMAX64:  Opc = X86::CMOVG64rr; break;
   13104     case X86::ATOMUMIN64: Opc = X86::CMOVB64rr; break;
   13105     case X86::ATOMUMAX64: Opc = X86::CMOVA64rr; break;
   13106     // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
   13107     }
   13108     return EmitAtomicMinMaxWithCustomInserter(MI, BB, Opc);
   13109   }
   13110 
   13111   case X86::ATOMAND32:
   13112   case X86::ATOMOR32:
   13113   case X86::ATOMXOR32:
   13114   case X86::ATOMNAND32: {
   13115     bool Invert = false;
   13116     unsigned RegOpc, ImmOpc;
   13117     switch (MI->getOpcode()) {
   13118     default: llvm_unreachable("illegal opcode!");
   13119     case X86::ATOMAND32:
   13120       RegOpc = X86::AND32rr; ImmOpc = X86::AND32ri; break;
   13121     case X86::ATOMOR32:
   13122       RegOpc = X86::OR32rr;  ImmOpc = X86::OR32ri; break;
   13123     case X86::ATOMXOR32:
   13124       RegOpc = X86::XOR32rr; ImmOpc = X86::XOR32ri; break;
   13125     case X86::ATOMNAND32:
   13126       RegOpc = X86::AND32rr; ImmOpc = X86::AND32ri; Invert = true; break;
   13127     }
   13128     return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
   13129                                                X86::MOV32rm, X86::LCMPXCHG32,
   13130                                                X86::NOT32r, X86::EAX,
   13131                                                &X86::GR32RegClass, Invert);
   13132   }
   13133 
   13134   case X86::ATOMAND16:
   13135   case X86::ATOMOR16:
   13136   case X86::ATOMXOR16:
   13137   case X86::ATOMNAND16: {
   13138     bool Invert = false;
   13139     unsigned RegOpc, ImmOpc;
   13140     switch (MI->getOpcode()) {
   13141     default: llvm_unreachable("illegal opcode!");
   13142     case X86::ATOMAND16:
   13143       RegOpc = X86::AND16rr; ImmOpc = X86::AND16ri; break;
   13144     case X86::ATOMOR16:
   13145       RegOpc = X86::OR16rr;  ImmOpc = X86::OR16ri; break;
   13146     case X86::ATOMXOR16:
   13147       RegOpc = X86::XOR16rr; ImmOpc = X86::XOR16ri; break;
   13148     case X86::ATOMNAND16:
   13149       RegOpc = X86::AND16rr; ImmOpc = X86::AND16ri; Invert = true; break;
   13150     }
   13151     return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
   13152                                                X86::MOV16rm, X86::LCMPXCHG16,
   13153                                                X86::NOT16r, X86::AX,
   13154                                                &X86::GR16RegClass, Invert);
   13155   }
   13156 
   13157   case X86::ATOMAND8:
   13158   case X86::ATOMOR8:
   13159   case X86::ATOMXOR8:
   13160   case X86::ATOMNAND8: {
   13161     bool Invert = false;
   13162     unsigned RegOpc, ImmOpc;
   13163     switch (MI->getOpcode()) {
   13164     default: llvm_unreachable("illegal opcode!");
   13165     case X86::ATOMAND8:
   13166       RegOpc = X86::AND8rr; ImmOpc = X86::AND8ri; break;
   13167     case X86::ATOMOR8:
   13168       RegOpc = X86::OR8rr;  ImmOpc = X86::OR8ri; break;
   13169     case X86::ATOMXOR8:
   13170       RegOpc = X86::XOR8rr; ImmOpc = X86::XOR8ri; break;
   13171     case X86::ATOMNAND8:
   13172       RegOpc = X86::AND8rr; ImmOpc = X86::AND8ri; Invert = true; break;
   13173     }
   13174     return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
   13175                                                X86::MOV8rm, X86::LCMPXCHG8,
   13176                                                X86::NOT8r, X86::AL,
   13177                                                &X86::GR8RegClass, Invert);
   13178   }
   13179 
   13180   // This group is for 64-bit host.
   13181   case X86::ATOMAND64:
   13182   case X86::ATOMOR64:
   13183   case X86::ATOMXOR64:
   13184   case X86::ATOMNAND64: {
   13185     bool Invert = false;
   13186     unsigned RegOpc, ImmOpc;
   13187     switch (MI->getOpcode()) {
   13188     default: llvm_unreachable("illegal opcode!");
   13189     case X86::ATOMAND64:
   13190       RegOpc = X86::AND64rr; ImmOpc = X86::AND64ri32; break;
   13191     case X86::ATOMOR64:
   13192       RegOpc = X86::OR64rr;  ImmOpc = X86::OR64ri32; break;
   13193     case X86::ATOMXOR64:
   13194       RegOpc = X86::XOR64rr; ImmOpc = X86::XOR64ri32; break;
   13195     case X86::ATOMNAND64:
   13196       RegOpc = X86::AND64rr; ImmOpc = X86::AND64ri32; Invert = true; break;
   13197     }
   13198     return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
   13199                                                X86::MOV64rm, X86::LCMPXCHG64,
   13200                                                X86::NOT64r, X86::RAX,
   13201                                                &X86::GR64RegClass, Invert);
   13202   }
   13203 
   13204   // This group does 64-bit operations on a 32-bit host.
   13205   case X86::ATOMAND6432:
   13206   case X86::ATOMOR6432:
   13207   case X86::ATOMXOR6432:
   13208   case X86::ATOMNAND6432:
   13209   case X86::ATOMADD6432:
   13210   case X86::ATOMSUB6432:
   13211   case X86::ATOMSWAP6432: {
   13212     bool Invert = false;
   13213     unsigned RegOpcL, RegOpcH, ImmOpcL, ImmOpcH;
   13214     switch (MI->getOpcode()) {
   13215     default: llvm_unreachable("illegal opcode!");
   13216     case X86::ATOMAND6432:
   13217       RegOpcL = RegOpcH = X86::AND32rr;
   13218       ImmOpcL = ImmOpcH = X86::AND32ri;
   13219       break;
   13220     case X86::ATOMOR6432:
   13221       RegOpcL = RegOpcH = X86::OR32rr;
   13222       ImmOpcL = ImmOpcH = X86::OR32ri;
   13223       break;
   13224     case X86::ATOMXOR6432:
   13225       RegOpcL = RegOpcH = X86::XOR32rr;
   13226       ImmOpcL = ImmOpcH = X86::XOR32ri;
   13227       break;
   13228     case X86::ATOMNAND6432:
   13229       RegOpcL = RegOpcH = X86::AND32rr;
   13230       ImmOpcL = ImmOpcH = X86::AND32ri;
   13231       Invert = true;
   13232       break;
   13233     case X86::ATOMADD6432:
   13234       RegOpcL = X86::ADD32rr; RegOpcH = X86::ADC32rr;
   13235       ImmOpcL = X86::ADD32ri; ImmOpcH = X86::ADC32ri;
   13236       break;
   13237     case X86::ATOMSUB6432:
   13238       RegOpcL = X86::SUB32rr; RegOpcH = X86::SBB32rr;
   13239       ImmOpcL = X86::SUB32ri; ImmOpcH = X86::SBB32ri;
   13240       break;
   13241     case X86::ATOMSWAP6432:
   13242       RegOpcL = RegOpcH = X86::MOV32rr;
   13243       ImmOpcL = ImmOpcH = X86::MOV32ri;
   13244       break;
   13245     }
   13246     return EmitAtomicBit6432WithCustomInserter(MI, BB, RegOpcL, RegOpcH,
   13247                                                ImmOpcL, ImmOpcH, Invert);
   13248   }
   13249 
   13250   case X86::VASTART_SAVE_XMM_REGS:
   13251     return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
   13252 
   13253   case X86::VAARG_64:
   13254     return EmitVAARG64WithCustomInserter(MI, BB);
   13255   }
   13256 }
   13257 
   13258 //===----------------------------------------------------------------------===//
   13259 //                           X86 Optimization Hooks
   13260 //===----------------------------------------------------------------------===//
   13261 
   13262 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
   13263                                                        APInt &KnownZero,
   13264                                                        APInt &KnownOne,
   13265                                                        const SelectionDAG &DAG,
   13266                                                        unsigned Depth) const {
   13267   unsigned BitWidth = KnownZero.getBitWidth();
   13268   unsigned Opc = Op.getOpcode();
   13269   assert((Opc >= ISD::BUILTIN_OP_END ||
   13270           Opc == ISD::INTRINSIC_WO_CHAIN ||
   13271           Opc == ISD::INTRINSIC_W_CHAIN ||
   13272           Opc == ISD::INTRINSIC_VOID) &&
   13273          "Should use MaskedValueIsZero if you don't know whether Op"
   13274          " is a target node!");
   13275 
   13276   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
   13277   switch (Opc) {
   13278   default: break;
   13279   case X86ISD::ADD:
   13280   case X86ISD::SUB:
   13281   case X86ISD::ADC:
   13282   case X86ISD::SBB:
   13283   case X86ISD::SMUL:
   13284   case X86ISD::UMUL:
   13285   case X86ISD::INC:
   13286   case X86ISD::DEC:
   13287   case X86ISD::OR:
   13288   case X86ISD::XOR:
   13289   case X86ISD::AND:
   13290     // These nodes' second result is a boolean.
   13291     if (Op.getResNo() == 0)
   13292       break;
   13293     // Fallthrough
   13294   case X86ISD::SETCC:
   13295     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
   13296     break;
   13297   case ISD::INTRINSIC_WO_CHAIN: {
   13298     unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   13299     unsigned NumLoBits = 0;
   13300     switch (IntId) {
   13301     default: break;
   13302     case Intrinsic::x86_sse_movmsk_ps:
   13303     case Intrinsic::x86_avx_movmsk_ps_256:
   13304     case Intrinsic::x86_sse2_movmsk_pd:
   13305     case Intrinsic::x86_avx_movmsk_pd_256:
   13306     case Intrinsic::x86_mmx_pmovmskb:
   13307     case Intrinsic::x86_sse2_pmovmskb_128:
   13308     case Intrinsic::x86_avx2_pmovmskb: {
   13309       // High bits of movmskp{s|d}, pmovmskb are known zero.
   13310       switch (IntId) {
   13311         default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   13312         case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
   13313         case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
   13314         case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
   13315         case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
   13316         case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
   13317         case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
   13318         case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
   13319       }
   13320       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
   13321       break;
   13322     }
   13323     }
   13324     break;
   13325   }
   13326   }
   13327 }
   13328 
   13329 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
   13330                                                          unsigned Depth) const {
   13331   // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
   13332   if (Op.getOpcode() == X86ISD::SETCC_CARRY)
   13333     return Op.getValueType().getScalarType().getSizeInBits();
   13334 
   13335   // Fallback case.
   13336   return 1;
   13337 }
   13338 
   13339 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
   13340 /// node is a GlobalAddress + offset.
   13341 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
   13342                                        const GlobalValue* &GA,
   13343                                        int64_t &Offset) const {
   13344   if (N->getOpcode() == X86ISD::Wrapper) {
   13345     if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
   13346       GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
   13347       Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
   13348       return true;
   13349     }
   13350   }
   13351   return TargetLowering::isGAPlusOffset(N, GA, Offset);
   13352 }
   13353 
   13354 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
   13355 /// same as extracting the high 128-bit part of 256-bit vector and then
   13356 /// inserting the result into the low part of a new 256-bit vector
   13357 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
   13358   EVT VT = SVOp->getValueType(0);
   13359   unsigned NumElems = VT.getVectorNumElements();
   13360 
   13361   // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
   13362   for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
   13363     if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
   13364         SVOp->getMaskElt(j) >= 0)
   13365       return false;
   13366 
   13367   return true;
   13368 }
   13369 
   13370 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
   13371 /// same as extracting the low 128-bit part of 256-bit vector and then
   13372 /// inserting the result into the high part of a new 256-bit vector
   13373 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
   13374   EVT VT = SVOp->getValueType(0);
   13375   unsigned NumElems = VT.getVectorNumElements();
   13376 
   13377   // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
   13378   for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
   13379     if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
   13380         SVOp->getMaskElt(j) >= 0)
   13381       return false;
   13382 
   13383   return true;
   13384 }
   13385 
   13386 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
   13387 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
   13388                                         TargetLowering::DAGCombinerInfo &DCI,
   13389                                         const X86Subtarget* Subtarget) {
   13390   DebugLoc dl = N->getDebugLoc();
   13391   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
   13392   SDValue V1 = SVOp->getOperand(0);
   13393   SDValue V2 = SVOp->getOperand(1);
   13394   EVT VT = SVOp->getValueType(0);
   13395   unsigned NumElems = VT.getVectorNumElements();
   13396 
   13397   if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
   13398       V2.getOpcode() == ISD::CONCAT_VECTORS) {
   13399     //
   13400     //                   0,0,0,...
   13401     //                      |
   13402     //    V      UNDEF    BUILD_VECTOR    UNDEF
   13403     //     \      /           \           /
   13404     //  CONCAT_VECTOR         CONCAT_VECTOR
   13405     //         \                  /
   13406     //          \                /
   13407     //          RESULT: V + zero extended
   13408     //
   13409     if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
   13410         V2.getOperand(1).getOpcode() != ISD::UNDEF ||
   13411         V1.getOperand(1).getOpcode() != ISD::UNDEF)
   13412       return SDValue();
   13413 
   13414     if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
   13415       return SDValue();
   13416 
   13417     // To match the shuffle mask, the first half of the mask should
   13418     // be exactly the first vector, and all the rest a splat with the
   13419     // first element of the second one.
   13420     for (unsigned i = 0; i != NumElems/2; ++i)
   13421       if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
   13422           !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
   13423         return SDValue();
   13424 
   13425     // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
   13426     if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
   13427       if (Ld->hasNUsesOfValue(1, 0)) {
   13428         SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
   13429         SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
   13430         SDValue ResNode =
   13431           DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
   13432                                   Ld->getMemoryVT(),
   13433                                   Ld->getPointerInfo(),
   13434                                   Ld->getAlignment(),
   13435                                   false/*isVolatile*/, true/*ReadMem*/,
   13436                                   false/*WriteMem*/);
   13437         return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
   13438       }
   13439     }
   13440 
   13441     // Emit a zeroed vector and insert the desired subvector on its
   13442     // first half.
   13443     SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
   13444     SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
   13445     return DCI.CombineTo(N, InsV);
   13446   }
   13447 
   13448   //===--------------------------------------------------------------------===//
   13449   // Combine some shuffles into subvector extracts and inserts:
   13450   //
   13451 
   13452   // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
   13453   if (isShuffleHigh128VectorInsertLow(SVOp)) {
   13454     SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
   13455     SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
   13456     return DCI.CombineTo(N, InsV);
   13457   }
   13458 
   13459   // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
   13460   if (isShuffleLow128VectorInsertHigh(SVOp)) {
   13461     SDValue V = Extract128BitVector(V1, 0, DAG, dl);
   13462     SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
   13463     return DCI.CombineTo(N, InsV);
   13464   }
   13465 
   13466   return SDValue();
   13467 }
   13468 
   13469 /// PerformShuffleCombine - Performs several different shuffle combines.
   13470 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
   13471                                      TargetLowering::DAGCombinerInfo &DCI,
   13472                                      const X86Subtarget *Subtarget) {
   13473   DebugLoc dl = N->getDebugLoc();
   13474   EVT VT = N->getValueType(0);
   13475 
   13476   // Don't create instructions with illegal types after legalize types has run.
   13477   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   13478   if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
   13479     return SDValue();
   13480 
   13481   // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
   13482   if (Subtarget->hasAVX() && VT.is256BitVector() &&
   13483       N->getOpcode() == ISD::VECTOR_SHUFFLE)
   13484     return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
   13485 
   13486   // Only handle 128 wide vector from here on.
   13487   if (!VT.is128BitVector())
   13488     return SDValue();
   13489 
   13490   // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
   13491   // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
   13492   // consecutive, non-overlapping, and in the right order.
   13493   SmallVector<SDValue, 16> Elts;
   13494   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
   13495     Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
   13496 
   13497   return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
   13498 }
   13499 
   13500 
   13501 /// DCI, PerformTruncateCombine - Converts truncate operation to
   13502 /// a sequence of vector shuffle operations.
