Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "SelectionDAGBuilder.h"
     15 #include "SDNodeDbgValue.h"
     16 #include "llvm/ADT/BitVector.h"
     17 #include "llvm/ADT/Optional.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/Analysis/BranchProbabilityInfo.h"
     22 #include "llvm/Analysis/ConstantFolding.h"
     23 #include "llvm/Analysis/TargetLibraryInfo.h"
     24 #include "llvm/Analysis/ValueTracking.h"
     25 #include "llvm/Analysis/VectorUtils.h"
     26 #include "llvm/CodeGen/FastISel.h"
     27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     28 #include "llvm/CodeGen/GCMetadata.h"
     29 #include "llvm/CodeGen/GCStrategy.h"
     30 #include "llvm/CodeGen/MachineFrameInfo.h"
     31 #include "llvm/CodeGen/MachineFunction.h"
     32 #include "llvm/CodeGen/MachineInstrBuilder.h"
     33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     34 #include "llvm/CodeGen/MachineModuleInfo.h"
     35 #include "llvm/CodeGen/MachineRegisterInfo.h"
     36 #include "llvm/CodeGen/SelectionDAG.h"
     37 #include "llvm/CodeGen/StackMaps.h"
     38 #include "llvm/CodeGen/WinEHFuncInfo.h"
     39 #include "llvm/IR/CallingConv.h"
     40 #include "llvm/IR/Constants.h"
     41 #include "llvm/IR/DataLayout.h"
     42 #include "llvm/IR/DebugInfo.h"
     43 #include "llvm/IR/DerivedTypes.h"
     44 #include "llvm/IR/Function.h"
     45 #include "llvm/IR/GlobalVariable.h"
     46 #include "llvm/IR/InlineAsm.h"
     47 #include "llvm/IR/Instructions.h"
     48 #include "llvm/IR/IntrinsicInst.h"
     49 #include "llvm/IR/Intrinsics.h"
     50 #include "llvm/IR/LLVMContext.h"
     51 #include "llvm/IR/Module.h"
     52 #include "llvm/IR/Statepoint.h"
     53 #include "llvm/MC/MCSymbol.h"
     54 #include "llvm/Support/CommandLine.h"
     55 #include "llvm/Support/Debug.h"
     56 #include "llvm/Support/ErrorHandling.h"
     57 #include "llvm/Support/MathExtras.h"
     58 #include "llvm/Support/raw_ostream.h"
     59 #include "llvm/Target/TargetFrameLowering.h"
     60 #include "llvm/Target/TargetInstrInfo.h"
     61 #include "llvm/Target/TargetIntrinsicInfo.h"
     62 #include "llvm/Target/TargetLowering.h"
     63 #include "llvm/Target/TargetOptions.h"
     64 #include "llvm/Target/TargetSelectionDAGInfo.h"
     65 #include "llvm/Target/TargetSubtargetInfo.h"
     66 #include <algorithm>
     67 #include <utility>
     68 using namespace llvm;
     69 
     70 #define DEBUG_TYPE "isel"
     71 
     72 /// LimitFloatPrecision - Generate low-precision inline sequences for
     73 /// some float libcalls (6, 8 or 12 bits).
     74 static unsigned LimitFloatPrecision;
     75 
     76 static cl::opt<unsigned, true>
     77 LimitFPPrecision("limit-float-precision",
     78                  cl::desc("Generate low-precision inline sequences "
     79                           "for some float libcalls"),
     80                  cl::location(LimitFloatPrecision),
     81                  cl::init(0));
     82 
     83 static cl::opt<bool>
     84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
     85                 cl::desc("Enable fast-math-flags for DAG nodes"));
     86 
     87 // Limit the width of DAG chains. This is important in general to prevent
     88 // DAG-based analysis from blowing up. For example, alias analysis and
     89 // load clustering may not complete in reasonable time. It is difficult to
     90 // recognize and avoid this situation within each individual analysis, and
     91 // future analyses are likely to have the same behavior. Limiting DAG width is
     92 // the safe approach and will be especially important with global DAGs.
     93 //
     94 // MaxParallelChains default is arbitrarily high to avoid affecting
     95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
     96 // sequence over this should have been converted to llvm.memcpy by the
     97 // frontend. It easy to induce this behavior with .ll code such as:
     98 // %buffer = alloca [4096 x i8]
     99 // %data = load [4096 x i8]* %argPtr
    100 // store [4096 x i8] %data, [4096 x i8]* %buffer
    101 static const unsigned MaxParallelChains = 64;
    102 
    103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
    104                                       const SDValue *Parts, unsigned NumParts,
    105                                       MVT PartVT, EVT ValueVT, const Value *V);
    106 
    107 /// getCopyFromParts - Create a value that contains the specified legal parts
    108 /// combined into the value they represent.  If the parts combine to a type
    109 /// larger then ValueVT then AssertOp can be used to specify whether the extra
    110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
    111 /// (ISD::AssertSext).
    112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
    113                                 const SDValue *Parts,
    114                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
    115                                 const Value *V,
    116                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
    117   if (ValueVT.isVector())
    118     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
    119                                   PartVT, ValueVT, V);
    120 
    121   assert(NumParts > 0 && "No parts to assemble!");
    122   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    123   SDValue Val = Parts[0];
    124 
    125   if (NumParts > 1) {
    126     // Assemble the value from multiple parts.
    127     if (ValueVT.isInteger()) {
    128       unsigned PartBits = PartVT.getSizeInBits();
    129       unsigned ValueBits = ValueVT.getSizeInBits();
    130 
    131       // Assemble the power of 2 part.
    132       unsigned RoundParts = NumParts & (NumParts - 1) ?