   13503 /// It is possible when we truncate 256-bit vector to 128-bit vector
   13504 
   13505 SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
   13506                                                   DAGCombinerInfo &DCI) const {
   13507   if (!DCI.isBeforeLegalizeOps())
   13508     return SDValue();
   13509 
   13510   if (!Subtarget->hasAVX())
   13511     return SDValue();
   13512 
   13513   EVT VT = N->getValueType(0);
   13514   SDValue Op = N->getOperand(0);
   13515   EVT OpVT = Op.getValueType();
   13516   DebugLoc dl = N->getDebugLoc();
   13517 
   13518   if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
   13519 
   13520     if (Subtarget->hasAVX2()) {
   13521       // AVX2: v4i64 -> v4i32
   13522 
   13523       // VPERMD
   13524       static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
   13525 
   13526       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
   13527       Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
   13528                                 ShufMask);
   13529 
   13530       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
   13531                          DAG.getIntPtrConstant(0));
   13532     }
   13533 
   13534     // AVX: v4i64 -> v4i32
   13535     SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
   13536                                DAG.getIntPtrConstant(0));
   13537 
   13538     SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
   13539                                DAG.getIntPtrConstant(2));
   13540 
   13541     OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
   13542     OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
   13543 
   13544     // PSHUFD
   13545     static const int ShufMask1[] = {0, 2, 0, 0};
   13546 
   13547     SDValue Undef = DAG.getUNDEF(VT);
   13548     OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1);
   13549     OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1);
   13550 
   13551     // MOVLHPS
   13552     static const int ShufMask2[] = {0, 1, 4, 5};
   13553 
   13554     return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
   13555   }
   13556 
   13557   if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
   13558 
   13559     if (Subtarget->hasAVX2()) {
   13560       // AVX2: v8i32 -> v8i16
   13561 
   13562       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
   13563 
   13564       // PSHUFB
   13565       SmallVector<SDValue,32> pshufbMask;
   13566       for (unsigned i = 0; i < 2; ++i) {
   13567         pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
   13568         pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
   13569         pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
   13570         pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
   13571         pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
   13572         pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
   13573         pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
   13574         pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
   13575         for (unsigned j = 0; j < 8; ++j)
   13576           pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
   13577       }
   13578       SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
   13579                                &pshufbMask[0], 32);
   13580       Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
   13581 
   13582       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
   13583 
   13584       static const int ShufMask[] = {0,  2,  -1,  -1};
   13585       Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
   13586                                 &ShufMask[0]);
   13587 
   13588       Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
   13589                        DAG.getIntPtrConstant(0));
   13590 
   13591       return DAG.getNode(ISD::BITCAST, dl, VT, Op);
   13592     }
   13593 
   13594     SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
   13595                                DAG.getIntPtrConstant(0));
   13596 
   13597     SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
   13598                                DAG.getIntPtrConstant(4));
   13599 
   13600     OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
   13601     OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
   13602 
   13603     // PSHUFB
   13604     static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
   13605                                    -1, -1, -1, -1, -1, -1, -1, -1};
   13606 
   13607     SDValue Undef = DAG.getUNDEF(MVT::v16i8);
   13608     OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1);
   13609     OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1);
   13610 
   13611     OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
   13612     OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
   13613 
   13614     // MOVLHPS
   13615     static const int ShufMask2[] = {0, 1, 4, 5};
   13616 
   13617     SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
   13618     return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
   13619   }
   13620 
   13621   return SDValue();
   13622 }
   13623 
   13624 /// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
   13625 /// specific shuffle of a load can be folded into a single element load.
   13626 /// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
   13627 /// shuffles have been customed lowered so we need to handle those here.
   13628 static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
   13629                                          TargetLowering::DAGCombinerInfo &DCI) {
   13630   if (DCI.isBeforeLegalizeOps())
   13631     return SDValue();
   13632 
   13633   SDValue InVec = N->getOperand(0);
   13634   SDValue EltNo = N->getOperand(1);
   13635 
   13636   if (!isa<ConstantSDNode>(EltNo))
   13637     return SDValue();
   13638 
   13639   EVT VT = InVec.getValueType();
   13640 
   13641   bool HasShuffleIntoBitcast = false;
   13642   if (InVec.getOpcode() == ISD::BITCAST) {
   13643     // Don't duplicate a load with other uses.
   13644     if (!InVec.hasOneUse())
   13645       return SDValue();
   13646     EVT BCVT = InVec.getOperand(0).getValueType();
   13647     if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
   13648       return SDValue();
   13649     InVec = InVec.getOperand(0);
   13650     HasShuffleIntoBitcast = true;
   13651   }
   13652 
   13653   if (!isTargetShuffle(InVec.getOpcode()))
   13654     return SDValue();
   13655 
   13656   // Don't duplicate a load with other uses.
   13657   if (!InVec.hasOneUse())
   13658     return SDValue();
   13659 
   13660   SmallVector<int, 16> ShuffleMask;
   13661   bool UnaryShuffle;
   13662   if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
   13663                             UnaryShuffle))
   13664     return SDValue();
   13665 
   13666   // Select the input vector, guarding against out of range extract vector.
   13667   unsigned NumElems = VT.getVectorNumElements();
   13668   int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
   13669   int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
   13670   SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
   13671                                          : InVec.getOperand(1);
   13672 
   13673   // If inputs to shuffle are the same for both ops, then allow 2 uses
   13674   unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
   13675 
   13676   if (LdNode.getOpcode() == ISD::BITCAST) {
   13677     // Don't duplicate a load with other uses.
   13678     if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
   13679       return SDValue();
   13680 
   13681     AllowedUses = 1; // only allow 1 load use if we have a bitcast
   13682     LdNode = LdNode.getOperand(0);
   13683   }
   13684 
   13685   if (!ISD::isNormalLoad(LdNode.getNode()))
   13686     return SDValue();
   13687 
   13688   LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
   13689 
   13690   if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
   13691     return SDValue();
   13692 
   13693   if (HasShuffleIntoBitcast) {
   13694     // If there's a bitcast before the shuffle, check if the load type and
   13695     // alignment is valid.
   13696     unsigned Align = LN0->getAlignment();
   13697     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   13698     unsigned NewAlign = TLI.getTargetData()->
   13699       getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
   13700 
   13701     if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
   13702       return SDValue();
   13703   }
   13704 
   13705   // All checks match so transform back to vector_shuffle so that DAG combiner
   13706   // can finish the job
   13707   DebugLoc dl = N->getDebugLoc();
   13708 
   13709   // Create shuffle node taking into account the case that its a unary shuffle
   13710   SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
   13711   Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
   13712                                  InVec.getOperand(0), Shuffle,
   13713                                  &ShuffleMask[0]);
   13714   Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
   13715   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
   13716                      EltNo);
   13717 }
   13718 
   13719 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
   13720 /// generation and convert it from being a bunch of shuffles and extracts
   13721 /// to a simple store and scalar loads to extract the elements.
   13722 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
   13723                                          TargetLowering::DAGCombinerInfo &DCI) {
   13724   SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
   13725   if (NewOp.getNode())
   13726     return NewOp;
   13727 
   13728   SDValue InputVector = N->getOperand(0);
   13729 
   13730   // Only operate on vectors of 4 elements, where the alternative shuffling
   13731   // gets to be more expensive.
   13732   if (InputVector.getValueType() != MVT::v4i32)
   13733     return SDValue();
   13734 
   13735   // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
   13736   // single use which is a sign-extend or zero-extend, and all elements are
   13737   // used.
   13738   SmallVector<SDNode *, 4> Uses;
   13739   unsigned ExtractedElements = 0;
   13740   for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
   13741        UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
   13742     if (UI.getUse().getResNo() != InputVector.getResNo())
   13743       return SDValue();
   13744 
   13745     SDNode *Extract = *UI;
   13746     if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   13747       return SDValue();
   13748 
   13749     if (Extract->getValueType(0) != MVT::i32)
   13750       return SDValue();
   13751     if (!Extract->hasOneUse())
   13752       return SDValue();
   13753     if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
   13754         Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
   13755       return SDValue();
   13756     if (!isa<ConstantSDNode>(Extract->getOperand(1)))
   13757       return SDValue();
   13758 
   13759     // Record which element was extracted.
   13760     ExtractedElements |=
   13761       1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
   13762 
   13763     Uses.push_back(Extract);
   13764   }
   13765 
   13766   // If not all the elements were used, this may not be worthwhile.
   13767   if (ExtractedElements != 15)
   13768     return SDValue();
   13769 
   13770   // Ok, we've now decided to do the transformation.
   13771   DebugLoc dl = InputVector.getDebugLoc();
   13772 
   13773   // Store the value to a temporary stack slot.
   13774   SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
   13775   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
   13776                             MachinePointerInfo(), false, false, 0);
   13777 
   13778   // Replace each use (extract) with a load of the appropriate element.
   13779   for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
   13780        UE = Uses.end(); UI != UE; ++UI) {
   13781     SDNode *Extract = *UI;
   13782 
   13783     // cOMpute the element's address.
   13784     SDValue Idx = Extract->getOperand(1);
   13785     unsigned EltSize =
   13786         InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
   13787     uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
   13788     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   13789     SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
   13790 
   13791     SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
   13792                                      StackPtr, OffsetVal);
   13793 
   13794     // Load the scalar.
   13795     SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
   13796                                      ScalarAddr, MachinePointerInfo(),
   13797                                      false, false, false, 0);
   13798 
   13799     // Replace the exact with the load.
   13800     DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
   13801   }
   13802 
   13803   // The replacement was made in place; don't return anything.
   13804   return SDValue();
   13805 }
   13806 
   13807 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
   13808 /// nodes.
   13809 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
   13810                                     TargetLowering::DAGCombinerInfo &DCI,
   13811                                     const X86Subtarget *Subtarget) {
   13812   DebugLoc DL = N->getDebugLoc();
   13813   SDValue Cond = N->getOperand(0);
   13814   // Get the LHS/RHS of the select.
   13815   SDValue LHS = N->getOperand(1);
   13816   SDValue RHS = N->getOperand(2);
   13817   EVT VT = LHS.getValueType();
   13818 
   13819   // If we have SSE[12] support, try to form min/max nodes. SSE min/max
   13820   // instructions match the semantics of the common C idiom x<y?x:y but not
   13821   // x<=y?x:y, because of how they handle negative zero (which can be
   13822   // ignored in unsafe-math mode).
   13823   if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
   13824       VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
   13825       (Subtarget->hasSSE2() ||
   13826        (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
   13827     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
   13828 
   13829     unsigned Opcode = 0;
   13830     // Check for x CC y ? x : y.
   13831     if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
   13832         DAG.isEqualTo(RHS, Cond.getOperand(1))) {
   13833       switch (CC) {
   13834       default: break;
   13835       case ISD::SETULT:
   13836         // Converting this to a min would handle NaNs incorrectly, and swapping
   13837         // the operands would cause it to handle comparisons between positive
   13838         // and negative zero incorrectly.
   13839         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
   13840           if (!DAG.getTarget().Options.UnsafeFPMath &&
   13841               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   13842             break;
   13843           std::swap(LHS, RHS);
   13844         }
   13845         Opcode = X86ISD::FMIN;
   13846         break;
   13847       case ISD::SETOLE:
   13848         // Converting this to a min would handle comparisons between positive
   13849         // and negative zero incorrectly.
   13850         if (!DAG.getTarget().Options.UnsafeFPMath &&
   13851             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
   13852           break;
   13853         Opcode = X86ISD::FMIN;
   13854         break;
   13855       case ISD::SETULE:
   13856         // Converting this to a min would handle both negative zeros and NaNs
   13857         // incorrectly, but we can swap the operands to fix both.
   13858         std::swap(LHS, RHS);
   13859       case ISD::SETOLT:
   13860       case ISD::SETLT:
   13861       case ISD::SETLE:
   13862         Opcode = X86ISD::FMIN;
   13863         break;
   13864 
   13865       case ISD::SETOGE:
   13866         // Converting this to a max would handle comparisons between positive
   13867         // and negative zero incorrectly.
   13868         if (!DAG.getTarget().Options.UnsafeFPMath &&
   13869             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
   13870           break;
   13871         Opcode = X86ISD::FMAX;
   13872         break;
   13873       case ISD::SETUGT:
   13874         // Converting this to a max would handle NaNs incorrectly, and swapping
   13875         // the operands would cause it to handle comparisons between positive
   13876         // and negative zero incorrectly.
   13877         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
   13878           if (!DAG.getTarget().Options.UnsafeFPMath &&
   13879               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
   13880             break;
   13881           std::swap(LHS, RHS);
   13882         }
   13883         Opcode = X86ISD::FMAX;
   13884         break;
   13885       case ISD::SETUGE:
   13886         // Converting this to a max would handle both negative zeros and NaNs
   13887         // incorrectly, but we can swap the operands to fix both.
   13888         std::swap(LHS, RHS);
   13889       case ISD::SETOGT:
   13890       case ISD::SETGT:
   13891       case ISD::SETGE:
   13892         Opcode = X86ISD::FMAX;
   13893         break;
   13894       }
   13895     // Check for x CC y ? y : x -- a min/max with reversed arms.
   13896     } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
   13897                DAG.isEqualTo(RHS, Cond.getOperand(0))) {
   13898       switch (CC) {
   13899       default: break;
   13900       case ISD::SETOGE:
   13901         // Converting this to a min would handle comparisons between positive
   13902         // and negative zero incorrectly, and swapping the operands would
   13903         // cause it to handle NaNs incorrectly.
   13904         if (!DAG.getTarget().Options.UnsafeFPMath &&
   13905             !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
   13906           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   13907             break;
   13908           std::swap(LHS, RHS);
   13909         }
   13910         Opcode = X86ISD::FMIN;
   13911         break;
   13912       case ISD::SETUGT:
   13913         // Converting this to a min would handle NaNs incorrectly.
   13914         if (!DAG.getTarget().Options.UnsafeFPMath &&
   13915             (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
   13916           break;
   13917         Opcode = X86ISD::FMIN;
   13918         break;
   13919       case ISD::SETUGE:
   13920         // Converting this to a min would handle both negative zeros and NaNs
   13921         // incorrectly, but we can swap the operands to fix both.
   13922         std::swap(LHS, RHS);
   13923       case ISD::SETOGT:
   13924       case ISD::SETGT:
   13925       case ISD::SETGE:
   13926         Opcode = X86ISD::FMIN;
   13927         break;
   13928 
   13929       case ISD::SETULT:
   13930         // Converting this to a max would handle NaNs incorrectly.
   13931         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   13932           break;
   13933         Opcode = X86ISD::FMAX;
   13934         break;
   13935       case ISD::SETOLE:
   13936         // Converting this to a max would handle comparisons between positive
   13937         // and negative zero incorrectly, and swapping the operands would
   13938         // cause it to handle NaNs incorrectly.
   13939         if (!DAG.getTarget().Options.UnsafeFPMath &&
   13940             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
   13941           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
   13942             break;
   13943           std::swap(LHS, RHS);
   13944         }
   13945         Opcode = X86ISD::FMAX;
   13946         break;
   13947       case ISD::SETULE:
   13948         // Converting this to a max would handle both negative zeros and NaNs
   13949         // incorrectly, but we can swap the operands to fix both.
   13950         std::swap(LHS, RHS);
   13951       case ISD::SETOLT:
   13952       case ISD::SETLT:
   13953       case ISD::SETLE:
   13954         Opcode = X86ISD::FMAX;
   13955         break;
   13956       }
   13957     }
   13958 
   13959     if (Opcode)
   13960       return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
   13961   }
   13962 
   13963   // If this is a select between two integer constants, try to do some
   13964   // optimizations.
   13965   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
   13966     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
   13967       // Don't do this for crazy integer types.
   13968       if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
   13969         // If this is efficiently invertible, canonicalize the LHSC/RHSC values
   13970         // so that TrueC (the true value) is larger than FalseC.
   13971         bool NeedsCondInvert = false;
   13972 
   13973         if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
   13974             // Efficiently invertible.
   13975             (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
   13976              (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
   13977               isa<ConstantSDNode>(Cond.getOperand(1))))) {
   13978           NeedsCondInvert = true;
   13979           std::swap(TrueC, FalseC);
   13980         }
   13981 
   13982         // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
   13983         if (FalseC->getAPIntValue() == 0 &&
   13984             TrueC->getAPIntValue().isPowerOf2()) {
   13985           if (NeedsCondInvert) // Invert the condition if needed.
   13986             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   13987                                DAG.getConstant(1, Cond.getValueType()));
   13988 
   13989           // Zero extend the condition if needed.
   13990           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
   13991 
   13992           unsigned ShAmt = TrueC->getAPIntValue().logBase2();
   13993           return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
   13994                              DAG.getConstant(ShAmt, MVT::i8));
   13995         }
   13996 
   13997         // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
   13998         if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
   13999           if (NeedsCondInvert) // Invert the condition if needed.
   14000             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   14001                                DAG.getConstant(1, Cond.getValueType()));
   14002 
   14003           // Zero extend the condition if needed.
   14004           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
   14005                              FalseC->getValueType(0), Cond);
   14006           return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   14007                              SDValue(FalseC, 0));
   14008         }
   14009 
   14010         // Optimize cases that will turn into an LEA instruction.  This requires
   14011         // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
   14012         if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
   14013           uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
   14014           if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
   14015 
   14016           bool isFastMultiplier = false;
   14017           if (Diff < 10) {
   14018             switch ((unsigned char)Diff) {
   14019               default: break;
   14020               case 1:  // result = add base, cond
   14021               case 2:  // result = lea base(    , cond*2)
   14022               case 3:  // result = lea base(cond, cond*2)
   14023               case 4:  // result = lea base(    , cond*4)
   14024               case 5:  // result = lea base(cond, cond*4)
   14025               case 8:  // result = lea base(    , cond*8)
   14026               case 9:  // result = lea base(cond, cond*8)
   14027                 isFastMultiplier = true;
   14028                 break;
   14029             }
   14030           }
   14031 
   14032           if (isFastMultiplier) {
   14033             APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
   14034             if (NeedsCondInvert) // Invert the condition if needed.
   14035               Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
   14036                                  DAG.getConstant(1, Cond.getValueType()));
   14037 
   14038             // Zero extend the condition if needed.
   14039             Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
   14040                                Cond);
   14041             // Scale the condition by the difference.
   14042             if (Diff != 1)
   14043               Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
   14044                                  DAG.getConstant(Diff, Cond.getValueType()));
   14045 
   14046             // Add the base if non-zero.
   14047             if (FalseC->getAPIntValue() != 0)
   14048               Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   14049                                  SDValue(FalseC, 0));
   14050             return Cond;
   14051           }
   14052         }
   14053       }
   14054   }
   14055 
   14056   // Canonicalize max and min:
   14057   // (x > y) ? x : y -> (x >= y) ? x : y
   14058   // (x < y) ? x : y -> (x <= y) ? x : y
   14059   // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
   14060   // the need for an extra compare
   14061   // against zero. e.g.
   14062   // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
   14063   // subl   %esi, %edi
   14064   // testl  %edi, %edi
   14065   // movl   $0, %eax
   14066   // cmovgl %edi, %eax
   14067   // =>
   14068   // xorl   %eax, %eax
   14069   // subl   %esi, $edi
   14070   // cmovsl %eax, %edi
   14071   if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
   14072       DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
   14073       DAG.isEqualTo(RHS, Cond.getOperand(1))) {
   14074     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
   14075     switch (CC) {
   14076     default: break;
   14077     case ISD::SETLT:
   14078     case ISD::SETGT: {
   14079       ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
   14080       Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
   14081                           Cond.getOperand(0), Cond.getOperand(1), NewCC);
   14082       return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
   14083     }
   14084     }
   14085   }
   14086 
   14087   // If we know that this node is legal then we know that it is going to be
   14088   // matched by one of the SSE/AVX BLEND instructions. These instructions only
   14089   // depend on the highest bit in each word. Try to use SimplifyDemandedBits
   14090   // to simplify previous instructions.
   14091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   14092   if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
   14093       !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
   14094     unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
   14095 
   14096     // Don't optimize vector selects that map to mask-registers.
   14097     if (BitWidth == 1)
   14098       return SDValue();
   14099 
   14100     assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
   14101     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
   14102 
   14103     APInt KnownZero, KnownOne;
   14104     TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
   14105                                           DCI.isBeforeLegalizeOps());
   14106     if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
   14107         TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
   14108       DCI.CommitTargetLoweringOpt(TLO);
   14109   }
   14110 
   14111   return SDValue();
   14112 }
   14113 
   14114 // Check whether a boolean test is testing a boolean value generated by
   14115 // X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
   14116 // code.
   14117 //
   14118 // Simplify the following patterns:
   14119 // (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
   14120 // (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
   14121 // to (Op EFLAGS Cond)
   14122 //
   14123 // (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
   14124 // (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
   14125 // to (Op EFLAGS !Cond)
   14126 //
   14127 // where Op could be BRCOND or CMOV.
   14128 //
   14129 static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
   14130   // Quit if not CMP and SUB with its value result used.
   14131   if (Cmp.getOpcode() != X86ISD::CMP &&
   14132       (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
   14133       return SDValue();
   14134 
   14135   // Quit if not used as a boolean value.
   14136   if (CC != X86::COND_E && CC != X86::COND_NE)
   14137     return SDValue();
   14138 
   14139   // Check CMP operands. One of them should be 0 or 1 and the other should be
   14140   // an SetCC or extended from it.
   14141   SDValue Op1 = Cmp.getOperand(0);
   14142   SDValue Op2 = Cmp.getOperand(1);
   14143 
   14144   SDValue SetCC;
   14145   const ConstantSDNode* C = 0;
   14146   bool needOppositeCond = (CC == X86::COND_E);
   14147 
   14148   if ((C = dyn_cast<ConstantSDNode>(Op1)))
   14149     SetCC = Op2;
   14150   else if ((C = dyn_cast<ConstantSDNode>(Op2)))
   14151     SetCC = Op1;
   14152   else // Quit if all operands are not constants.
   14153     return SDValue();
   14154 
   14155   if (C->getZExtValue() == 1)
   14156     needOppositeCond = !needOppositeCond;
   14157   else if (C->getZExtValue() != 0)
   14158     // Quit if the constant is neither 0 or 1.
   14159     return SDValue();
   14160 
   14161   // Skip 'zext' node.
   14162   if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
   14163     SetCC = SetCC.getOperand(0);
   14164 
   14165   switch (SetCC.getOpcode()) {
   14166   case X86ISD::SETCC:
   14167     // Set the condition code or opposite one if necessary.
   14168     CC = X86::CondCode(SetCC.getConstantOperandVal(0));
   14169     if (needOppositeCond)
   14170       CC = X86::GetOppositeBranchCondition(CC);
   14171     return SetCC.getOperand(1);
   14172   case X86ISD::CMOV: {
   14173     // Check whether false/true value has canonical one, i.e. 0 or 1.
   14174     ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
   14175     ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
   14176     // Quit if true value is not a constant.
   14177     if (!TVal)
   14178       return SDValue();
   14179     // Quit if false value is not a constant.
   14180     if (!FVal) {
   14181       // A special case for rdrand, where 0 is set if false cond is found.
   14182       SDValue Op = SetCC.getOperand(0);
   14183       if (Op.getOpcode() != X86ISD::RDRAND)
   14184         return SDValue();
   14185     }
   14186     // Quit if false value is not the constant 0 or 1.
   14187     bool FValIsFalse = true;
   14188     if (FVal && FVal->getZExtValue() != 0) {
   14189       if (FVal->getZExtValue() != 1)
   14190         return SDValue();
   14191       // If FVal is 1, opposite cond is needed.
   14192       needOppositeCond = !needOppositeCond;
   14193       FValIsFalse = false;
   14194     }
   14195     // Quit if TVal is not the constant opposite of FVal.
   14196     if (FValIsFalse && TVal->getZExtValue() != 1)
   14197       return SDValue();
   14198     if (!FValIsFalse && TVal->getZExtValue() != 0)
   14199       return SDValue();
   14200     CC = X86::CondCode(SetCC.getConstantOperandVal(2));
   14201     if (needOppositeCond)
   14202       CC = X86::GetOppositeBranchCondition(CC);
   14203     return SetCC.getOperand(3);
   14204   }
   14205   }
   14206 
   14207   return SDValue();
   14208 }
   14209 
   14210 /// checkFlaggedOrCombine - DAG combination on X86ISD::OR, i.e. with EFLAGS
   14211 /// updated. If only flag result is used and the result is evaluated from a
   14212 /// series of element extraction, try to combine it into a PTEST.
   14213 static SDValue checkFlaggedOrCombine(SDValue Or, X86::CondCode &CC,
   14214                                      SelectionDAG &DAG,
   14215                                      const X86Subtarget *Subtarget) {
   14216   SDNode *N = Or.getNode();
   14217   DebugLoc DL = N->getDebugLoc();
   14218 
   14219   // Only SSE4.1 and beyond supports PTEST or like.
   14220   if (!Subtarget->hasSSE41())
   14221     return SDValue();
   14222 
   14223   if (N->getOpcode() != X86ISD::OR)
   14224     return SDValue();
   14225 
   14226   // Quit if the value result of OR is used.
   14227   if (N->hasAnyUseOfValue(0))
   14228     return SDValue();
   14229 
   14230   // Quit if not used as a boolean value.
   14231   if (CC != X86::COND_E && CC != X86::COND_NE)
   14232     return SDValue();
   14233 
   14234   SmallVector<SDValue, 8> Opnds;
   14235   SDValue VecIn;
   14236   EVT VT = MVT::Other;
   14237   unsigned Mask = 0;
   14238 
   14239   // Recognize a special case where a vector is casted into wide integer to
   14240   // test all 0s.
   14241   Opnds.push_back(N->getOperand(0));
   14242   Opnds.push_back(N->getOperand(1));
   14243 
   14244   for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
   14245     SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
   14246     // BFS traverse all OR'd operands.
   14247     if (I->getOpcode() == ISD::OR) {
   14248       Opnds.push_back(I->getOperand(0));
   14249       Opnds.push_back(I->getOperand(1));
   14250       // Re-evaluate the number of nodes to be traversed.
   14251       e += 2; // 2 more nodes (LHS and RHS) are pushed.
   14252       continue;
   14253     }
   14254 
   14255     // Quit if a non-EXTRACT_VECTOR_ELT
   14256     if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   14257       return SDValue();
   14258 
   14259     // Quit if without a constant index.
   14260     SDValue Idx = I->getOperand(1);
   14261     if (!isa<ConstantSDNode>(Idx))
   14262       return SDValue();
   14263 
   14264     // Check if all elements are extracted from the same vector.
   14265     SDValue ExtractedFromVec = I->getOperand(0);
   14266     if (VecIn.getNode() == 0) {
   14267       VT = ExtractedFromVec.getValueType();
   14268       // FIXME: only 128-bit vector is supported so far.
   14269       if (!VT.is128BitVector())
   14270         return SDValue();
   14271       VecIn = ExtractedFromVec;
   14272     } else if (VecIn != ExtractedFromVec)
   14273       return SDValue();
   14274 
   14275     // Record the constant index.
   14276     Mask |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
   14277   }
   14278 
   14279   assert(VT.is128BitVector() && "Only 128-bit vector PTEST is supported so far.");
   14280 
   14281   // Quit if not all elements are used.
   14282   if (Mask != (1U << VT.getVectorNumElements()) - 1U)
   14283     return SDValue();
   14284 
   14285   return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, VecIn, VecIn);
   14286 }
   14287 
   14288 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
   14289 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
   14290                                   TargetLowering::DAGCombinerInfo &DCI,
   14291                                   const X86Subtarget *Subtarget) {
   14292   DebugLoc DL = N->getDebugLoc();
   14293 
   14294   // If the flag operand isn't dead, don't touch this CMOV.
   14295   if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
   14296     return SDValue();
   14297 
   14298   SDValue FalseOp = N->getOperand(0);
   14299   SDValue TrueOp = N->getOperand(1);
   14300   X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
   14301   SDValue Cond = N->getOperand(3);
   14302 
   14303   if (CC == X86::COND_E || CC == X86::COND_NE) {
   14304     switch (Cond.getOpcode()) {
   14305     default: break;
   14306     case X86ISD::BSR:
   14307     case X86ISD::BSF:
   14308       // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
   14309       if (DAG.isKnownNeverZero(Cond.getOperand(0)))
   14310         return (CC == X86::COND_E) ? FalseOp : TrueOp;
   14311     }
   14312   }
   14313 
   14314   SDValue Flags;
   14315 
   14316   Flags = checkBoolTestSetCCCombine(Cond, CC);
   14317   if (Flags.getNode() &&
   14318       // Extra check as FCMOV only supports a subset of X86 cond.
   14319       (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
   14320     SDValue Ops[] = { FalseOp, TrueOp,
   14321                       DAG.getConstant(CC, MVT::i8), Flags };
   14322     return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
   14323                        Ops, array_lengthof(Ops));
   14324   }
   14325 
   14326   Flags = checkFlaggedOrCombine(Cond, CC, DAG, Subtarget);
   14327   if (Flags.getNode()) {
   14328     SDValue Ops[] = { FalseOp, TrueOp,
   14329                       DAG.getConstant(CC, MVT::i8), Flags };
   14330     return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
   14331                        Ops, array_lengthof(Ops));
   14332   }
   14333 
   14334   // If this is a select between two integer constants, try to do some
   14335   // optimizations.  Note that the operands are ordered the opposite of SELECT
   14336   // operands.
   14337   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
   14338     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
   14339       // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
   14340       // larger than FalseC (the false value).
   14341       if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
   14342         CC = X86::GetOppositeBranchCondition(CC);
   14343         std::swap(TrueC, FalseC);
   14344       }
   14345 
   14346       // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
   14347       // This is efficient for any integer data type (including i8/i16) and
   14348       // shift amount.
   14349       if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
   14350         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   14351                            DAG.getConstant(CC, MVT::i8), Cond);
   14352 
   14353         // Zero extend the condition if needed.
   14354         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
   14355 
   14356         unsigned ShAmt = TrueC->getAPIntValue().logBase2();
   14357         Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
   14358                            DAG.getConstant(ShAmt, MVT::i8));
   14359         if (N->getNumValues() == 2)  // Dead flag value?
   14360           return DCI.CombineTo(N, Cond, SDValue());
   14361         return Cond;
   14362       }
   14363 
   14364       // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
   14365       // for any integer data type, including i8/i16.
   14366       if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
   14367         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   14368                            DAG.getConstant(CC, MVT::i8), Cond);
   14369 
   14370         // Zero extend the condition if needed.
   14371         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
   14372                            FalseC->getValueType(0), Cond);
   14373         Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   14374                            SDValue(FalseC, 0));
   14375 
   14376         if (N->getNumValues() == 2)  // Dead flag value?
   14377           return DCI.CombineTo(N, Cond, SDValue());
   14378         return Cond;
   14379       }
   14380 
   14381       // Optimize cases that will turn into an LEA instruction.  This requires
   14382       // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
   14383       if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
   14384         uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
   14385         if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
   14386 
   14387         bool isFastMultiplier = false;
   14388         if (Diff < 10) {
   14389           switch ((unsigned char)Diff) {
   14390           default: break;
   14391           case 1:  // result = add base, cond
   14392           case 2:  // result = lea base(    , cond*2)
   14393           case 3:  // result = lea base(cond, cond*2)
   14394           case 4:  // result = lea base(    , cond*4)
   14395           case 5:  // result = lea base(cond, cond*4)
   14396           case 8:  // result = lea base(    , cond*8)
   14397           case 9:  // result = lea base(cond, cond*8)
   14398             isFastMultiplier = true;
   14399             break;
   14400           }
   14401         }
   14402 
   14403         if (isFastMultiplier) {
   14404           APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
   14405           Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
   14406                              DAG.getConstant(CC, MVT::i8), Cond);
   14407           // Zero extend the condition if needed.
   14408           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
   14409                              Cond);
   14410           // Scale the condition by the difference.
   14411           if (Diff != 1)
   14412             Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
   14413                                DAG.getConstant(Diff, Cond.getValueType()));
   14414 
   14415           // Add the base if non-zero.
   14416           if (FalseC->getAPIntValue() != 0)
   14417             Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
   14418                                SDValue(FalseC, 0));
   14419           if (N->getNumValues() == 2)  // Dead flag value?
   14420             return DCI.CombineTo(N, Cond, SDValue());
   14421           return Cond;
   14422         }
   14423       }
   14424     }
   14425   }
   14426   return SDValue();
   14427 }
   14428 
   14429 
   14430 /// PerformMulCombine - Optimize a single multiply with constant into two
   14431 /// in order to implement it with two cheaper instructions, e.g.
   14432 /// LEA + SHL, LEA + LEA.
   14433 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
   14434                                  TargetLowering::DAGCombinerInfo &DCI) {
   14435   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   14436     return SDValue();
   14437 
   14438   EVT VT = N->getValueType(0);
   14439   if (VT != MVT::i64)
   14440     return SDValue();
   14441 
   14442   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   14443   if (!C)
   14444     return SDValue();
   14445   uint64_t MulAmt = C->getZExtValue();
   14446   if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
   14447     return SDValue();
   14448 
   14449   uint64_t MulAmt1 = 0;
   14450   uint64_t MulAmt2 = 0;
   14451   if ((MulAmt % 9) == 0) {
   14452     MulAmt1 = 9;
   14453     MulAmt2 = MulAmt / 9;
   14454   } else if ((MulAmt % 5) == 0) {
   14455     MulAmt1 = 5;
   14456     MulAmt2 = MulAmt / 5;
   14457   } else if ((MulAmt % 3) == 0) {
   14458     MulAmt1 = 3;
   14459     MulAmt2 = MulAmt / 3;
   14460   }
   14461   if (MulAmt2 &&
   14462       (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
   14463     DebugLoc DL = N->getDebugLoc();
   14464 
   14465     if (isPowerOf2_64(MulAmt2) &&
   14466         !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
   14467       // If second multiplifer is pow2, issue it first. We want the multiply by
   14468       // 3, 5, or 9 to be folded into the addressing mode unless the lone use
   14469       // is an add.
   14470       std::swap(MulAmt1, MulAmt2);
   14471 
   14472     SDValue NewMul;
   14473     if (isPowerOf2_64(MulAmt1))
   14474       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
   14475                            DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
   14476     else
   14477       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
   14478                            DAG.getConstant(MulAmt1, VT));
   14479 
   14480     if (isPowerOf2_64(MulAmt2))
   14481       NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
   14482                            DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
   14483     else
   14484       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
   14485                            DAG.getConstant(MulAmt2, VT));
   14486 
   14487     // Do not add new nodes to DAG combiner worklist.
   14488     DCI.CombineTo(N, NewMul, false);
   14489   }
   14490   return SDValue();
   14491 }
   14492 
   14493 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
   14494   SDValue N0 = N->getOperand(0);
   14495   SDValue N1 = N->getOperand(1);
   14496   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   14497   EVT VT = N0.getValueType();
   14498 
   14499   // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
   14500   // since the result of setcc_c is all zero's or all ones.