    133         1 << Log2_32(NumParts) : NumParts;
    134       unsigned RoundBits = PartBits * RoundParts;
    135       EVT RoundVT = RoundBits == ValueBits ?
    136         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
    137       SDValue Lo, Hi;
    138 
    139       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
    140 
    141       if (RoundParts > 2) {
    142         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
    143                               PartVT, HalfVT, V);
    144         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
    145                               RoundParts / 2, PartVT, HalfVT, V);
    146       } else {
    147         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
    148         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
    149       }
    150 
    151       if (DAG.getDataLayout().isBigEndian())
    152         std::swap(Lo, Hi);
    153 
    154       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
    155 
    156       if (RoundParts < NumParts) {
    157         // Assemble the trailing non-power-of-2 part.
    158         unsigned OddParts = NumParts - RoundParts;
    159         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
    160         Hi = getCopyFromParts(DAG, DL,
    161                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
    162 
    163         // Combine the round and odd parts.
    164         Lo = Val;
    165         if (DAG.getDataLayout().isBigEndian())
    166           std::swap(Lo, Hi);
    167         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    168         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
    169         Hi =
    170             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
    171                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
    172                                         TLI.getPointerTy(DAG.getDataLayout())));
    173         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
    174         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
    175       }
    176     } else if (PartVT.isFloatingPoint()) {
    177       // FP split into multiple FP parts (for ppcf128)
    178       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
    179              "Unexpected split");
    180       SDValue Lo, Hi;
    181       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
    182       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
    183       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
    184         std::swap(Lo, Hi);
    185       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
    186     } else {
    187       // FP split into integer parts (soft fp)
    188       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
    189              !PartVT.isVector() && "Unexpected split");
    190       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
    191       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
    192     }
    193   }
    194 
    195   // There is now one part, held in Val.  Correct it to match ValueVT.
    196   EVT PartEVT = Val.getValueType();
    197 
    198   if (PartEVT == ValueVT)
    199     return Val;
    200 
    201   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
    202       ValueVT.bitsLT(PartEVT)) {
    203     // For an FP value in an integer part, we need to truncate to the right
    204     // width first.
    205     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
    206     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
    207   }
    208 
    209   if (PartEVT.isInteger() && ValueVT.isInteger()) {
    210     if (ValueVT.bitsLT(PartEVT)) {
    211       // For a truncate, see if we have any information to
    212       // indicate whether the truncated bits will always be
    213       // zero or sign-extension.
    214       if (AssertOp != ISD::DELETED_NODE)
    215         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
    216                           DAG.getValueType(ValueVT));
    217       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    218     }
    219     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
    220   }
    221 
    222   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
    223     // FP_ROUND's are always exact here.
    224     if (ValueVT.bitsLT(Val.getValueType()))
    225       return DAG.getNode(
    226           ISD::FP_ROUND, DL, ValueVT, Val,
    227           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
    228 
    229     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
    230   }
    231 
    232   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
    233     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    234 
    235   llvm_unreachable("Unknown mismatch!");
    236 }
    237 
    238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
    239                                               const Twine &ErrMsg) {
    240   const Instruction *I = dyn_cast_or_null<Instruction>(V);
    241   if (!V)
    242     return Ctx.emitError(ErrMsg);
    243 
    244   const char *AsmError = ", possible invalid constraint for vector type";
    245   if (const CallInst *CI = dyn_cast<CallInst>(I))
    246     if (isa<InlineAsm>(CI->getCalledValue()))
    247       return Ctx.emitError(I, ErrMsg + AsmError);
    248 
    249   return Ctx.emitError(I, ErrMsg);
    250 }
    251 
    252 /// getCopyFromPartsVector - Create a value that contains the specified legal
    253 /// parts combined into the value they represent.  If the parts combine to a
    254 /// type larger then ValueVT then AssertOp can be used to specify whether the
    255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
    256 /// ValueVT (ISD::AssertSext).
    257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
    258                                       const SDValue *Parts, unsigned NumParts,
    259                                       MVT PartVT, EVT ValueVT, const Value *V) {
    260   assert(ValueVT.isVector() && "Not a vector value");
    261   assert(NumParts > 0 && "No parts to assemble!");
    262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    263   SDValue Val = Parts[0];
    264 
    265   // Handle a multi-element vector.
    266   if (NumParts > 1) {
    267     EVT IntermediateVT;
    268     MVT RegisterVT;
    269     unsigned NumIntermediates;
    270     unsigned NumRegs =
    271     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
    272                                NumIntermediates, RegisterVT);
    273     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
    274     NumParts = NumRegs; // Silence a compiler warning.
    275     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
    276     assert(RegisterVT.getSizeInBits() ==
    277            Parts[0].getSimpleValueType().getSizeInBits() &&
    278            "Part type sizes don't match!");
    279 
    280     // Assemble the parts into intermediate operands.
    281     SmallVector<SDValue, 8> Ops(NumIntermediates);
    282     if (NumIntermediates == NumParts) {
    283       // If the register was not expanded, truncate or copy the value,
    284       // as appropriate.
    285       for (unsigned i = 0; i != NumParts; ++i)
    286         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
    287                                   PartVT, IntermediateVT, V);
    288     } else if (NumParts > 0) {
    289       // If the intermediate type was expanded, build the intermediate
    290       // operands from the parts.
    291       assert(NumParts % NumIntermediates == 0 &&
    292              "Must expand into a divisible number of parts!");
    293       unsigned Factor = NumParts / NumIntermediates;
    294       for (unsigned i = 0; i != NumIntermediates; ++i)
    295         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
    296                                   PartVT, IntermediateVT, V);
    297     }
    298 
    299     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
    300     // intermediate operands.
    301     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
    302                                                 : ISD::BUILD_VECTOR,
    303                       DL, ValueVT, Ops);
    304   }
    305 
    306   // There is now one part, held in Val.  Correct it to match ValueVT.