   14501   if (VT.isInteger() && !VT.isVector() &&
   14502       N1C && N0.getOpcode() == ISD::AND &&
   14503       N0.getOperand(1).getOpcode() == ISD::Constant) {
   14504     SDValue N00 = N0.getOperand(0);
   14505     if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
   14506         ((N00.getOpcode() == ISD::ANY_EXTEND ||
   14507           N00.getOpcode() == ISD::ZERO_EXTEND) &&
   14508          N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
   14509       APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
   14510       APInt ShAmt = N1C->getAPIntValue();
   14511       Mask = Mask.shl(ShAmt);
   14512       if (Mask != 0)
   14513         return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
   14514                            N00, DAG.getConstant(Mask, VT));
   14515     }
   14516   }
   14517 
   14518 
   14519   // Hardware support for vector shifts is sparse which makes us scalarize the
   14520   // vector operations in many cases. Also, on sandybridge ADD is faster than
   14521   // shl.
   14522   // (shl V, 1) -> add V,V
   14523   if (isSplatVector(N1.getNode())) {
   14524     assert(N0.getValueType().isVector() && "Invalid vector shift type");
   14525     ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
   14526     // We shift all of the values by one. In many cases we do not have
   14527     // hardware support for this operation. This is better expressed as an ADD
   14528     // of two values.
   14529     if (N1C && (1 == N1C->getZExtValue())) {
   14530       return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
   14531     }
   14532   }
   14533 
   14534   return SDValue();
   14535 }
   14536 
   14537 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
   14538 ///                       when possible.
   14539 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
   14540                                    TargetLowering::DAGCombinerInfo &DCI,
   14541                                    const X86Subtarget *Subtarget) {
   14542   EVT VT = N->getValueType(0);
   14543   if (N->getOpcode() == ISD::SHL) {
   14544     SDValue V = PerformSHLCombine(N, DAG);
   14545     if (V.getNode()) return V;
   14546   }
   14547 
   14548   // On X86 with SSE2 support, we can transform this to a vector shift if
   14549   // all elements are shifted by the same amount.  We can't do this in legalize
   14550   // because the a constant vector is typically transformed to a constant pool
   14551   // so we have no knowledge of the shift amount.
   14552   if (!Subtarget->hasSSE2())
   14553     return SDValue();
   14554 
   14555   if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
   14556       (!Subtarget->hasAVX2() ||
   14557        (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
   14558     return SDValue();
   14559 
   14560   SDValue ShAmtOp = N->getOperand(1);
   14561   EVT EltVT = VT.getVectorElementType();
   14562   DebugLoc DL = N->getDebugLoc();
   14563   SDValue BaseShAmt = SDValue();
   14564   if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
   14565     unsigned NumElts = VT.getVectorNumElements();
   14566     unsigned i = 0;
   14567     for (; i != NumElts; ++i) {
   14568       SDValue Arg = ShAmtOp.getOperand(i);
   14569       if (Arg.getOpcode() == ISD::UNDEF) continue;
   14570       BaseShAmt = Arg;
   14571       break;
   14572     }
   14573     // Handle the case where the build_vector is all undef
   14574     // FIXME: Should DAG allow this?
   14575     if (i == NumElts)
   14576       return SDValue();
   14577 
   14578     for (; i != NumElts; ++i) {
   14579       SDValue Arg = ShAmtOp.getOperand(i);
   14580       if (Arg.getOpcode() == ISD::UNDEF) continue;
   14581       if (Arg != BaseShAmt) {
   14582         return SDValue();
   14583       }
   14584     }
   14585   } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
   14586              cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
   14587     SDValue InVec = ShAmtOp.getOperand(0);
   14588     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
   14589       unsigned NumElts = InVec.getValueType().getVectorNumElements();
   14590       unsigned i = 0;
   14591       for (; i != NumElts; ++i) {
   14592         SDValue Arg = InVec.getOperand(i);
   14593         if (Arg.getOpcode() == ISD::UNDEF) continue;
   14594         BaseShAmt = Arg;
   14595         break;
   14596       }
   14597     } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
   14598        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
   14599          unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
   14600          if (C->getZExtValue() == SplatIdx)
   14601            BaseShAmt = InVec.getOperand(1);
   14602        }
   14603     }
   14604     if (BaseShAmt.getNode() == 0) {
   14605       // Don't create instructions with illegal types after legalize
   14606       // types has run.
   14607       if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
   14608           !DCI.isBeforeLegalize())
   14609         return SDValue();
   14610 
   14611       BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
   14612                               DAG.getIntPtrConstant(0));
   14613     }
   14614   } else
   14615     return SDValue();
   14616 
   14617   // The shift amount is an i32.
   14618   if (EltVT.bitsGT(MVT::i32))
   14619     BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
   14620   else if (EltVT.bitsLT(MVT::i32))
   14621     BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
   14622 
   14623   // The shift amount is identical so we can do a vector shift.
   14624   SDValue  ValOp = N->getOperand(0);
   14625   switch (N->getOpcode()) {
   14626   default:
   14627     llvm_unreachable("Unknown shift opcode!");
   14628   case ISD::SHL:
   14629     switch (VT.getSimpleVT().SimpleTy) {
   14630     default: return SDValue();
   14631     case MVT::v2i64:
   14632     case MVT::v4i32:
   14633     case MVT::v8i16:
   14634     case MVT::v4i64:
   14635     case MVT::v8i32:
   14636     case MVT::v16i16:
   14637       return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
   14638     }
   14639   case ISD::SRA:
   14640     switch (VT.getSimpleVT().SimpleTy) {
   14641     default: return SDValue();
   14642     case MVT::v4i32:
   14643     case MVT::v8i16:
   14644     case MVT::v8i32:
   14645     case MVT::v16i16:
   14646       return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
   14647     }
   14648   case ISD::SRL:
   14649     switch (VT.getSimpleVT().SimpleTy) {
   14650     default: return SDValue();
   14651     case MVT::v2i64:
   14652     case MVT::v4i32:
   14653     case MVT::v8i16:
   14654     case MVT::v4i64:
   14655     case MVT::v8i32:
   14656     case MVT::v16i16:
   14657       return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
   14658     }
   14659   }
   14660 }
   14661 
   14662 
   14663 // CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
   14664 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
   14665 // and friends.  Likewise for OR -> CMPNEQSS.
   14666 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
   14667                             TargetLowering::DAGCombinerInfo &DCI,
   14668                             const X86Subtarget *Subtarget) {
   14669   unsigned opcode;
   14670 
   14671   // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
   14672   // we're requiring SSE2 for both.
   14673   if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
   14674     SDValue N0 = N->getOperand(0);
   14675     SDValue N1 = N->getOperand(1);
   14676     SDValue CMP0 = N0->getOperand(1);
   14677     SDValue CMP1 = N1->getOperand(1);
   14678     DebugLoc DL = N->getDebugLoc();
   14679 
   14680     // The SETCCs should both refer to the same CMP.
   14681     if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
   14682       return SDValue();
   14683 
   14684     SDValue CMP00 = CMP0->getOperand(0);
   14685     SDValue CMP01 = CMP0->getOperand(1);
   14686     EVT     VT    = CMP00.getValueType();
   14687 
   14688     if (VT == MVT::f32 || VT == MVT::f64) {
   14689       bool ExpectingFlags = false;
   14690       // Check for any users that want flags:
   14691       for (SDNode::use_iterator UI = N->use_begin(),
   14692              UE = N->use_end();
   14693            !ExpectingFlags && UI != UE; ++UI)
   14694         switch (UI->getOpcode()) {
   14695         default:
   14696         case ISD::BR_CC:
   14697         case ISD::BRCOND:
   14698         case ISD::SELECT:
   14699           ExpectingFlags = true;
   14700           break;
   14701         case ISD::CopyToReg:
   14702         case ISD::SIGN_EXTEND:
   14703         case ISD::ZERO_EXTEND:
   14704         case ISD::ANY_EXTEND:
   14705           break;
   14706         }
   14707 
   14708       if (!ExpectingFlags) {
   14709         enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
   14710         enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
   14711 
   14712         if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
   14713           X86::CondCode tmp = cc0;
   14714           cc0 = cc1;
   14715           cc1 = tmp;
   14716         }
   14717 
   14718         if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
   14719             (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
   14720           bool is64BitFP = (CMP00.getValueType() == MVT::f64);
   14721           X86ISD::NodeType NTOperator = is64BitFP ?
   14722             X86ISD::FSETCCsd : X86ISD::FSETCCss;
   14723           // FIXME: need symbolic constants for these magic numbers.
   14724           // See X86ATTInstPrinter.cpp:printSSECC().
   14725           unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
   14726           SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
   14727                                               DAG.getConstant(x86cc, MVT::i8));
   14728           SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
   14729                                               OnesOrZeroesF);
   14730           SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
   14731                                       DAG.getConstant(1, MVT::i32));
   14732           SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
   14733           return OneBitOfTruth;
   14734         }
   14735       }
   14736     }
   14737   }
   14738   return SDValue();
   14739 }
   14740 
   14741 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
   14742 /// so it can be folded inside ANDNP.
   14743 static bool CanFoldXORWithAllOnes(const SDNode *N) {
   14744   EVT VT = N->getValueType(0);
   14745 
   14746   // Match direct AllOnes for 128 and 256-bit vectors
   14747   if (ISD::isBuildVectorAllOnes(N))
   14748     return true;
   14749 
   14750   // Look through a bit convert.
   14751   if (N->getOpcode() == ISD::BITCAST)
   14752     N = N->getOperand(0).getNode();
   14753 
   14754   // Sometimes the operand may come from a insert_subvector building a 256-bit
   14755   // allones vector
   14756   if (VT.is256BitVector() &&
   14757       N->getOpcode() == ISD::INSERT_SUBVECTOR) {
   14758     SDValue V1 = N->getOperand(0);
   14759     SDValue V2 = N->getOperand(1);
   14760 
   14761     if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
   14762         V1.getOperand(0).getOpcode() == ISD::UNDEF &&
   14763         ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
   14764         ISD::isBuildVectorAllOnes(V2.getNode()))
   14765       return true;
   14766   }
   14767 
   14768   return false;
   14769 }
   14770 
   14771 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
   14772                                  TargetLowering::DAGCombinerInfo &DCI,
   14773                                  const X86Subtarget *Subtarget) {
   14774   if (DCI.isBeforeLegalizeOps())
   14775     return SDValue();
   14776 
   14777   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
   14778   if (R.getNode())
   14779     return R;
   14780 
   14781   EVT VT = N->getValueType(0);
   14782 
   14783   // Create ANDN, BLSI, and BLSR instructions
   14784   // BLSI is X & (-X)
   14785   // BLSR is X & (X-1)
   14786   if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
   14787     SDValue N0 = N->getOperand(0);
   14788     SDValue N1 = N->getOperand(1);
   14789     DebugLoc DL = N->getDebugLoc();
   14790 
   14791     // Check LHS for not
   14792     if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
   14793       return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
   14794     // Check RHS for not
   14795     if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
   14796       return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
   14797 
   14798     // Check LHS for neg
   14799     if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
   14800         isZero(N0.getOperand(0)))
   14801       return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
   14802 
   14803     // Check RHS for neg
   14804     if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
   14805         isZero(N1.getOperand(0)))
   14806       return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
   14807 
   14808     // Check LHS for X-1
   14809     if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
   14810         isAllOnes(N0.getOperand(1)))
   14811       return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
   14812 
   14813     // Check RHS for X-1
   14814     if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
   14815         isAllOnes(N1.getOperand(1)))
   14816       return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
   14817 
   14818     return SDValue();
   14819   }
   14820 
   14821   // Want to form ANDNP nodes:
   14822   // 1) In the hopes of then easily combining them with OR and AND nodes
   14823   //    to form PBLEND/PSIGN.
   14824   // 2) To match ANDN packed intrinsics
   14825   if (VT != MVT::v2i64 && VT != MVT::v4i64)
   14826     return SDValue();
   14827 
   14828   SDValue N0 = N->getOperand(0);
   14829   SDValue N1 = N->getOperand(1);
   14830   DebugLoc DL = N->getDebugLoc();
   14831 
   14832   // Check LHS for vnot
   14833   if (N0.getOpcode() == ISD::XOR &&
   14834       //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
   14835       CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
   14836     return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
   14837 
   14838   // Check RHS for vnot
   14839   if (N1.getOpcode() == ISD::XOR &&
   14840       //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
   14841       CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
   14842     return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
   14843 
   14844   return SDValue();
   14845 }
   14846 
   14847 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
   14848                                 TargetLowering::DAGCombinerInfo &DCI,
   14849                                 const X86Subtarget *Subtarget) {
   14850   if (DCI.isBeforeLegalizeOps())
   14851     return SDValue();
   14852 
   14853   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
   14854   if (R.getNode())
   14855     return R;
   14856 
   14857   EVT VT = N->getValueType(0);
   14858 
   14859   SDValue N0 = N->getOperand(0);
   14860   SDValue N1 = N->getOperand(1);
   14861 
   14862   // look for psign/blend
   14863   if (VT == MVT::v2i64 || VT == MVT::v4i64) {
   14864     if (!Subtarget->hasSSSE3() ||
   14865         (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
   14866       return SDValue();
   14867 
   14868     // Canonicalize pandn to RHS
   14869     if (N0.getOpcode() == X86ISD::ANDNP)
   14870       std::swap(N0, N1);
   14871     // or (and (m, y), (pandn m, x))
   14872     if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
   14873       SDValue Mask = N1.getOperand(0);
   14874       SDValue X    = N1.getOperand(1);
   14875       SDValue Y;
   14876       if (N0.getOperand(0) == Mask)
   14877         Y = N0.getOperand(1);
   14878       if (N0.getOperand(1) == Mask)
   14879         Y = N0.getOperand(0);
   14880 
   14881       // Check to see if the mask appeared in both the AND and ANDNP and
   14882       if (!Y.getNode())
   14883         return SDValue();
   14884 
   14885       // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
   14886       // Look through mask bitcast.
   14887       if (Mask.getOpcode() == ISD::BITCAST)
   14888         Mask = Mask.getOperand(0);
   14889       if (X.getOpcode() == ISD::BITCAST)
   14890         X = X.getOperand(0);
   14891       if (Y.getOpcode() == ISD::BITCAST)
   14892         Y = Y.getOperand(0);
   14893 
   14894       EVT MaskVT = Mask.getValueType();
   14895 
   14896       // Validate that the Mask operand is a vector sra node.
   14897       // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
   14898       // there is no psrai.b
   14899       if (Mask.getOpcode() != X86ISD::VSRAI)
   14900         return SDValue();
   14901 
   14902       // Check that the SRA is all signbits.
   14903       SDValue SraC = Mask.getOperand(1);
   14904       unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
   14905       unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
   14906       if ((SraAmt + 1) != EltBits)
   14907         return SDValue();
   14908 
   14909       DebugLoc DL = N->getDebugLoc();
   14910 
   14911       // Now we know we at least have a plendvb with the mask val.  See if
   14912       // we can form a psignb/w/d.
   14913       // psign = x.type == y.type == mask.type && y = sub(0, x);
   14914       if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
   14915           ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
   14916           X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
   14917         assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
   14918                "Unsupported VT for PSIGN");
   14919         Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
   14920         return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
   14921       }
   14922       // PBLENDVB only available on SSE 4.1
   14923       if (!Subtarget->hasSSE41())
   14924         return SDValue();
   14925 
   14926       EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
   14927 
   14928       X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
   14929       Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
   14930       Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
   14931       Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
   14932       return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
   14933     }
   14934   }
   14935 
   14936   if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
   14937     return SDValue();
   14938 
   14939   // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
   14940   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
   14941     std::swap(N0, N1);
   14942   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
   14943     return SDValue();
   14944   if (!N0.hasOneUse() || !N1.hasOneUse())
   14945     return SDValue();
   14946 
   14947   SDValue ShAmt0 = N0.getOperand(1);
   14948   if (ShAmt0.getValueType() != MVT::i8)
   14949     return SDValue();
   14950   SDValue ShAmt1 = N1.getOperand(1);
   14951   if (ShAmt1.getValueType() != MVT::i8)
   14952     return SDValue();
   14953   if (ShAmt0.getOpcode() == ISD::TRUNCATE)
   14954     ShAmt0 = ShAmt0.getOperand(0);
   14955   if (ShAmt1.getOpcode() == ISD::TRUNCATE)
   14956     ShAmt1 = ShAmt1.getOperand(0);
   14957 
   14958   DebugLoc DL = N->getDebugLoc();
   14959   unsigned Opc = X86ISD::SHLD;
   14960   SDValue Op0 = N0.getOperand(0);
   14961   SDValue Op1 = N1.getOperand(0);
   14962   if (ShAmt0.getOpcode() == ISD::SUB) {
   14963     Opc = X86ISD::SHRD;
   14964     std::swap(Op0, Op1);
   14965     std::swap(ShAmt0, ShAmt1);
   14966   }
   14967 
   14968   unsigned Bits = VT.getSizeInBits();
   14969   if (ShAmt1.getOpcode() == ISD::SUB) {
   14970     SDValue Sum = ShAmt1.getOperand(0);
   14971     if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
   14972       SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
   14973       if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
   14974         ShAmt1Op1 = ShAmt1Op1.getOperand(0);
   14975       if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
   14976         return DAG.getNode(Opc, DL, VT,
   14977                            Op0, Op1,
   14978                            DAG.getNode(ISD::TRUNCATE, DL,
   14979                                        MVT::i8, ShAmt0));
   14980     }
   14981   } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
   14982     ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
   14983     if (ShAmt0C &&
   14984         ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
   14985       return DAG.getNode(Opc, DL, VT,
   14986                          N0.getOperand(0), N1.getOperand(0),
   14987                          DAG.getNode(ISD::TRUNCATE, DL,
   14988                                        MVT::i8, ShAmt0));
   14989   }
   14990 
   14991   return SDValue();
   14992 }
   14993 
   14994 // Generate NEG and CMOV for integer abs.