    307   EVT PartEVT = Val.getValueType();
    308 
    309   if (PartEVT == ValueVT)
    310     return Val;
    311 
    312   if (PartEVT.isVector()) {
    313     // If the element type of the source/dest vectors are the same, but the
    314     // parts vector has more elements than the value vector, then we have a
    315     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
    316     // elements we want.
    317     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
    318       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
    319              "Cannot narrow, it would be a lossy transformation");
    320       return DAG.getNode(
    321           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
    322           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
    323     }
    324 
    325     // Vector/Vector bitcast.
    326     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
    327       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    328 
    329     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
    330       "Cannot handle this kind of promotion");
    331     // Promoted vector extract
    332     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
    333 
    334   }
    335 
    336   // Trivial bitcast if the types are the same size and the destination
    337   // vector type is legal.
    338   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
    339       TLI.isTypeLegal(ValueVT))
    340     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    341 
    342   // Handle cases such as i8 -> <1 x i1>
    343   if (ValueVT.getVectorNumElements() != 1) {
    344     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
    345                                       "non-trivial scalar-to-vector conversion");
    346     return DAG.getUNDEF(ValueVT);
    347   }
    348 
    349   if (ValueVT.getVectorNumElements() == 1 &&
    350       ValueVT.getVectorElementType() != PartEVT)
    351     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
    352 
    353   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
    354 }
    355 
    356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
    357                                  SDValue Val, SDValue *Parts, unsigned NumParts,
    358                                  MVT PartVT, const Value *V);
    359 
    360 /// getCopyToParts - Create a series of nodes that contain the specified value
    361 /// split into legal parts.  If the parts contain more bits than Val, then, for
    362 /// integers, ExtendKind can be used to specify how to generate the extra bits.
    363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
    364                            SDValue Val, SDValue *Parts, unsigned NumParts,
    365                            MVT PartVT, const Value *V,
    366                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
    367   EVT ValueVT = Val.getValueType();
    368 
    369   // Handle the vector case separately.
    370   if (ValueVT.isVector())
    371     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
    372 
    373   unsigned PartBits = PartVT.getSizeInBits();
    374   unsigned OrigNumParts = NumParts;
    375   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
    376          "Copying to an illegal type!");
    377 
    378   if (NumParts == 0)
    379     return;
    380 
    381   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
    382   EVT PartEVT = PartVT;
    383   if (PartEVT == ValueVT) {
    384     assert(NumParts == 1 && "No-op copy with multiple parts!");
    385     Parts[0] = Val;
    386     return;
    387   }
    388 
    389   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
    390     // If the parts cover more bits than the value has, promote the value.
    391     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
    392       assert(NumParts == 1 && "Do not know what to promote to!");
    393       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
    394     } else {
    395       if (ValueVT.isFloatingPoint()) {
    396         // FP values need to be bitcast, then extended if they are being put
    397         // into a larger container.
    398         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
    399         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
    400       }
    401       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
    402              ValueVT.isInteger() &&
    403              "Unknown mismatch!");
    404       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    405       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
    406       if (PartVT == MVT::x86mmx)
    407         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    408     }
    409   } else if (PartBits == ValueVT.getSizeInBits()) {
    410     // Different types of the same size.
    411     assert(NumParts == 1 && PartEVT != ValueVT);
    412     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    413   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
    414     // If the parts cover less bits than value has, truncate the value.
    415     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
    416            ValueVT.isInteger() &&
    417            "Unknown mismatch!");
    418     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    419     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    420     if (PartVT == MVT::x86mmx)
    421       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    422   }
    423 
    424   // The value may have changed - recompute ValueVT.
    425   ValueVT = Val.getValueType();
    426   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
    427          "Failed to tile the value with PartVT!");
    428 
    429   if (NumParts == 1) {
    430     if (PartEVT != ValueVT)
    431       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
    432                                         "scalar-to-vector conversion failed");
    433 
    434     Parts[0] = Val;
    435     return;
    436   }
    437 
    438   // Expand the value into multiple parts.
    439   if (NumParts & (NumParts - 1)) {
    440     // The number of parts is not a power of 2.  Split off and copy the tail.
    441     assert(PartVT.isInteger() && ValueVT.isInteger() &&
    442            "Do not know what to expand to!");
    443     unsigned RoundParts = 1 << Log2_32(NumParts);
    444     unsigned RoundBits = RoundParts * PartBits;
    445     unsigned OddParts = NumParts - RoundParts;
    446     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
    447                                  DAG.getIntPtrConstant(RoundBits, DL));
    448     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
    449 
    450     if (DAG.getDataLayout().isBigEndian())
    451       // The odd parts were reversed by getCopyToParts - unreverse them.
    452       std::reverse(Parts + RoundParts, Parts + NumParts);
    453 
    454     NumParts = RoundParts;
    455     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
    456     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
    457   }
    458 
    459   // The number of parts is a power of 2.  Repeatedly bisect the value using
    460   // EXTRACT_ELEMENT.
    461   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
    462                          EVT::getIntegerVT(*DAG.getContext(),
    463                                            ValueVT.getSizeInBits()),
    464                          Val);
    465 
    466   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
    467     for (unsigned i = 0; i < NumParts; i += StepSize) {
    468       unsigned ThisBits = StepSize * PartBits / 2;
    469       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
    470       SDValue &Part0 = Parts[i];
    471       SDValue &Part1 = Parts[i+StepSize/2];
    472 
    473       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
    474                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
    475       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
    476                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
    477 
    478       if (ThisBits == PartBits && ThisVT != PartVT) {
    479         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
    480         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
    481       }
    482     }
    483   }
    484 
    485   if (DAG.getDataLayout().isBigEndian())
    486     std::reverse(Parts, Parts + OrigNumParts);
    487 }
    488 
    489 
    490 /// getCopyToPartsVector - Create a series of nodes that contain the specified
    491 /// value split into legal parts.