   14995 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
   14996   EVT VT = N->getValueType(0);
   14997 
   14998   // Since X86 does not have CMOV for 8-bit integer, we don't convert
   14999   // 8-bit integer abs to NEG and CMOV.
   15000   if (VT.isInteger() && VT.getSizeInBits() == 8)
   15001     return SDValue();
   15002 
   15003   SDValue N0 = N->getOperand(0);
   15004   SDValue N1 = N->getOperand(1);
   15005   DebugLoc DL = N->getDebugLoc();
   15006 
   15007   // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
   15008   // and change it to SUB and CMOV.
   15009   if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
   15010       N0.getOpcode() == ISD::ADD &&
   15011       N0.getOperand(1) == N1 &&
   15012       N1.getOpcode() == ISD::SRA &&
   15013       N1.getOperand(0) == N0.getOperand(0))
   15014     if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
   15015       if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
   15016         // Generate SUB & CMOV.
   15017         SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
   15018                                   DAG.getConstant(0, VT), N0.getOperand(0));
   15019 
   15020         SDValue Ops[] = { N0.getOperand(0), Neg,
   15021                           DAG.getConstant(X86::COND_GE, MVT::i8),
   15022                           SDValue(Neg.getNode(), 1) };
   15023         return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
   15024                            Ops, array_lengthof(Ops));
   15025       }
   15026   return SDValue();
   15027 }
   15028 
   15029 // PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
   15030 static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
   15031                                  TargetLowering::DAGCombinerInfo &DCI,
   15032                                  const X86Subtarget *Subtarget) {
   15033   if (DCI.isBeforeLegalizeOps())
   15034     return SDValue();
   15035 
   15036   if (Subtarget->hasCMov()) {
   15037     SDValue RV = performIntegerAbsCombine(N, DAG);
   15038     if (RV.getNode())
   15039       return RV;
   15040   }
   15041 
   15042   // Try forming BMI if it is available.
   15043   if (!Subtarget->hasBMI())
   15044     return SDValue();
   15045 
   15046   EVT VT = N->getValueType(0);
   15047 
   15048   if (VT != MVT::i32 && VT != MVT::i64)
   15049     return SDValue();
   15050 
   15051   assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
   15052 
   15053   // Create BLSMSK instructions by finding X ^ (X-1)
   15054   SDValue N0 = N->getOperand(0);
   15055   SDValue N1 = N->getOperand(1);
   15056   DebugLoc DL = N->getDebugLoc();
   15057 
   15058   if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
   15059       isAllOnes(N0.getOperand(1)))
   15060     return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
   15061 
   15062   if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
   15063       isAllOnes(N1.getOperand(1)))
   15064     return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
   15065 
   15066   return SDValue();
   15067 }
   15068 
   15069 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
   15070 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
   15071                                   TargetLowering::DAGCombinerInfo &DCI,
   15072                                   const X86Subtarget *Subtarget) {
   15073   LoadSDNode *Ld = cast<LoadSDNode>(N);
   15074   EVT RegVT = Ld->getValueType(0);
   15075   EVT MemVT = Ld->getMemoryVT();
   15076   DebugLoc dl = Ld->getDebugLoc();
   15077   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   15078 
   15079   ISD::LoadExtType Ext = Ld->getExtensionType();
   15080 
   15081   // If this is a vector EXT Load then attempt to optimize it using a
   15082   // shuffle. We need SSE4 for the shuffles.
   15083   // TODO: It is possible to support ZExt by zeroing the undef values
   15084   // during the shuffle phase or after the shuffle.
   15085   if (RegVT.isVector() && RegVT.isInteger() &&
   15086       Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
   15087     assert(MemVT != RegVT && "Cannot extend to the same type");
   15088     assert(MemVT.isVector() && "Must load a vector from memory");
   15089 
   15090     unsigned NumElems = RegVT.getVectorNumElements();
   15091     unsigned RegSz = RegVT.getSizeInBits();
   15092     unsigned MemSz = MemVT.getSizeInBits();
   15093     assert(RegSz > MemSz && "Register size must be greater than the mem size");
   15094 
   15095     // All sizes must be a power of two.
   15096     if (!isPowerOf2_32(RegSz * MemSz * NumElems))
   15097       return SDValue();
   15098 
   15099     // Attempt to load the original value using scalar loads.
   15100     // Find the largest scalar type that divides the total loaded size.
   15101     MVT SclrLoadTy = MVT::i8;
   15102     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
   15103          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
   15104       MVT Tp = (MVT::SimpleValueType)tp;
   15105       if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
   15106         SclrLoadTy = Tp;
   15107       }
   15108     }
   15109 
   15110     // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
   15111     if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
   15112         (64 <= MemSz))
   15113       SclrLoadTy = MVT::f64;
   15114 
   15115     // Calculate the number of scalar loads that we need to perform
   15116     // in order to load our vector from memory.
   15117     unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
   15118 
   15119     // Represent our vector as a sequence of elements which are the
   15120     // largest scalar that we can load.
   15121     EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
   15122       RegSz/SclrLoadTy.getSizeInBits());
   15123 
   15124     // Represent the data using the same element type that is stored in
   15125     // memory. In practice, we ''widen'' MemVT.
   15126     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
   15127                                   RegSz/MemVT.getScalarType().getSizeInBits());
   15128 
   15129     assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
   15130       "Invalid vector type");
   15131 
   15132     // We can't shuffle using an illegal type.
   15133     if (!TLI.isTypeLegal(WideVecVT))
   15134       return SDValue();
   15135 
   15136     SmallVector<SDValue, 8> Chains;
   15137     SDValue Ptr = Ld->getBasePtr();
   15138     SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
   15139                                         TLI.getPointerTy());
   15140     SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
   15141 
   15142     for (unsigned i = 0; i < NumLoads; ++i) {
   15143       // Perform a single load.
   15144       SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
   15145                                        Ptr, Ld->getPointerInfo(),
   15146                                        Ld->isVolatile(), Ld->isNonTemporal(),
   15147                                        Ld->isInvariant(), Ld->getAlignment());
   15148       Chains.push_back(ScalarLoad.getValue(1));
   15149       // Create the first element type using SCALAR_TO_VECTOR in order to avoid
   15150       // another round of DAGCombining.
   15151       if (i == 0)
   15152         Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
   15153       else
   15154         Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
   15155                           ScalarLoad, DAG.getIntPtrConstant(i));
   15156 
   15157       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   15158     }
   15159 
   15160     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
   15161                                Chains.size());
   15162 
   15163     // Bitcast the loaded value to a vector of the original element type, in
   15164     // the size of the target vector type.
   15165     SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
   15166     unsigned SizeRatio = RegSz/MemSz;
   15167 
   15168     // Redistribute the loaded elements into the different locations.
   15169     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   15170     for (unsigned i = 0; i != NumElems; ++i)
   15171       ShuffleVec[i*SizeRatio] = i;
   15172 
   15173     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
   15174                                          DAG.getUNDEF(WideVecVT),
   15175                                          &ShuffleVec[0]);
   15176 
   15177     // Bitcast to the requested type.
   15178     Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
   15179     // Replace the original load with the new sequence
   15180     // and return the new chain.
   15181     return DCI.CombineTo(N, Shuff, TF, true);
   15182   }
   15183 
   15184   return SDValue();
   15185 }
   15186 
   15187 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
   15188 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
   15189                                    const X86Subtarget *Subtarget) {
   15190   StoreSDNode *St = cast<StoreSDNode>(N);
   15191   EVT VT = St->getValue().getValueType();
   15192   EVT StVT = St->getMemoryVT();
   15193   DebugLoc dl = St->getDebugLoc();
   15194   SDValue StoredVal = St->getOperand(1);
   15195   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   15196 
   15197   // If we are saving a concatenation of two XMM registers, perform two stores.
   15198   // On Sandy Bridge, 256-bit memory operations are executed by two
   15199   // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
   15200   // memory  operation.
   15201   if (VT.is256BitVector() && !Subtarget->hasAVX2() &&
   15202       StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
   15203       StoredVal.getNumOperands() == 2) {
   15204     SDValue Value0 = StoredVal.getOperand(0);
   15205     SDValue Value1 = StoredVal.getOperand(1);
   15206 
   15207     SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
   15208     SDValue Ptr0 = St->getBasePtr();
   15209     SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
   15210 
   15211     SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
   15212                                 St->getPointerInfo(), St->isVolatile(),
   15213                                 St->isNonTemporal(), St->getAlignment());
   15214     SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
   15215                                 St->getPointerInfo(), St->isVolatile(),
   15216                                 St->isNonTemporal(), St->getAlignment());
   15217     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
   15218   }
   15219 
   15220   // Optimize trunc store (of multiple scalars) to shuffle and store.
   15221   // First, pack all of the elements in one place. Next, store to memory
   15222   // in fewer chunks.
   15223   if (St->isTruncatingStore() && VT.isVector()) {
   15224     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   15225     unsigned NumElems = VT.getVectorNumElements();
   15226     assert(StVT != VT && "Cannot truncate to the same type");
   15227     unsigned FromSz = VT.getVectorElementType().getSizeInBits();
   15228     unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
   15229 
   15230     // From, To sizes and ElemCount must be pow of two
   15231     if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
   15232     // We are going to use the original vector elt for storing.
   15233     // Accumulated smaller vector elements must be a multiple of the store size.
   15234     if (0 != (NumElems * FromSz) % ToSz) return SDValue();
   15235 
   15236     unsigned SizeRatio  = FromSz / ToSz;
   15237 
   15238     assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
   15239 
   15240     // Create a type on which we perform the shuffle
   15241     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
   15242             StVT.getScalarType(), NumElems*SizeRatio);
   15243 
   15244     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
   15245 
   15246     SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
   15247     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   15248     for (unsigned i = 0; i != NumElems; ++i)
   15249       ShuffleVec[i] = i * SizeRatio;
   15250 
   15251     // Can't shuffle using an illegal type.
   15252     if (!TLI.isTypeLegal(WideVecVT))
   15253       return SDValue();
   15254 
   15255     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
   15256                                          DAG.getUNDEF(WideVecVT),
   15257                                          &ShuffleVec[0]);
   15258     // At this point all of the data is stored at the bottom of the
   15259     // register. We now need to save it to mem.
   15260 
   15261     // Find the largest store unit
   15262     MVT StoreType = MVT::i8;
   15263     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
   15264          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
   15265       MVT Tp = (MVT::SimpleValueType)tp;
   15266       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
   15267         StoreType = Tp;
   15268     }
   15269 
   15270     // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
   15271     if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
   15272         (64 <= NumElems * ToSz))
   15273       StoreType = MVT::f64;
   15274 
   15275     // Bitcast the original vector into a vector of store-size units
   15276     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
   15277             StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
   15278     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
   15279     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
   15280     SmallVector<SDValue, 8> Chains;
   15281     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
   15282                                         TLI.getPointerTy());
   15283     SDValue Ptr = St->getBasePtr();
   15284 
   15285     // Perform one or more big stores into memory.
   15286     for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
   15287       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
   15288                                    StoreType, ShuffWide,
   15289                                    DAG.getIntPtrConstant(i));
   15290       SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
   15291                                 St->getPointerInfo(), St->isVolatile(),
   15292                                 St->isNonTemporal(), St->getAlignment());
   15293       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
   15294       Chains.push_back(Ch);
   15295     }
   15296 
   15297     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
   15298                                Chains.size());
   15299   }
   15300 
   15301 
   15302   // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
   15303   // the FP state in cases where an emms may be missing.
   15304   // A preferable solution to the general problem is to figure out the right
   15305   // places to insert EMMS.  This qualifies as a quick hack.
   15306 
   15307   // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
   15308   if (VT.getSizeInBits() != 64)
   15309     return SDValue();
   15310 
   15311   const Function *F = DAG.getMachineFunction().getFunction();
   15312   bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
   15313   bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
   15314                      && Subtarget->hasSSE2();
   15315   if ((VT.isVector() ||
   15316        (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
   15317       isa<LoadSDNode>(St->getValue()) &&
   15318       !cast<LoadSDNode>(St->getValue())->isVolatile() &&
   15319       St->getChain().hasOneUse() && !St->isVolatile()) {
   15320     SDNode* LdVal = St->getValue().getNode();
   15321     LoadSDNode *Ld = 0;
   15322     int TokenFactorIndex = -1;
   15323     SmallVector<SDValue, 8> Ops;
   15324     SDNode* ChainVal = St->getChain().getNode();
   15325     // Must be a store of a load.  We currently handle two cases:  the load
   15326     // is a direct child, and it's under an intervening TokenFactor.  It is
   15327     // possible to dig deeper under nested TokenFactors.
   15328     if (ChainVal == LdVal)
   15329       Ld = cast<LoadSDNode>(St->getChain());
   15330     else if (St->getValue().hasOneUse() &&
   15331              ChainVal->getOpcode() == ISD::TokenFactor) {
   15332       for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
   15333         if (ChainVal->getOperand(i).getNode() == LdVal) {
   15334           TokenFactorIndex = i;
   15335           Ld = cast<LoadSDNode>(St->getValue());
   15336         } else
   15337           Ops.push_back(ChainVal->getOperand(i));
   15338       }
   15339     }
   15340 
   15341     if (!Ld || !ISD::isNormalLoad(Ld))
   15342       return SDValue();
   15343 
   15344     // If this is not the MMX case, i.e. we are just turning i64 load/store
   15345     // into f64 load/store, avoid the transformation if there are multiple
   15346     // uses of the loaded value.
   15347     if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
   15348       return SDValue();
   15349 
   15350     DebugLoc LdDL = Ld->getDebugLoc();
   15351     DebugLoc StDL = N->getDebugLoc();
   15352     // If we are a 64-bit capable x86, lower to a single movq load/store pair.
   15353     // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
   15354     // pair instead.
   15355     if (Subtarget->is64Bit() || F64IsLegal) {
   15356       EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
   15357       SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
   15358                                   Ld->getPointerInfo(), Ld->isVolatile(),
   15359                                   Ld->isNonTemporal(), Ld->isInvariant(),
   15360                                   Ld->getAlignment());
   15361       SDValue NewChain = NewLd.getValue(1);
   15362       if (TokenFactorIndex != -1) {
   15363         Ops.push_back(NewChain);
   15364         NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
   15365                                Ops.size());
   15366       }
   15367       return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
   15368                           St->getPointerInfo(),
   15369                           St->isVolatile(), St->isNonTemporal(),
   15370                           St->getAlignment());
   15371     }
   15372 
   15373     // Otherwise, lower to two pairs of 32-bit loads / stores.
   15374     SDValue LoAddr = Ld->getBasePtr();
   15375     SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
   15376                                  DAG.getConstant(4, MVT::i32));
   15377 
   15378     SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
   15379                                Ld->getPointerInfo(),
   15380                                Ld->isVolatile(), Ld->isNonTemporal(),
   15381                                Ld->isInvariant(), Ld->getAlignment());
   15382     SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
   15383                                Ld->getPointerInfo().getWithOffset(4),
   15384                                Ld->isVolatile(), Ld->isNonTemporal(),
   15385                                Ld->isInvariant(),
   15386                                MinAlign(Ld->getAlignment(), 4));
   15387 
   15388     SDValue NewChain = LoLd.getValue(1);
   15389     if (TokenFactorIndex != -1) {
   15390       Ops.push_back(LoLd);
   15391       Ops.push_back(HiLd);
   15392       NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
   15393                              Ops.size());
   15394     }
   15395 
   15396     LoAddr = St->getBasePtr();
   15397     HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
   15398                          DAG.getConstant(4, MVT::i32));
   15399 
   15400     SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
   15401                                 St->getPointerInfo(),
   15402                                 St->isVolatile(), St->isNonTemporal(),
   15403                                 St->getAlignment());
   15404     SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
   15405                                 St->getPointerInfo().getWithOffset(4),
   15406                                 St->isVolatile(),
   15407                                 St->isNonTemporal(),
   15408                                 MinAlign(St->getAlignment(), 4));
   15409     return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
   15410   }
   15411   return SDValue();
   15412 }
   15413 
   15414 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
   15415 /// and return the operands for the horizontal operation in LHS and RHS.  A
   15416 /// horizontal operation performs the binary operation on successive elements
   15417 /// of its first operand, then on successive elements of its second operand,
   15418 /// returning the resulting values in a vector.  For example, if
   15419 ///   A = < float a0, float a1, float a2, float a3 >
   15420 /// and
   15421 ///   B = < float b0, float b1, float b2, float b3 >
   15422 /// then the result of doing a horizontal operation on A and B is
   15423 ///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
   15424 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
   15425 /// A horizontal-op B, for some already available A and B, and if so then LHS is
   15426 /// set to A, RHS to B, and the routine returns 'true'.
   15427 /// Note that the binary operation should have the property that if one of the
   15428 /// operands is UNDEF then the result is UNDEF.
   15429 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
   15430   // Look for the following pattern: if
   15431   //   A = < float a0, float a1, float a2, float a3 >
   15432   //   B = < float b0, float b1, float b2, float b3 >
   15433   // and
   15434   //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
   15435   //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
   15436   // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
   15437   // which is A horizontal-op B.
   15438 
   15439   // At least one of the operands should be a vector shuffle.
   15440   if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
   15441       RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
   15442     return false;
   15443 
   15444   EVT VT = LHS.getValueType();
   15445 
   15446   assert((VT.is128BitVector() || VT.is256BitVector()) &&
   15447          "Unsupported vector type for horizontal add/sub");
   15448 
   15449   // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
   15450   // operate independently on 128-bit lanes.
   15451   unsigned NumElts = VT.getVectorNumElements();
   15452   unsigned NumLanes = VT.getSizeInBits()/128;
   15453   unsigned NumLaneElts = NumElts / NumLanes;
   15454   assert((NumLaneElts % 2 == 0) &&
   15455          "Vector type should have an even number of elements in each lane");
   15456   unsigned HalfLaneElts = NumLaneElts/2;
   15457 
   15458   // View LHS in the form
   15459   //   LHS = VECTOR_SHUFFLE A, B, LMask
   15460   // If LHS is not a shuffle then pretend it is the shuffle
   15461   //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
   15462   // NOTE: in what follows a default initialized SDValue represents an UNDEF of
   15463   // type VT.
   15464   SDValue A, B;
   15465   SmallVector<int, 16> LMask(NumElts);
   15466   if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
   15467     if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
   15468       A = LHS.getOperand(0);
   15469     if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
   15470       B = LHS.getOperand(1);
   15471     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
   15472     std::copy(Mask.begin(), Mask.end(), LMask.begin());
   15473   } else {
   15474     if (LHS.getOpcode() != ISD::UNDEF)
   15475       A = LHS;
   15476     for (unsigned i = 0; i != NumElts; ++i)
   15477       LMask[i] = i;
   15478   }
   15479 
   15480   // Likewise, view RHS in the form
   15481   //   RHS = VECTOR_SHUFFLE C, D, RMask
   15482   SDValue C, D;
   15483   SmallVector<int, 16> RMask(NumElts);
   15484   if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
   15485     if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
   15486       C = RHS.getOperand(0);
   15487     if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
   15488       D = RHS.getOperand(1);
   15489     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
   15490     std::copy(Mask.begin(), Mask.end(), RMask.begin());
   15491   } else {
   15492     if (RHS.getOpcode() != ISD::UNDEF)
   15493       C = RHS;
   15494     for (unsigned i = 0; i != NumElts; ++i)
   15495       RMask[i] = i;
   15496   }
   15497 
   15498   // Check that the shuffles are both shuffling the same vectors.
   15499   if (!(A == C && B == D) && !(A == D && B == C))
   15500     return false;
   15501 
   15502   // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
   15503   if (!A.getNode() && !B.getNode())
   15504     return false;
   15505 
   15506   // If A and B occur in reverse order in RHS, then "swap" them (which means
   15507   // rewriting the mask).
   15508   if (A != C)
   15509     CommuteVectorShuffleMask(RMask, NumElts);
   15510 
   15511   // At this point LHS and RHS are equivalent to
   15512   //   LHS = VECTOR_SHUFFLE A, B, LMask
   15513   //   RHS = VECTOR_SHUFFLE A, B, RMask
   15514   // Check that the masks correspond to performing a horizontal operation.
   15515   for (unsigned i = 0; i != NumElts; ++i) {
   15516     int LIdx = LMask[i], RIdx = RMask[i];
   15517 
   15518     // Ignore any UNDEF components.
   15519     if (LIdx < 0 || RIdx < 0 ||
   15520         (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
   15521         (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
   15522       continue;
   15523 
   15524     // Check that successive elements are being operated on.  If not, this is
   15525     // not a horizontal operation.
   15526     unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
   15527     unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
   15528     int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
   15529     if (!(LIdx == Index && RIdx == Index + 1) &&
   15530         !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
   15531       return false;
   15532   }
   15533 
   15534   LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
   15535   RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
   15536   return true;
   15537 }
   15538 
   15539 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
   15540 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
   15541                                   const X86Subtarget *Subtarget) {
   15542   EVT VT = N->getValueType(0);
   15543   SDValue LHS = N->getOperand(0);
   15544   SDValue RHS = N->getOperand(1);
   15545 
   15546   // Try to synthesize horizontal adds from adds of shuffles.
   15547   if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
   15548        (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
   15549       isHorizontalBinOp(LHS, RHS, true))
   15550     return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
   15551   return SDValue();
   15552 }
   15553 
   15554 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
   15555 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
   15556                                   const X86Subtarget *Subtarget) {
   15557   EVT VT = N->getValueType(0);
   15558   SDValue LHS = N->getOperand(0);
   15559   SDValue RHS = N->getOperand(1);
   15560 
   15561   // Try to synthesize horizontal subs from subs of shuffles.
   15562   if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
   15563        (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
   15564       isHorizontalBinOp(LHS, RHS, false))
   15565     return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
   15566   return SDValue();
   15567 }
   15568 
   15569 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
   15570 /// X86ISD::FXOR nodes.
   15571 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
   15572   assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
   15573   // F[X]OR(0.0, x) -> x
   15574   // F[X]OR(x, 0.0) -> x
   15575   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   15576     if (C->getValueAPF().isPosZero())
   15577       return N->getOperand(1);
   15578   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
   15579     if (C->getValueAPF().isPosZero())
   15580       return N->getOperand(0);
   15581   return SDValue();
   15582 }
   15583 
   15584 /// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
   15585 /// X86ISD::FMAX nodes.
   15586 static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
   15587   assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
   15588 
   15589   // Only perform optimizations if UnsafeMath is used.
   15590   if (!DAG.getTarget().Options.UnsafeFPMath)
   15591     return SDValue();
   15592 
   15593   // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
   15594   // into FMINC and FMAXC, which are Commutative operations.
   15595   unsigned NewOp = 0;
   15596   switch (N->getOpcode()) {
   15597     default: llvm_unreachable("unknown opcode");
   15598     case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
   15599     case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
   15600   }
   15601 
   15602   return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
   15603                      N->getOperand(0), N->getOperand(1));
   15604 }
   15605 
   15606 
   15607 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
   15608 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
   15609   // FAND(0.0, x) -> 0.0
   15610   // FAND(x, 0.0) -> 0.0
   15611   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
   15612     if (C->getValueAPF().isPosZero())
   15613       return N->getOperand(0);
   15614   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
   15615     if (C->getValueAPF().isPosZero())
   15616       return N->getOperand(1);
   15617   return SDValue();
   15618 }
   15619 
   15620 static SDValue PerformBTCombine(SDNode *N,
   15621                                 SelectionDAG &DAG,
   15622                                 TargetLowering::DAGCombinerInfo &DCI) {
   15623   // BT ignores high bits in the bit index operand.
   15624   SDValue Op1 = N->getOperand(1);
   15625   if (Op1.hasOneUse()) {
   15626     unsigned BitWidth = Op1.getValueSizeInBits();
   15627     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
   15628     APInt KnownZero, KnownOne;
   15629     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   15630                                           !DCI.isBeforeLegalizeOps());
   15631     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   15632     if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
   15633         TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
   15634       DCI.CommitTargetLoweringOpt(TLO);
   15635   }
   15636   return SDValue();
   15637 }
   15638 
   15639 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
   15640   SDValue Op = N->getOperand(0);
   15641   if (Op.getOpcode() == ISD::BITCAST)
   15642     Op = Op.getOperand(0);
   15643   EVT VT = N->getValueType(0), OpVT = Op.getValueType();
   15644   if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
   15645       VT.getVectorElementType().getSizeInBits() ==
   15646       OpVT.getVectorElementType().getSizeInBits()) {
   15647     return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
   15648   }
   15649   return SDValue();
   15650 }
   15651 
   15652 static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
   15653                                   TargetLowering::DAGCombinerInfo &DCI,
   15654                                   const X86Subtarget *Subtarget) {
   15655   if (!DCI.isBeforeLegalizeOps())
   15656     return SDValue();
   15657 
   15658   if (!Subtarget->hasAVX())
   15659     return SDValue();
   15660 
   15661   EVT VT = N->getValueType(0);
   15662   SDValue Op = N->getOperand(0);
   15663   EVT OpVT = Op.getValueType();
   15664   DebugLoc dl = N->getDebugLoc();
   15665 
   15666   if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
   15667       (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
   15668 
   15669     if (Subtarget->hasAVX2())
   15670       return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
   15671 
   15672     // Optimize vectors in AVX mode
   15673     // Sign extend  v8i16 to v8i32 and
   15674     //              v4i32 to v4i64
   15675     //
   15676     // Divide input vector into two parts
   15677     // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
   15678     // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
   15679     // concat the vectors to original VT
   15680 
   15681     unsigned NumElems = OpVT.getVectorNumElements();
   15682     SDValue Undef = DAG.getUNDEF(OpVT);
   15683 
   15684     SmallVector<int,8> ShufMask1(NumElems, -1);
   15685     for (unsigned i = 0; i != NumElems/2; ++i)
   15686       ShufMask1[i] = i;
   15687 
   15688     SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]);
   15689 
   15690     SmallVector<int,8> ShufMask2(NumElems, -1);
   15691     for (unsigned i = 0; i != NumElems/2; ++i)
   15692       ShufMask2[i] = i + NumElems/2;
   15693 
   15694     SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]);
   15695 
   15696     EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
   15697                                   VT.getVectorNumElements()/2);
   15698 
   15699     OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
   15700     OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
   15701 
   15702     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
   15703   }
   15704   return SDValue();
   15705 }
   15706 
   15707 static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
   15708                                  const X86Subtarget* Subtarget) {
   15709   DebugLoc dl = N->getDebugLoc();
   15710   EVT VT = N->getValueType(0);
   15711 
   15712   // Let legalize expand this if it isn't a legal type yet.
   15713   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   15714     return SDValue();
   15715 
   15716   EVT ScalarVT = VT.getScalarType();
   15717   if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
   15718       (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
   15719     return SDValue();
   15720 
   15721   SDValue A = N->getOperand(0);
   15722   SDValue B = N->getOperand(1);
   15723   SDValue C = N->getOperand(2);
   15724 
   15725   bool NegA = (A.getOpcode() == ISD::FNEG);
   15726   bool NegB = (B.getOpcode() == ISD::FNEG);
   15727   bool NegC = (C.getOpcode() == ISD::FNEG);
   15728 
   15729   // Negative multiplication when NegA xor NegB
   15730   bool NegMul = (NegA != NegB);
   15731   if (NegA)
   15732     A = A.getOperand(0);
   15733   if (NegB)
   15734     B = B.getOperand(0);
   15735   if (NegC)
   15736     C = C.getOperand(0);
   15737 
   15738   unsigned Opcode;
   15739   if (!NegMul)
   15740     Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
   15741   else
   15742     Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
   15743 
   15744   return DAG.getNode(Opcode, dl, VT, A, B, C);
   15745 }
   15746 
   15747 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
   15748                                   TargetLowering::DAGCombinerInfo &DCI,
   15749                                   const X86Subtarget *Subtarget) {
   15750   // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
   15751   //           (and (i32 x86isd::setcc_carry), 1)
   15752   // This eliminates the zext. This transformation is necessary because
   15753   // ISD::SETCC is always legalized to i8.
   15754   DebugLoc dl = N->getDebugLoc();
   15755   SDValue N0 = N->getOperand(0);
   15756   EVT VT = N->getValueType(0);
   15757   EVT OpVT = N0.getValueType();
   15758 
   15759   if (N0.getOpcode() == ISD::AND &&
   15760       N0.hasOneUse() &&
   15761       N0.getOperand(0).hasOneUse()) {
   15762     SDValue N00 = N0.getOperand(0);
   15763     if (N00.getOpcode() != X86ISD::SETCC_CARRY)
   15764       return SDValue();
   15765     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
   15766     if (!C || C->getZExtValue() != 1)
   15767       return SDValue();
   15768     return DAG.getNode(ISD::AND, dl, VT,
   15769                        DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
   15770                                    N00.getOperand(0), N00.getOperand(1)),
   15771                        DAG.getConstant(1, VT));
   15772   }
   15773 
   15774   // Optimize vectors in AVX mode:
   15775   //
   15776   //   v8i16 -> v8i32
   15777   //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
   15778   //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
   15779   //   Concat upper and lower parts.
   15780   //
   15781   //   v4i32 -> v4i64
   15782   //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
   15783   //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
   15784   //   Concat upper and lower parts.
   15785   //
   15786   if (!DCI.isBeforeLegalizeOps())
   15787     return SDValue();
   15788 
   15789   if (!Subtarget->hasAVX())
   15790     return SDValue();
   15791 
   15792   if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
   15793       ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
   15794 
   15795     if (Subtarget->hasAVX2())
   15796       return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
   15797 
   15798     SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
   15799     SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
   15800     SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
   15801 
   15802     EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
   15803                                VT.getVectorNumElements()/2);
   15804 
   15805     OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
   15806     OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
   15807 
   15808     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
   15809   }
   15810 
   15811   return SDValue();
   15812 }
   15813 
   15814 // Optimize x == -y --> x+y == 0
   15815 //          x != -y --> x+y != 0
   15816 static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
   15817   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
   15818   SDValue LHS = N->getOperand(0);
   15819   SDValue RHS = N->getOperand(1);
   15820 
   15821   if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
   15822     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
   15823       if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
   15824         SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
   15825                                    LHS.getValueType(), RHS, LHS.getOperand(1));
   15826         return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
   15827                             addV, DAG.getConstant(0, addV.getValueType()), CC);
   15828       }
   15829   if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
   15830     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
   15831       if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
   15832         SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
   15833                                    RHS.getValueType(), LHS, RHS.getOperand(1));
   15834         return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
   15835                             addV, DAG.getConstant(0, addV.getValueType()), CC);
   15836       }
   15837   return SDValue();
   15838 }
   15839 
   15840 // Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
   15841 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
   15842                                    TargetLowering::DAGCombinerInfo &DCI,
   15843                                    const X86Subtarget *Subtarget) {
   15844   DebugLoc DL = N->getDebugLoc();
   15845   X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
   15846   SDValue EFLAGS = N->getOperand(1);
   15847 
   15848   // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
   15849   // a zext and produces an all-ones bit which is more useful than 0/1 in some
   15850   // cases.
   15851   if (CC == X86::COND_B)
   15852     return DAG.getNode(ISD::AND, DL, MVT::i8,
   15853                        DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
   15854                                    DAG.getConstant(CC, MVT::i8), EFLAGS),
   15855                        DAG.getConstant(1, MVT::i8));
   15856 
   15857   SDValue Flags;
   15858 
   15859   Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
   15860   if (Flags.getNode()) {
   15861     SDValue Cond = DAG.getConstant(CC, MVT::i8);
   15862     return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
   15863   }
   15864 
   15865   Flags = checkFlaggedOrCombine(EFLAGS, CC, DAG, Subtarget);
   15866   if (Flags.getNode()) {
   15867     SDValue Cond = DAG.getConstant(CC, MVT::i8);
   15868     return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
   15869   }
   15870 
   15871   return SDValue();
   15872 }
   15873 
   15874 // Optimize branch condition evaluation.
   15875 //
   15876 static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
   15877                                     TargetLowering::DAGCombinerInfo &DCI,
   15878                                     const X86Subtarget *Subtarget) {
   15879   DebugLoc DL = N->getDebugLoc();
   15880   SDValue Chain = N->getOperand(0);
   15881   SDValue Dest = N->getOperand(1);
   15882   SDValue EFLAGS = N->getOperand(3);
   15883   X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
   15884 
   15885   SDValue Flags;
   15886 
   15887   Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
   15888   if (Flags.getNode()) {
   15889     SDValue Cond = DAG.getConstant(CC, MVT::i8);
   15890     return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
   15891                        Flags);
   15892   }
   15893 
   15894   Flags = checkFlaggedOrCombine(EFLAGS, CC, DAG, Subtarget);
   15895   if (Flags.getNode()) {
   15896     SDValue Cond = DAG.getConstant(CC, MVT::i8);
   15897     return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
   15898                        Flags);
   15899   }
   15900 
   15901   return SDValue();
   15902 }
   15903 
   15904 static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
   15905   SDValue Op0 = N->getOperand(0);
   15906   EVT InVT = Op0->getValueType(0);
   15907 
   15908   // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
   15909   if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
   15910     DebugLoc dl = N->getDebugLoc();
   15911     MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
   15912     SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
   15913     // Notice that we use SINT_TO_FP because we know that the high bits
   15914     // are zero and SINT_TO_FP is better supported by the hardware.