    492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
    493                                  SDValue Val, SDValue *Parts, unsigned NumParts,
    494                                  MVT PartVT, const Value *V) {
    495   EVT ValueVT = Val.getValueType();
    496   assert(ValueVT.isVector() && "Not a vector");
    497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    498 
    499   if (NumParts == 1) {
    500     EVT PartEVT = PartVT;
    501     if (PartEVT == ValueVT) {
    502       // Nothing to do.
    503     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
    504       // Bitconvert vector->vector case.
    505       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
    506     } else if (PartVT.isVector() &&
    507                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
    508                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
    509       EVT ElementVT = PartVT.getVectorElementType();
    510       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
    511       // undef elements.
    512       SmallVector<SDValue, 16> Ops;
    513       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
    514         Ops.push_back(DAG.getNode(
    515             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
    516             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
    517 
    518       for (unsigned i = ValueVT.getVectorNumElements(),
    519            e = PartVT.getVectorNumElements(); i != e; ++i)
    520         Ops.push_back(DAG.getUNDEF(ElementVT));
    521 
    522       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
    523 
    524       // FIXME: Use CONCAT for 2x -> 4x.
    525 
    526       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
    527       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
    528     } else if (PartVT.isVector() &&
    529                PartEVT.getVectorElementType().bitsGE(
    530                  ValueVT.getVectorElementType()) &&
    531                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
    532 
    533       // Promoted vector extract
    534       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
    535     } else{
    536       // Vector -> scalar conversion.
    537       assert(ValueVT.getVectorNumElements() == 1 &&
    538              "Only trivial vector-to-scalar conversions should get here!");
    539       Val = DAG.getNode(
    540           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
    541           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
    542 
    543       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
    544     }
    545 
    546     Parts[0] = Val;
    547     return;
    548   }
    549 
    550   // Handle a multi-element vector.
    551   EVT IntermediateVT;
    552   MVT RegisterVT;
    553   unsigned NumIntermediates;
    554   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
    555                                                 IntermediateVT,
    556                                                 NumIntermediates, RegisterVT);
    557   unsigned NumElements = ValueVT.getVectorNumElements();
    558 
    559   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
    560   NumParts = NumRegs; // Silence a compiler warning.
    561   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
    562 
    563   // Split the vector into intermediate operands.
    564   SmallVector<SDValue, 8> Ops(NumIntermediates);
    565   for (unsigned i = 0; i != NumIntermediates; ++i) {
    566     if (IntermediateVT.isVector())
    567       Ops[i] =
    568           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
    569                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
    570                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
    571     else
    572       Ops[i] = DAG.getNode(
    573           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
    574           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
    575   }
    576 
    577   // Split the intermediate operands into legal parts.
    578   if (NumParts == NumIntermediates) {
    579     // If the register was not expanded, promote or copy the value,
    580     // as appropriate.
    581     for (unsigned i = 0; i != NumParts; ++i)
    582       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
    583   } else if (NumParts > 0) {
    584     // If the intermediate type was expanded, split each the value into
    585     // legal parts.
    586     assert(NumIntermediates != 0 && "division by zero");
    587     assert(NumParts % NumIntermediates == 0 &&
    588            "Must expand into a divisible number of parts!");
    589     unsigned Factor = NumParts / NumIntermediates;
    590     for (unsigned i = 0; i != NumIntermediates; ++i)
    591       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
    592   }
    593 }
    594 
    595 RegsForValue::RegsForValue() {}
    596 
    597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
    598                            EVT valuevt)
    599     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
    600 
    601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
    602                            const DataLayout &DL, unsigned Reg, Type *Ty) {
    603   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
    604 
    605   for (EVT ValueVT : ValueVTs) {
    606     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
    607     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
    608     for (unsigned i = 0; i != NumRegs; ++i)
    609       Regs.push_back(Reg + i);
    610     RegVTs.push_back(RegisterVT);
    611     Reg += NumRegs;
    612   }
    613 }
    614 
    615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
    616 /// this value and returns the result as a ValueVT value.  This uses
    617 /// Chain/Flag as the input and updates them for the output Chain/Flag.
    618 /// If the Flag pointer is NULL, no flag is used.
    619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
    620                                       FunctionLoweringInfo &FuncInfo,
    621                                       SDLoc dl,
    622                                       SDValue &Chain, SDValue *Flag,
    623                                       const Value *V) const {
    624   // A Value with type {} or [0 x %t] needs no registers.
    625   if (ValueVTs.empty())
    626     return SDValue();
    627 
    628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    629 
    630   // Assemble the legal parts into the final values.
    631   SmallVector<SDValue, 4> Values(ValueVTs.size());
    632   SmallVector<SDValue, 8> Parts;
    633   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
    634     // Copy the legal parts from the registers.
    635     EVT ValueVT = ValueVTs[Value];
    636     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
    637     MVT RegisterVT = RegVTs[Value];
    638 
    639     Parts.resize(NumRegs);
    640     for (unsigned i = 0; i != NumRegs; ++i) {
    641       SDValue P;
    642       if (!Flag) {
    643         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
    644       } else {
    645         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
    646         *Flag = P.getValue(2);
    647       }
    648 
    649       Chain = P.getValue(1);
    650       Parts[i] = P;
    651 
    652       // If the source register was virtual and if we know something about it,
    653       // add an assert node.
    654       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
    655           !RegisterVT.isInteger() || RegisterVT.isVector())
    656         continue;
    657 
    658       const FunctionLoweringInfo::LiveOutInfo *LOI =
    659         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
    660       if (!LOI)
    661         continue;
    662 
    663       unsigned RegSize = RegisterVT.getSizeInBits();
    664       unsigned NumSignBits = LOI->NumSignBits;
    665       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
    666 
    667       if (NumZeroBits == RegSize) {
    668         // The current value is a zero.
    669         // Explicitly express that as it would be easier for
    670         // optimizations to kick in.
    671         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
    672         continue;
    673       }
    674 
    675       // FIXME: We capture more information than the dag can represent.  For
    676       // now, just use the tightest assertzext/assertsext possible.
    677       bool isSExt = true;
    678       EVT FromVT(MVT::Other);
    679       if (NumSignBits == RegSize)
    680         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
    681       else if (NumZeroBits >= RegSize-1)
    682         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
    683       else if (NumSignBits > RegSize-8)
    684         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
    685       else if (NumZeroBits >= RegSize-8)
    686         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
    687       else if (NumSignBits > RegSize-16)
    688         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
    689       else if (NumZeroBits >= RegSize-16)
    690         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
    691       else if (NumSignBits > RegSize-32)
    692         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
    693       else if (NumZeroBits >= RegSize-32)
    694         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
    695       else
    696         continue;
    697 
    698       // Add an assertion node.
    699       assert(FromVT != MVT::Other);
    700       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
    701                              RegisterVT, P, DAG.getValueType(FromVT));
    702     }
    703 
    704     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
    705                                      NumRegs, RegisterVT, ValueVT, V);
    706     Part += NumRegs;
    707     Parts.clear();
    708   }
    709 
    710   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
    711 }
    712 
    713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
    714 /// specified value into the registers specified by this object.  This uses
    715 /// Chain/Flag as the input and updates them for the output Chain/Flag.
    716 /// If the Flag pointer is NULL, no flag is used.
    717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
    718                                  SDValue &Chain, SDValue *Flag, const Value *V,
    719                                  ISD::NodeType PreferredExtendType) const {
    720   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    721   ISD::NodeType ExtendKind = PreferredExtendType;
    722 
    723   // Get the list of the values's legal parts.
    724   unsigned NumRegs = Regs.size();
    725   SmallVector<SDValue, 8> Parts(NumRegs);
    726   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
    727     EVT ValueVT = ValueVTs[Value];
    728     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
    729     MVT RegisterVT = RegVTs[Value];
    730 
    731     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
    732       ExtendKind = ISD::ZERO_EXTEND;
    733 
    734     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
    735                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
    736     Part += NumParts;
    737   }
    738 
    739   // Copy the parts into the registers.
    740   SmallVector<SDValue, 8> Chains(NumRegs);
    741   for (unsigned i = 0; i != NumRegs; ++i) {
    742     SDValue Part;
    743     if (!Flag) {
    744       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
    745     } else {
    746       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
    747       *Flag = Part.getValue(1);
    748     }
    749 
    750     Chains[i] = Part.getValue(0);
    751   }
    752 
    753   if (NumRegs == 1 || Flag)
    754     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
    755     // flagged to it. That is the CopyToReg nodes and the user are considered
    756     // a single scheduling unit. If we create a TokenFactor and return it as
    757     // chain, then the TokenFactor is both a predecessor (operand) of the
    758     // user as well as a successor (the TF operands are flagged to the user).
    759     // c1, f1 = CopyToReg
    760     // c2, f2 = CopyToReg
    761     // c3     = TokenFactor c1, c2
    762     // ...
    763     //        = op c3, ..., f2
    764     Chain = Chains[NumRegs-1];
    765   else
    766     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
    767 }
    768 
    769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
    770 /// operand list.  This adds the code marker and includes the number of
    771 /// values added into it.
    772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
    773                                         unsigned MatchingIdx, SDLoc dl,
    774                                         SelectionDAG &DAG,
    775                                         std::vector<SDValue> &Ops) const {
    776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
    777 
    778   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
    779   if (HasMatching)
    780     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
    781   else if (!Regs.empty() &&
    782            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
    783     // Put the register class of the virtual registers in the flag word.  That
    784     // way, later passes can recompute register class constraints for inline
    785     // assembly as well as normal instructions.
    786     // Don't do this for tied operands that can use the regclass information
    787     // from the def.
    788     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
    789     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
    790     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
    791   }
    792 
    793   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
    794   Ops.push_back(Res);
    795 
    796   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
    797   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
    798     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
    799     MVT RegisterVT = RegVTs[Value];
    800     for (unsigned i = 0; i != NumRegs; ++i) {
    801       assert(Reg < Regs.size() && "Mismatch in # registers expected");
    802       unsigned TheReg = Regs[Reg++];
    803       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
    804 
    805       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
    806         // If we clobbered the stack pointer, MFI should know about it.
    807         assert(DAG.getMachineFunction().getFrameInfo()->
    808             hasOpaqueSPAdjustment());
    809       }
    810     }
    811   }
    812 }
    813 
    814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
    815                                const TargetLibraryInfo *li) {
    816   AA = &aa;
    817   GFI = gfi;
    818   LibInfo = li;
    819   DL = &DAG.getDataLayout();
    820   Context = DAG.getContext();
    821   LPadToCallSiteMap.clear();
    822 }
    823 
    824 /// clear - Clear out the current SelectionDAG and the associated
    825 /// state and prepare this SelectionDAGBuilder object to be used
    826 /// for a new block. This doesn't clear out information about
    827 /// additional blocks that are needed to complete switch lowering
    828 /// or PHI node updating; that information is cleared out as it is
    829 /// consumed.