   15915     return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
   15916   }
   15917 
   15918   return SDValue();
   15919 }
   15920 
   15921 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
   15922                                         const X86TargetLowering *XTLI) {
   15923   SDValue Op0 = N->getOperand(0);
   15924   EVT InVT = Op0->getValueType(0);
   15925 
   15926   // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
   15927   if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
   15928     DebugLoc dl = N->getDebugLoc();
   15929     MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
   15930     SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
   15931     return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
   15932   }
   15933 
   15934   // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
   15935   // a 32-bit target where SSE doesn't support i64->FP operations.
   15936   if (Op0.getOpcode() == ISD::LOAD) {
   15937     LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
   15938     EVT VT = Ld->getValueType(0);
   15939     if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
   15940         ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
   15941         !XTLI->getSubtarget()->is64Bit() &&
   15942         !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   15943       SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
   15944                                           Ld->getChain(), Op0, DAG);
   15945       DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
   15946       return FILDChain;
   15947     }
   15948   }
   15949   return SDValue();
   15950 }
   15951 
   15952 static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
   15953   EVT VT = N->getValueType(0);
   15954 
   15955   // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
   15956   if (VT == MVT::v8i8 || VT == MVT::v4i8) {
   15957     DebugLoc dl = N->getDebugLoc();
   15958     MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
   15959     SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
   15960     return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
   15961   }
   15962 
   15963   return SDValue();
   15964 }
   15965 
   15966 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
   15967 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
   15968                                  X86TargetLowering::DAGCombinerInfo &DCI) {
   15969   // If the LHS and RHS of the ADC node are zero, then it can't overflow and
   15970   // the result is either zero or one (depending on the input carry bit).
   15971   // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
   15972   if (X86::isZeroNode(N->getOperand(0)) &&
   15973       X86::isZeroNode(N->getOperand(1)) &&
   15974       // We don't have a good way to replace an EFLAGS use, so only do this when
   15975       // dead right now.
   15976       SDValue(N, 1).use_empty()) {
   15977     DebugLoc DL = N->getDebugLoc();
   15978     EVT VT = N->getValueType(0);
   15979     SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
   15980     SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
   15981                                DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
   15982                                            DAG.getConstant(X86::COND_B,MVT::i8),
   15983                                            N->getOperand(2)),
   15984                                DAG.getConstant(1, VT));
   15985     return DCI.CombineTo(N, Res1, CarryOut);
   15986   }
   15987 
   15988   return SDValue();
   15989 }
   15990 
   15991 // fold (add Y, (sete  X, 0)) -> adc  0, Y
   15992 //      (add Y, (setne X, 0)) -> sbb -1, Y
   15993 //      (sub (sete  X, 0), Y) -> sbb  0, Y
   15994 //      (sub (setne X, 0), Y) -> adc -1, Y
   15995 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
   15996   DebugLoc DL = N->getDebugLoc();
   15997 
   15998   // Look through ZExts.
   15999   SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
   16000   if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
   16001     return SDValue();
   16002 
   16003   SDValue SetCC = Ext.getOperand(0);
   16004   if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
   16005     return SDValue();
   16006 
   16007   X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
   16008   if (CC != X86::COND_E && CC != X86::COND_NE)
   16009     return SDValue();
   16010 
   16011   SDValue Cmp = SetCC.getOperand(1);
   16012   if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
   16013       !X86::isZeroNode(Cmp.getOperand(1)) ||
   16014       !Cmp.getOperand(0).getValueType().isInteger())
   16015     return SDValue();
   16016 
   16017   SDValue CmpOp0 = Cmp.getOperand(0);
   16018   SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
   16019                                DAG.getConstant(1, CmpOp0.getValueType()));
   16020 
   16021   SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
   16022   if (CC == X86::COND_NE)
   16023     return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
   16024                        DL, OtherVal.getValueType(), OtherVal,
   16025                        DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
   16026   return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
   16027                      DL, OtherVal.getValueType(), OtherVal,
   16028                      DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
   16029 }
   16030 
   16031 /// PerformADDCombine - Do target-specific dag combines on integer adds.
   16032 static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
   16033                                  const X86Subtarget *Subtarget) {
   16034   EVT VT = N->getValueType(0);
   16035   SDValue Op0 = N->getOperand(0);
   16036   SDValue Op1 = N->getOperand(1);
   16037 
   16038   // Try to synthesize horizontal adds from adds of shuffles.
   16039   if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
   16040        (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
   16041       isHorizontalBinOp(Op0, Op1, true))
   16042     return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
   16043 
   16044   return OptimizeConditionalInDecrement(N, DAG);
   16045 }
   16046 
   16047 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
   16048                                  const X86Subtarget *Subtarget) {
   16049   SDValue Op0 = N->getOperand(0);
   16050   SDValue Op1 = N->getOperand(1);
   16051 
   16052   // X86 can't encode an immediate LHS of a sub. See if we can push the
   16053   // negation into a preceding instruction.
   16054   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
   16055     // If the RHS of the sub is a XOR with one use and a constant, invert the
   16056     // immediate. Then add one to the LHS of the sub so we can turn
   16057     // X-Y -> X+~Y+1, saving one register.
   16058     if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
   16059         isa<ConstantSDNode>(Op1.getOperand(1))) {
   16060       APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
   16061       EVT VT = Op0.getValueType();
   16062       SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
   16063                                    Op1.getOperand(0),
   16064                                    DAG.getConstant(~XorC, VT));
   16065       return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
   16066                          DAG.getConstant(C->getAPIntValue()+1, VT));
   16067     }
   16068   }
   16069 
   16070   // Try to synthesize horizontal adds from adds of shuffles.
   16071   EVT VT = N->getValueType(0);
   16072   if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
   16073        (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
   16074       isHorizontalBinOp(Op0, Op1, true))
   16075     return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
   16076 
   16077   return OptimizeConditionalInDecrement(N, DAG);
   16078 }
   16079 
   16080 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
   16081                                              DAGCombinerInfo &DCI) const {
   16082   SelectionDAG &DAG = DCI.DAG;
   16083   switch (N->getOpcode()) {
   16084   default: break;
   16085   case ISD::EXTRACT_VECTOR_ELT:
   16086     return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
   16087   case ISD::VSELECT:
   16088   case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
   16089   case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
   16090   case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
   16091   case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
   16092   case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
   16093   case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
   16094   case ISD::SHL:
   16095   case ISD::SRA:
   16096   case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
   16097   case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
   16098   case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
   16099   case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
   16100   case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
   16101   case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
   16102   case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
   16103   case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
   16104   case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
   16105   case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
   16106   case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
   16107   case X86ISD::FXOR:
   16108   case X86ISD::FOR:         return PerformFORCombine(N, DAG);
   16109   case X86ISD::FMIN:
   16110   case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
   16111   case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
   16112   case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
   16113   case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
   16114   case ISD::ANY_EXTEND:
   16115   case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
   16116   case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
   16117   case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
   16118   case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
   16119   case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
   16120   case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
   16121   case X86ISD::SHUFP:       // Handle all target specific shuffles
   16122   case X86ISD::PALIGN:
   16123   case X86ISD::UNPCKH:
   16124   case X86ISD::UNPCKL:
   16125   case X86ISD::MOVHLPS:
   16126   case X86ISD::MOVLHPS:
   16127   case X86ISD::PSHUFD:
   16128   case X86ISD::PSHUFHW:
   16129   case X86ISD::PSHUFLW:
   16130   case X86ISD::MOVSS:
   16131   case X86ISD::MOVSD:
   16132   case X86ISD::VPERMILP:
   16133   case X86ISD::VPERM2X128:
   16134   case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
   16135   case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
   16136   }
   16137 
   16138   return SDValue();
   16139 }
   16140 
   16141 /// isTypeDesirableForOp - Return true if the target has native support for
   16142 /// the specified value type and it is 'desirable' to use the type for the
   16143 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
   16144 /// instruction encodings are longer and some i16 instructions are slow.
   16145 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
   16146   if (!isTypeLegal(VT))
   16147     return false;
   16148   if (VT != MVT::i16)
   16149     return true;
   16150 
   16151   switch (Opc) {
   16152   default:
   16153     return true;
   16154   case ISD::LOAD:
   16155   case ISD::SIGN_EXTEND:
   16156   case ISD::ZERO_EXTEND:
   16157   case ISD::ANY_EXTEND:
   16158   case ISD::SHL:
   16159   case ISD::SRL:
   16160   case ISD::SUB:
   16161   case ISD::ADD:
   16162   case ISD::MUL:
   16163   case ISD::AND:
   16164   case ISD::OR:
   16165   case ISD::XOR:
   16166     return false;
   16167   }
   16168 }
   16169 
   16170 /// IsDesirableToPromoteOp - This method query the target whether it is
   16171 /// beneficial for dag combiner to promote the specified node. If true, it
   16172 /// should return the desired promotion type by reference.
   16173 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
   16174   EVT VT = Op.getValueType();
   16175   if (VT != MVT::i16)
   16176     return false;
   16177 
   16178   bool Promote = false;
   16179   bool Commute = false;
   16180   switch (Op.getOpcode()) {
   16181   default: break;
   16182   case ISD::LOAD: {
   16183     LoadSDNode *LD = cast<LoadSDNode>(Op);
   16184     // If the non-extending load has a single use and it's not live out, then it
   16185     // might be folded.
   16186     if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
   16187                                                      Op.hasOneUse()*/) {
   16188       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
   16189              UE = Op.getNode()->use_end(); UI != UE; ++UI) {
   16190         // The only case where we'd want to promote LOAD (rather then it being
   16191         // promoted as an operand is when it's only use is liveout.
   16192         if (UI->getOpcode() != ISD::CopyToReg)
   16193           return false;
   16194       }
   16195     }
   16196     Promote = true;
   16197     break;
   16198   }
   16199   case ISD::SIGN_EXTEND:
   16200   case ISD::ZERO_EXTEND:
   16201   case ISD::ANY_EXTEND:
   16202     Promote = true;
   16203     break;
   16204   case ISD::SHL:
   16205   case ISD::SRL: {
   16206     SDValue N0 = Op.getOperand(0);
   16207     // Look out for (store (shl (load), x)).
   16208     if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
   16209       return false;
   16210     Promote = true;
   16211     break;
   16212   }
   16213   case ISD::ADD:
   16214   case ISD::MUL:
   16215   case ISD::AND:
   16216   case ISD::OR:
   16217   case ISD::XOR:
   16218     Commute = true;
   16219     // fallthrough
   16220   case ISD::SUB: {
   16221     SDValue N0 = Op.getOperand(0);
   16222     SDValue N1 = Op.getOperand(1);
   16223     if (!Commute && MayFoldLoad(N1))
   16224       return false;
   16225     // Avoid disabling potential load folding opportunities.
   16226     if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
   16227       return false;
   16228     if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
   16229       return false;
   16230     Promote = true;
   16231   }
   16232   }
   16233 
   16234   PVT = MVT::i32;
   16235   return Promote;
   16236 }
   16237 
   16238 //===----------------------------------------------------------------------===//
   16239 //                           X86 Inline Assembly Support
   16240 //===----------------------------------------------------------------------===//
   16241 
   16242 namespace {
   16243   // Helper to match a string separated by whitespace.
   16244   bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
   16245     s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
   16246 
   16247     for (unsigned i = 0, e = args.size(); i != e; ++i) {
   16248       StringRef piece(*args[i]);
   16249       if (!s.startswith(piece)) // Check if the piece matches.
   16250         return false;
   16251 
   16252       s = s.substr(piece.size());
   16253       StringRef::size_type pos = s.find_first_not_of(" \t");
   16254       if (pos == 0) // We matched a prefix.
   16255         return false;
   16256 
   16257       s = s.substr(pos);
   16258     }
   16259 
   16260     return s.empty();
   16261   }
   16262   const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
   16263 }
   16264 
   16265 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
   16266   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   16267 
   16268   std::string AsmStr = IA->getAsmString();
   16269 
   16270   IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   16271   if (!Ty || Ty->getBitWidth() % 16 != 0)
   16272     return false;
   16273 
   16274   // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
   16275   SmallVector<StringRef, 4> AsmPieces;
   16276   SplitString(AsmStr, AsmPieces, ";\n");
   16277 
   16278   switch (AsmPieces.size()) {
   16279   default: return false;
   16280   case 1:
   16281     // FIXME: this should verify that we are targeting a 486 or better.  If not,
   16282     // we will turn this bswap into something that will be lowered to logical
   16283     // ops instead of emitting the bswap asm.  For now, we don't support 486 or
   16284     // lower so don't worry about this.
   16285     // bswap $0
   16286     if (matchAsm(AsmPieces[0], "bswap", "$0") ||
   16287         matchAsm(AsmPieces[0], "bswapl", "$0") ||
   16288         matchAsm(AsmPieces[0], "bswapq", "$0") ||
   16289         matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
   16290         matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
   16291         matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
   16292       // No need to check constraints, nothing other than the equivalent of
   16293       // "=r,0" would be valid here.
   16294       return IntrinsicLowering::LowerToByteSwap(CI);
   16295     }
   16296 
   16297     // rorw $$8, ${0:w}  -->  llvm.bswap.i16
   16298     if (CI->getType()->isIntegerTy(16) &&
   16299         IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
   16300         (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
   16301          matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
   16302       AsmPieces.clear();
   16303       const std::string &ConstraintsStr = IA->getConstraintString();
   16304       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
   16305       std::sort(AsmPieces.begin(), AsmPieces.end());
   16306       if (AsmPieces.size() == 4 &&
   16307           AsmPieces[0] == "~{cc}" &&
   16308           AsmPieces[1] == "~{dirflag}" &&
   16309           AsmPieces[2] == "~{flags}" &&
   16310           AsmPieces[3] == "~{fpsr}")
   16311       return IntrinsicLowering::LowerToByteSwap(CI);
   16312     }
   16313     break;
   16314   case 3:
   16315     if (CI->getType()->isIntegerTy(32) &&
   16316         IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
   16317         matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
   16318         matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
   16319         matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
   16320       AsmPieces.clear();
   16321       const std::string &ConstraintsStr = IA->getConstraintString();
   16322       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
   16323       std::sort(AsmPieces.begin(), AsmPieces.end());
   16324       if (AsmPieces.size() == 4 &&
   16325           AsmPieces[0] == "~{cc}" &&
   16326           AsmPieces[1] == "~{dirflag}" &&
   16327           AsmPieces[2] == "~{flags}" &&
   16328           AsmPieces[3] == "~{fpsr}")
   16329         return IntrinsicLowering::LowerToByteSwap(CI);
   16330     }
   16331 
   16332     if (CI->getType()->isIntegerTy(64)) {
   16333       InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
   16334       if (Constraints.size() >= 2 &&
   16335           Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
   16336           Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
   16337         // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
   16338         if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
   16339             matchAsm(AsmPieces[1], "bswap", "%edx") &&
   16340             matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
   16341           return IntrinsicLowering::LowerToByteSwap(CI);
   16342       }
   16343     }
   16344     break;
   16345   }
   16346   return false;
   16347 }
   16348 
   16349 
   16350 
   16351 /// getConstraintType - Given a constraint letter, return the type of
   16352 /// constraint it is for this target.
   16353 X86TargetLowering::ConstraintType
   16354 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
   16355   if (Constraint.size() == 1) {
   16356     switch (Constraint[0]) {
   16357     case 'R':
   16358     case 'q':
   16359     case 'Q':
   16360     case 'f':
   16361     case 't':
   16362     case 'u':
   16363     case 'y':
   16364     case 'x':
   16365     case 'Y':
   16366     case 'l':
   16367       return C_RegisterClass;
   16368     case 'a':
   16369     case 'b':
   16370     case 'c':
   16371     case 'd':
   16372     case 'S':
   16373     case 'D':
   16374     case 'A':
   16375       return C_Register;
   16376     case 'I':
   16377     case 'J':
   16378     case 'K':
   16379     case 'L':
   16380     case 'M':
   16381     case 'N':
   16382     case 'G':
   16383     case 'C':
   16384     case 'e':
   16385     case 'Z':
   16386       return C_Other;
   16387     default:
   16388       break;
   16389     }
   16390   }
   16391   return TargetLowering::getConstraintType(Constraint);
   16392 }
   16393 
   16394 /// Examine constraint type and operand type and determine a weight value.
   16395 /// This object must already have been set up with the operand type
   16396 /// and the current alternative constraint selected.
   16397 TargetLowering::ConstraintWeight
   16398   X86TargetLowering::getSingleConstraintMatchWeight(
   16399     AsmOperandInfo &info, const char *constraint) const {
   16400   ConstraintWeight weight = CW_Invalid;
   16401   Value *CallOperandVal = info.CallOperandVal;
   16402     // If we don't have a value, we can't do a match,
   16403     // but allow it at the lowest weight.
   16404   if (CallOperandVal == NULL)
   16405     return CW_Default;
   16406   Type *type = CallOperandVal->getType();
   16407   // Look at the constraint type.