    830 void SelectionDAGBuilder::clear() {
    831   NodeMap.clear();
    832   UnusedArgNodeMap.clear();
    833   PendingLoads.clear();
    834   PendingExports.clear();
    835   CurInst = nullptr;
    836   HasTailCall = false;
    837   SDNodeOrder = LowestSDNodeOrder;
    838   StatepointLowering.clear();
    839 }
    840 
    841 /// clearDanglingDebugInfo - Clear the dangling debug information
    842 /// map. This function is separated from the clear so that debug
    843 /// information that is dangling in a basic block can be properly
    844 /// resolved in a different basic block. This allows the
    845 /// SelectionDAG to resolve dangling debug information attached
    846 /// to PHI nodes.
    847 void SelectionDAGBuilder::clearDanglingDebugInfo() {
    848   DanglingDebugInfoMap.clear();
    849 }
    850 
    851 /// getRoot - Return the current virtual root of the Selection DAG,
    852 /// flushing any PendingLoad items. This must be done before emitting
    853 /// a store or any other node that may need to be ordered after any
    854 /// prior load instructions.
    855 ///
    856 SDValue SelectionDAGBuilder::getRoot() {
    857   if (PendingLoads.empty())
    858     return DAG.getRoot();
    859 
    860   if (PendingLoads.size() == 1) {
    861     SDValue Root = PendingLoads[0];
    862     DAG.setRoot(Root);
    863     PendingLoads.clear();
    864     return Root;
    865   }
    866 
    867   // Otherwise, we have to make a token factor node.
    868   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
    869                              PendingLoads);
    870   PendingLoads.clear();
    871   DAG.setRoot(Root);
    872   return Root;
    873 }
    874 
    875 /// getControlRoot - Similar to getRoot, but instead of flushing all the
    876 /// PendingLoad items, flush all the PendingExports items. It is necessary
    877 /// to do this before emitting a terminator instruction.
    878 ///
    879 SDValue SelectionDAGBuilder::getControlRoot() {
    880   SDValue Root = DAG.getRoot();
    881 
    882   if (PendingExports.empty())
    883     return Root;
    884 
    885   // Turn all of the CopyToReg chains into one factored node.
    886   if (Root.getOpcode() != ISD::EntryToken) {
    887     unsigned i = 0, e = PendingExports.size();
    888     for (; i != e; ++i) {
    889       assert(PendingExports[i].getNode()->getNumOperands() > 1);
    890       if (PendingExports[i].getNode()->getOperand(0) == Root)
    891         break;  // Don't add the root if we already indirectly depend on it.
    892     }
    893 
    894     if (i == e)
    895       PendingExports.push_back(Root);
    896   }
    897 
    898   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
    899                      PendingExports);
    900   PendingExports.clear();
    901   DAG.setRoot(Root);
    902   return Root;
    903 }
    904 
    905 void SelectionDAGBuilder::visit(const Instruction &I) {
    906   // Set up outgoing PHI node register values before emitting the terminator.
    907   if (isa<TerminatorInst>(&I))
    908     HandlePHINodesInSuccessorBlocks(I.getParent());
    909 
    910   ++SDNodeOrder;
    911 
    912   CurInst = &I;
    913 
    914   visit(I.getOpcode(), I);
    915 
    916   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
    917       !isStatepoint(&I)) // statepoints handle their exports internally
    918     CopyToExportRegsIfNeeded(&I);
    919 
    920   CurInst = nullptr;
    921 }
    922 
    923 void SelectionDAGBuilder::visitPHI(const PHINode &) {
    924   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
    925 }
    926 
    927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
    928   // Note: this doesn't use InstVisitor, because it has to work with
    929   // ConstantExpr's in addition to instructions.
    930   switch (Opcode) {
    931   default: llvm_unreachable("Unknown instruction type encountered!");
    932     // Build the switch statement using the Instruction.def file.
    933 #define HANDLE_INST(NUM, OPCODE, CLASS) \
    934     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
    935 #include "llvm/IR/Instruction.def"
    936   }
    937 }
    938 
    939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
    940 // generate the debug data structures now that we've seen its definition.
    941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
    942                                                    SDValue Val) {
    943   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
    944   if (DDI.getDI()) {
    945     const DbgValueInst *DI = DDI.getDI();
    946     DebugLoc dl = DDI.getdl();
    947     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
    948     DILocalVariable *Variable = DI->getVariable();
    949     DIExpression *Expr = DI->getExpression();
    950     assert(Variable->isValidLocationForIntrinsic(dl) &&
    951            "Expected inlined-at fields to agree");
    952     uint64_t Offset = DI->getOffset();
    953     SDDbgValue *SDV;
    954     if (Val.getNode()) {
    955       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
    956                                     Val)) {
    957         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
    958                               false, Offset, dl, DbgSDNodeOrder);
    959         DAG.AddDbgValue(SDV, Val.getNode(), false);
    960       }
    961     } else
    962       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
    963     DanglingDebugInfoMap[V] = DanglingDebugInfo();
    964   }
    965 }
    966 
    967 /// getCopyFromRegs - If there was virtual register allocated for the value V
    968 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
    969 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
    970   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
    971   SDValue Result;
    972 
    973   if (It != FuncInfo.ValueMap.end()) {
    974     unsigned InReg = It->second;
    975     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
    976                      DAG.getDataLayout(), InReg, Ty);
    977     SDValue Chain = DAG.getEntryNode();
    978     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
    979     resolveDanglingDebugInfo(V, Result);
    980   }
    981 
    982   return Result;
    983 }
    984 
    985 /// getValue - Return an SDValue for the given Value.
    986 SDValue SelectionDAGBuilder::getValue(const Value *V) {
    987   // If we already have an SDValue for this value, use it. It's important
    988   // to do this first, so that we don't create a CopyFromReg if we already
    989   // have a regular SDValue.
    990   SDValue &N = NodeMap[V];
    991   if (N.getNode()) return N;
    992 
    993   // If there's a virtual register allocated and initialized for this
    994   // value, use it.
    995   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
    996   if (copyFromReg.getNode()) {
    997     return copyFromReg;
    998   }
    999 
   1000   // Otherwise create a new SDValue and remember it.
   1001   SDValue Val = getValueImpl(V);
   1002   NodeMap[V] = Val;
   1003   resolveDanglingDebugInfo(V, Val);
   1004   return Val;
   1005 }
   1006 
   1007 // Return true if SDValue exists for the given Value
   1008 bool SelectionDAGBuilder::findValue(const Value *V) const {
   1009   return (NodeMap.find(V) != NodeMap.end()) ||
   1010     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
   1011 }
   1012 
   1013 /// getNonRegisterValue - Return an SDValue for the given Value, but
   1014 /// don't look in FuncInfo.ValueMap for a virtual register.
   1015 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
   1016   // If we already have an SDValue for this value, use it.
   1017   SDValue &N = NodeMap[V];
   1018   if (N.getNode()) {
   1019     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
   1020       // Remove the debug location from the node as the node is about to be used
   1021       // in a location which may differ from the original debug location.  This
   1022       // is relevant to Constant and ConstantFP nodes because they can appear
   1023       // as constant expressions inside PHI nodes.
   1024       N->setDebugLoc(DebugLoc());
   1025     }
   1026     return N;
   1027   }
   1028 
   1029   // Otherwise create a new SDValue and remember it.
   1030   SDValue Val = getValueImpl(V);
   1031   NodeMap[V] = Val;
   1032   resolveDanglingDebugInfo(V, Val);
   1033   return Val;
   1034 }
   1035 
   1036 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
   1037 /// Create an SDValue for the given value.
   1038 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
   1039   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1040 
   1041   if (const Constant *C = dyn_cast<Constant>(V)) {
   1042     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
   1043 
   1044     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
   1045       return DAG.getConstant(*CI, getCurSDLoc(), VT);
   1046 
   1047     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
   1048       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
   1049 
   1050     if (isa<ConstantPointerNull>(C)) {
   1051       unsigned AS = V->getType()->getPointerAddressSpace();
   1052       return DAG.getConstant(0, getCurSDLoc(),
   1053                              TLI.getPointerTy(DAG.getDataLayout(), AS));
   1054     }
   1055 
   1056     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
   1057       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
   1058 
   1059     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
   1060       return DAG.getUNDEF(VT);
   1061 
   1062     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   1063       visit(CE->getOpcode(), *CE);
   1064       SDValue N1 = NodeMap[V];
   1065       assert(N1.getNode() && "visit didn't populate the NodeMap!");
   1066       return N1;
   1067     }
   1068 
   1069     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
   1070       SmallVector<SDValue, 4> Constants;
   1071       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
   1072            OI != OE; ++OI) {
   1073         SDNode *Val = getValue(*OI).getNode();
   1074         // If the operand is an empty aggregate, there are no values.
   1075         if (!Val) continue;
   1076         // Add each leaf value from the operand to the Constants list
   1077         // to form a flattened list of all the values.
   1078         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
   1079           Constants.push_back(SDValue(Val, i));
   1080       }
   1081 
   1082       return DAG.getMergeValues(Constants, getCurSDLoc());
   1083     }
   1084 
   1085     if (const ConstantDataSequential *CDS =
   1086           dyn_cast<ConstantDataSequential>(C)) {
   1087       SmallVector<SDValue, 4> Ops;
   1088       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1089         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
   1090         // Add each leaf value from the operand to the Constants list
   1091         // to form a flattened list of all the values.
   1092         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
   1093           Ops.push_back(SDValue(Val, i));
   1094       }
   1095 
   1096       if (isa<ArrayType>(CDS->getType()))
   1097         return DAG.getMergeValues(Ops, getCurSDLoc());
   1098       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
   1099                                       VT, Ops);
   1100     }
   1101 
   1102     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
   1103       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
   1104              "Unknown struct or array constant!");
   1105 
   1106       SmallVector<EVT, 4> ValueVTs;
   1107       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
   1108       unsigned NumElts = ValueVTs.size();
   1109       if (NumElts == 0)
   1110         return SDValue(); // empty struct
   1111       SmallVector<SDValue, 4> Constants(NumElts);
   1112       for (unsigned i = 0; i != NumElts; ++i) {
   1113         EVT EltVT = ValueVTs[i];
   1114         if (isa<UndefValue>(C))
   1115           Constants[i] = DAG.getUNDEF(EltVT);
   1116         else if (EltVT.isFloatingPoint())
   1117           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
   1118         else
   1119           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
   1120       }
   1121 
   1122       return DAG.getMergeValues(Constants, getCurSDLoc());
   1123     }
   1124 
   1125     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
   1126       return DAG.getBlockAddress(BA, VT);
   1127 
   1128     VectorType *VecTy = cast<VectorType>(V->getType());
   1129     unsigned NumElements = VecTy->getNumElements();
   1130 
   1131     // Now that we know the number and type of the elements, get that number of
   1132     // elements into the Ops array based on what kind of constant it is.
   1133     SmallVector<SDValue, 16> Ops;
   1134     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
   1135       for (unsigned i = 0; i != NumElements; ++i)
   1136         Ops.push_back(getValue(CV->getOperand(i)));
   1137     } else {
   1138       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
   1139       EVT EltVT =
   1140           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
   1141 
   1142       SDValue Op;
   1143       if (EltVT.isFloatingPoint())
   1144         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
   1145       else
   1146         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
   1147       Ops.assign(NumElements, Op);
   1148     }
   1149 
   1150     // Create a BUILD_VECTOR node.
   1151     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
   1152   }
   1153 
   1154   // If this is a static alloca, generate it as the frameindex instead of
   1155   // computation.