   16408   switch (*constraint) {
   16409   default:
   16410     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   16411   case 'R':
   16412   case 'q':
   16413   case 'Q':
   16414   case 'a':
   16415   case 'b':
   16416   case 'c':
   16417   case 'd':
   16418   case 'S':
   16419   case 'D':
   16420   case 'A':
   16421     if (CallOperandVal->getType()->isIntegerTy())
   16422       weight = CW_SpecificReg;
   16423     break;
   16424   case 'f':
   16425   case 't':
   16426   case 'u':
   16427       if (type->isFloatingPointTy())
   16428         weight = CW_SpecificReg;
   16429       break;
   16430   case 'y':
   16431       if (type->isX86_MMXTy() && Subtarget->hasMMX())
   16432         weight = CW_SpecificReg;
   16433       break;
   16434   case 'x':
   16435   case 'Y':
   16436     if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
   16437         ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
   16438       weight = CW_Register;
   16439     break;
   16440   case 'I':
   16441     if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
   16442       if (C->getZExtValue() <= 31)
   16443         weight = CW_Constant;
   16444     }
   16445     break;
   16446   case 'J':
   16447     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   16448       if (C->getZExtValue() <= 63)
   16449         weight = CW_Constant;
   16450     }
   16451     break;
   16452   case 'K':
   16453     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   16454       if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
   16455         weight = CW_Constant;
   16456     }
   16457     break;
   16458   case 'L':
   16459     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   16460       if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
   16461         weight = CW_Constant;
   16462     }
   16463     break;
   16464   case 'M':
   16465     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   16466       if (C->getZExtValue() <= 3)
   16467         weight = CW_Constant;
   16468     }
   16469     break;
   16470   case 'N':
   16471     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   16472       if (C->getZExtValue() <= 0xff)
   16473         weight = CW_Constant;
   16474     }
   16475     break;
   16476   case 'G':
   16477   case 'C':
   16478     if (dyn_cast<ConstantFP>(CallOperandVal)) {
   16479       weight = CW_Constant;
   16480     }
   16481     break;
   16482   case 'e':
   16483     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   16484       if ((C->getSExtValue() >= -0x80000000LL) &&
   16485           (C->getSExtValue() <= 0x7fffffffLL))
   16486         weight = CW_Constant;
   16487     }
   16488     break;
   16489   case 'Z':
   16490     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
   16491       if (C->getZExtValue() <= 0xffffffff)
   16492         weight = CW_Constant;
   16493     }
   16494     break;
   16495   }
   16496   return weight;
   16497 }
   16498 
   16499 /// LowerXConstraint - try to replace an X constraint, which matches anything,
   16500 /// with another that has more specific requirements based on the type of the
   16501 /// corresponding operand.
   16502 const char *X86TargetLowering::
   16503 LowerXConstraint(EVT ConstraintVT) const {
   16504   // FP X constraints get lowered to SSE1/2 registers if available, otherwise
   16505   // 'f' like normal targets.
   16506   if (ConstraintVT.isFloatingPoint()) {
   16507     if (Subtarget->hasSSE2())
   16508       return "Y";
   16509     if (Subtarget->hasSSE1())
   16510       return "x";
   16511   }
   16512 
   16513   return TargetLowering::LowerXConstraint(ConstraintVT);
   16514 }
   16515 
   16516 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   16517 /// vector.  If it is invalid, don't add anything to Ops.
   16518 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   16519                                                      std::string &Constraint,
   16520                                                      std::vector<SDValue>&Ops,
   16521                                                      SelectionDAG &DAG) const {
   16522   SDValue Result(0, 0);
   16523 
   16524   // Only support length 1 constraints for now.
   16525   if (Constraint.length() > 1) return;
   16526 
   16527   char ConstraintLetter = Constraint[0];
   16528   switch (ConstraintLetter) {
   16529   default: break;
   16530   case 'I':
   16531     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   16532       if (C->getZExtValue() <= 31) {
   16533         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   16534         break;
   16535       }
   16536     }
   16537     return;
   16538   case 'J':
   16539     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   16540       if (C->getZExtValue() <= 63) {
   16541         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   16542         break;
   16543       }
   16544     }
   16545     return;
   16546   case 'K':
   16547     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   16548       if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
   16549         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   16550         break;
   16551       }
   16552     }
   16553     return;
   16554   case 'N':
   16555     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   16556       if (C->getZExtValue() <= 255) {
   16557         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   16558         break;
   16559       }
   16560     }
   16561     return;
   16562   case 'e': {
   16563     // 32-bit signed value
   16564     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   16565       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
   16566                                            C->getSExtValue())) {
   16567         // Widen to 64 bits here to get it sign extended.
   16568         Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
   16569         break;
   16570       }
   16571     // FIXME gcc accepts some relocatable values here too, but only in certain
   16572     // memory models; it's complicated.
   16573     }
   16574     return;
   16575   }
   16576   case 'Z': {
   16577     // 32-bit unsigned value
   16578     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
   16579       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
   16580                                            C->getZExtValue())) {
   16581         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
   16582         break;
   16583       }
   16584     }
   16585     // FIXME gcc accepts some relocatable values here too, but only in certain
   16586     // memory models; it's complicated.
   16587     return;
   16588   }
   16589   case 'i': {
   16590     // Literal immediates are always ok.
   16591     if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
   16592       // Widen to 64 bits here to get it sign extended.
   16593       Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
   16594       break;
   16595     }
   16596 
   16597     // In any sort of PIC mode addresses need to be computed at runtime by
   16598     // adding in a register or some sort of table lookup.  These can't
   16599     // be used as immediates.
   16600     if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
   16601       return;
   16602 
   16603     // If we are in non-pic codegen mode, we allow the address of a global (with
   16604     // an optional displacement) to be used with 'i'.
   16605     GlobalAddressSDNode *GA = 0;
   16606     int64_t Offset = 0;
   16607 
   16608     // Match either (GA), (GA+C), (GA+C1+C2), etc.
   16609     while (1) {
   16610       if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
   16611         Offset += GA->getOffset();
   16612         break;
   16613       } else if (Op.getOpcode() == ISD::ADD) {
   16614         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   16615           Offset += C->getZExtValue();
   16616           Op = Op.getOperand(0);
   16617           continue;
   16618         }
   16619       } else if (Op.getOpcode() == ISD::SUB) {
   16620         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
   16621           Offset += -C->getZExtValue();
   16622           Op = Op.getOperand(0);
   16623           continue;
   16624         }
   16625       }
   16626 
   16627       // Otherwise, this isn't something we can handle, reject it.
   16628       return;
   16629     }
   16630 
   16631     const GlobalValue *GV = GA->getGlobal();
   16632     // If we require an extra load to get this address, as in PIC mode, we
   16633     // can't accept it.
   16634     if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
   16635                                                         getTargetMachine())))
   16636       return;
   16637 
   16638     Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
   16639                                         GA->getValueType(0), Offset);
   16640     break;
   16641   }
   16642   }
   16643 
   16644   if (Result.getNode()) {
   16645     Ops.push_back(Result);
   16646     return;
   16647   }
   16648   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   16649 }
   16650 
   16651 std::pair<unsigned, const TargetRegisterClass*>
   16652 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
   16653                                                 EVT VT) const {
   16654   // First, see if this is a constraint that directly corresponds to an LLVM
   16655   // register class.
   16656   if (Constraint.size() == 1) {
   16657     // GCC Constraint Letters
   16658     switch (Constraint[0]) {
   16659     default: break;
   16660       // TODO: Slight differences here in allocation order and leaving
   16661       // RIP in the class. Do they matter any more here than they do
   16662       // in the normal allocation?
   16663     case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
   16664       if (Subtarget->is64Bit()) {
   16665         if (VT == MVT::i32 || VT == MVT::f32)
   16666           return std::make_pair(0U, &X86::GR32RegClass);
   16667         if (VT == MVT::i16)
   16668           return std::make_pair(0U, &X86::GR16RegClass);
   16669         if (VT == MVT::i8 || VT == MVT::i1)
   16670           return std::make_pair(0U, &X86::GR8RegClass);
   16671         if (VT == MVT::i64 || VT == MVT::f64)
   16672           return std::make_pair(0U, &X86::GR64RegClass);
   16673         break;
   16674       }
   16675       // 32-bit fallthrough
   16676     case 'Q':   // Q_REGS
   16677       if (VT == MVT::i32 || VT == MVT::f32)
   16678         return std::make_pair(0U, &X86::GR32_ABCDRegClass);
   16679       if (VT == MVT::i16)
   16680         return std::make_pair(0U, &X86::GR16_ABCDRegClass);
   16681       if (VT == MVT::i8 || VT == MVT::i1)
   16682         return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
   16683       if (VT == MVT::i64)
   16684         return std::make_pair(0U, &X86::GR64_ABCDRegClass);
   16685       break;
   16686     case 'r':   // GENERAL_REGS
   16687     case 'l':   // INDEX_REGS
   16688       if (VT == MVT::i8 || VT == MVT::i1)
   16689         return std::make_pair(0U, &X86::GR8RegClass);
   16690       if (VT == MVT::i16)
   16691         return std::make_pair(0U, &X86::GR16RegClass);
   16692       if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
   16693         return std::make_pair(0U, &X86::GR32RegClass);
   16694       return std::make_pair(0U, &X86::GR64RegClass);
   16695     case 'R':   // LEGACY_REGS
   16696       if (VT == MVT::i8 || VT == MVT::i1)
   16697         return std::make_pair(0U, &X86::GR8_NOREXRegClass);
   16698       if (VT == MVT::i16)
   16699         return std::make_pair(0U, &X86::GR16_NOREXRegClass);
   16700       if (VT == MVT::i32 || !Subtarget->is64Bit())
   16701         return std::make_pair(0U, &X86::GR32_NOREXRegClass);
   16702       return std::make_pair(0U, &X86::GR64_NOREXRegClass);
   16703     case 'f':  // FP Stack registers.
   16704       // If SSE is enabled for this VT, use f80 to ensure the isel moves the
   16705       // value to the correct fpstack register class.
   16706       if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
   16707         return std::make_pair(0U, &X86::RFP32RegClass);
   16708       if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
   16709         return std::make_pair(0U, &X86::RFP64RegClass);
   16710       return std::make_pair(0U, &X86::RFP80RegClass);
   16711     case 'y':   // MMX_REGS if MMX allowed.
   16712       if (!Subtarget->hasMMX()) break;
   16713       return std::make_pair(0U, &X86::VR64RegClass);
   16714     case 'Y':   // SSE_REGS if SSE2 allowed
   16715       if (!Subtarget->hasSSE2()) break;
   16716       // FALL THROUGH.
   16717     case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
   16718       if (!Subtarget->hasSSE1()) break;
   16719 
   16720       switch (VT.getSimpleVT().SimpleTy) {
   16721       default: break;
   16722       // Scalar SSE types.
   16723       case MVT::f32:
   16724       case MVT::i32:
   16725         return std::make_pair(0U, &X86::FR32RegClass);
   16726       case MVT::f64:
   16727       case MVT::i64:
   16728         return std::make_pair(0U, &X86::FR64RegClass);
   16729       // Vector types.
   16730       case MVT::v16i8:
   16731       case MVT::v8i16:
   16732       case MVT::v4i32:
   16733       case MVT::v2i64:
   16734       case MVT::v4f32:
   16735       case MVT::v2f64:
   16736         return std::make_pair(0U, &X86::VR128RegClass);
   16737       // AVX types.
   16738       case MVT::v32i8:
   16739       case MVT::v16i16:
   16740       case MVT::v8i32:
   16741       case MVT::v4i64:
   16742       case MVT::v8f32:
   16743       case MVT::v4f64:
   16744         return std::make_pair(0U, &X86::VR256RegClass);
   16745       }
   16746       break;
   16747     }
   16748   }
   16749 
   16750   // Use the default implementation in TargetLowering to convert the register
   16751   // constraint into a member of a register class.
   16752   std::pair<unsigned, const TargetRegisterClass*> Res;
   16753   Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
   16754 
   16755   // Not found as a standard register?
   16756   if (Res.second == 0) {
   16757     // Map st(0) -> st(7) -> ST0
   16758     if (Constraint.size() == 7 && Constraint[0] == '{' &&
   16759         std::tolower(Constraint[1]) == 's' &&
   16760         std::tolower(Constraint[2]) == 't' &&
   16761         Constraint[3] == '(' &&
   16762         (Constraint[4] >= '0' && Constraint[4] <= '7') &&
   16763         Constraint[5] == ')' &&
   16764         Constraint[6] == '}') {
   16765 
   16766       Res.first = X86::ST0+Constraint[4]-'0';
   16767       Res.second = &X86::RFP80RegClass;
   16768       return Res;
   16769     }
   16770 
   16771     // GCC allows "st(0)" to be called just plain "st".
   16772     if (StringRef("{st}").equals_lower(Constraint)) {
   16773       Res.first = X86::ST0;
   16774       Res.second = &X86::RFP80RegClass;
   16775       return Res;
   16776     }
   16777 
   16778     // flags -> EFLAGS
   16779     if (StringRef("{flags}").equals_lower(Constraint)) {
   16780       Res.first = X86::EFLAGS;
   16781       Res.second = &X86::CCRRegClass;
   16782       return Res;
   16783     }
   16784 
   16785     // 'A' means EAX + EDX.
   16786     if (Constraint == "A") {
   16787       Res.first = X86::EAX;
   16788       Res.second = &X86::GR32_ADRegClass;
   16789       return Res;
   16790     }
   16791     return Res;
   16792   }
   16793 
   16794   // Otherwise, check to see if this is a register class of the wrong value
   16795   // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
   16796   // turn into {ax},{dx}.
   16797   if (Res.second->hasType(VT))
   16798     return Res;   // Correct type already, nothing to do.
   16799 
   16800   // All of the single-register GCC register classes map their values onto
   16801   // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
   16802   // really want an 8-bit or 32-bit register, map to the appropriate register
   16803   // class and return the appropriate register.
   16804   if (Res.second == &X86::GR16RegClass) {
   16805     if (VT == MVT::i8) {
   16806       unsigned DestReg = 0;
   16807       switch (Res.first) {
   16808       default: break;
   16809       case X86::AX: DestReg = X86::AL; break;
   16810       case X86::DX: DestReg = X86::DL; break;
   16811       case X86::CX: DestReg = X86::CL; break;
   16812       case X86::BX: DestReg = X86::BL; break;
   16813       }
   16814       if (DestReg) {
   16815         Res.first = DestReg;
   16816         Res.second = &X86::GR8RegClass;
   16817       }
   16818     } else if (VT == MVT::i32) {
   16819       unsigned DestReg = 0;
   16820       switch (Res.first) {
   16821       default: break;
   16822       case X86::AX: DestReg = X86::EAX; break;
   16823       case X86::DX: DestReg = X86::EDX; break;
   16824       case X86::CX: DestReg = X86::ECX; break;
   16825       case X86::BX: DestReg = X86::EBX; break;
   16826       case X86::SI: DestReg = X86::ESI; break;
   16827       case X86::DI: DestReg = X86::EDI; break;
   16828       case X86::BP: DestReg = X86::EBP; break;
   16829       case X86::SP: DestReg = X86::ESP; break;
   16830       }
   16831       if (DestReg) {
   16832         Res.first = DestReg;
   16833         Res.second = &X86::GR32RegClass;
   16834       }
   16835     } else if (VT == MVT::i64) {
   16836       unsigned DestReg = 0;
   16837       switch (Res.first) {
   16838       default: break;
   16839       case X86::AX: DestReg = X86::RAX; break;
   16840       case X86::DX: DestReg = X86::RDX; break;
   16841       case X86::CX: DestReg = X86::RCX; break;
   16842       case X86::BX: DestReg = X86::RBX; break;
   16843       case X86::SI: DestReg = X86::RSI; break;
   16844       case X86::DI: DestReg = X86::RDI; break;
   16845       case X86::BP: DestReg = X86::RBP; break;
   16846       case X86::SP: DestReg = X86::RSP; break;
   16847       }
   16848       if (DestReg) {
   16849         Res.first = DestReg;
   16850         Res.second = &X86::GR64RegClass;
   16851       }
   16852     }
   16853   } else if (Res.second == &X86::FR32RegClass ||
   16854              Res.second == &X86::FR64RegClass ||
   16855              Res.second == &X86::VR128RegClass) {
   16856     // Handle references to XMM physical registers that got mapped into the
   16857     // wrong class.  This can happen with constraints like {xmm0} where the
   16858     // target independent register mapper will just pick the first match it can
   16859     // find, ignoring the required type.
   16860 
   16861     if (VT == MVT::f32 || VT == MVT::i32)
   16862       Res.second = &X86::FR32RegClass;
   16863     else if (VT == MVT::f64 || VT == MVT::i64)
   16864       Res.second = &X86::FR64RegClass;
   16865     else if (X86::VR128RegClass.hasType(VT))
   16866       Res.second = &X86::VR128RegClass;
   16867     else if (X86::VR256RegClass.hasType(VT))
   16868       Res.second = &X86::VR256RegClass;
   16869   }
   16870 
   16871   return Res;
   16872 }
   16873