   1156   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
   1157     DenseMap<const AllocaInst*, int>::iterator SI =
   1158       FuncInfo.StaticAllocaMap.find(AI);
   1159     if (SI != FuncInfo.StaticAllocaMap.end())
   1160       return DAG.getFrameIndex(SI->second,
   1161                                TLI.getPointerTy(DAG.getDataLayout()));
   1162   }
   1163 
   1164   // If this is an instruction which fast-isel has deferred, select it now.
   1165   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   1166     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
   1167     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
   1168                      Inst->getType());
   1169     SDValue Chain = DAG.getEntryNode();
   1170     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
   1171   }
   1172 
   1173   llvm_unreachable("Can't get register for value!");
   1174 }
   1175 
   1176 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
   1177   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
   1178   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
   1179   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
   1180   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
   1181   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
   1182   if (IsMSVCCXX || IsCoreCLR)
   1183     CatchPadMBB->setIsEHFuncletEntry();
   1184 
   1185   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
   1186 }
   1187 
   1188 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
   1189   // Update machine-CFG edge.
   1190   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
   1191   FuncInfo.MBB->addSuccessor(TargetMBB);
   1192 
   1193   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
   1194   bool IsSEH = isAsynchronousEHPersonality(Pers);
   1195   if (IsSEH) {
   1196     // If this is not a fall-through branch or optimizations are switched off,
   1197     // emit the branch.
   1198     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
   1199         TM.getOptLevel() == CodeGenOpt::None)
   1200       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
   1201                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
   1202     return;
   1203   }
   1204 
   1205   // Figure out the funclet membership for the catchret's successor.
   1206   // This will be used by the FuncletLayout pass to determine how to order the
   1207   // BB's.
   1208   WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
   1209   const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I];
   1210   assert(SuccessorColor && "No parent funclet for catchret!");
   1211   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
   1212   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
   1213 
   1214   // Create the terminator node.
   1215   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
   1216                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
   1217                             DAG.getBasicBlock(SuccessorColorMBB));
   1218   DAG.setRoot(Ret);
   1219 }
   1220 
   1221 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
   1222   // Don't emit any special code for the cleanuppad instruction. It just marks
   1223   // the start of a funclet.
   1224   FuncInfo.MBB->setIsEHFuncletEntry();
   1225   FuncInfo.MBB->setIsCleanupFuncletEntry();
   1226 }
   1227 
   1228 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
   1229 /// many places it could ultimately go. In the IR, we have a single unwind
   1230 /// destination, but in the machine CFG, we enumerate all the possible blocks.
   1231 /// This function skips over imaginary basic blocks that hold catchswitch
   1232 /// instructions, and finds all the "real" machine
   1233 /// basic block destinations. As those destinations may not be successors of
   1234 /// EHPadBB, here we also calculate the edge probability to those destinations.
   1235 /// The passed-in Prob is the edge probability to EHPadBB.
   1236 static void findUnwindDestinations(
   1237     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
   1238     BranchProbability Prob,
   1239     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
   1240         &UnwindDests) {
   1241   EHPersonality Personality =
   1242     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
   1243   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
   1244   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
   1245 
   1246   while (EHPadBB) {
   1247     const Instruction *Pad = EHPadBB->getFirstNonPHI();
   1248     BasicBlock *NewEHPadBB = nullptr;
   1249     if (isa<LandingPadInst>(Pad)) {
   1250       // Stop on landingpads. They are not funclets.
   1251       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
   1252       break;
   1253     } else if (isa<CleanupPadInst>(Pad)) {
   1254       // Stop on cleanup pads. Cleanups are always funclet entries for all known
   1255       // personalities.
   1256       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
   1257       UnwindDests.back().first->setIsEHFuncletEntry();
   1258       break;
   1259     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
   1260       // Add the catchpad handlers to the possible destinations.
   1261       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
   1262         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
   1263         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
   1264         if (IsMSVCCXX || IsCoreCLR)
   1265           UnwindDests.back().first->setIsEHFuncletEntry();
   1266       }
   1267       NewEHPadBB = CatchSwitch->getUnwindDest();
   1268     } else {
   1269       continue;
   1270     }
   1271 
   1272     BranchProbabilityInfo *BPI = FuncInfo.BPI;
   1273     if (BPI && NewEHPadBB)
   1274       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
   1275     EHPadBB = NewEHPadBB;
   1276   }
   1277 }
   1278 
   1279 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
   1280   // Update successor info.
   1281   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
   1282   auto UnwindDest = I.getUnwindDest();
   1283   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   1284   BranchProbability UnwindDestProb =
   1285       (BPI && UnwindDest)
   1286           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
   1287           : BranchProbability::getZero();
   1288   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
   1289   for (auto &UnwindDest : UnwindDests) {
   1290     UnwindDest.first->setIsEHPad();
   1291     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
   1292   }
   1293   FuncInfo.MBB->normalizeSuccProbs();
   1294 
   1295   // Create the terminator node.
   1296   SDValue Ret =
   1297       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
   1298   DAG.setRoot(Ret);
   1299 }
   1300 
   1301 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
   1302   report_fatal_error("visitCatchSwitch not yet implemented!");
   1303 }
   1304 
   1305 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
   1306   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1307   auto &DL = DAG.getDataLayout();
   1308   SDValue Chain = getControlRoot();
   1309   SmallVector<ISD::OutputArg, 8> Outs;
   1310   SmallVector<SDValue, 8> OutVals;
   1311 
   1312   if (!FuncInfo.CanLowerReturn) {
   1313     unsigned DemoteReg = FuncInfo.DemoteRegister;
   1314     const Function *F = I.getParent()->getParent();
   1315 
   1316     // Emit a store of the return value through the virtual register.
   1317     // Leave Outs empty so that LowerReturn won't try to load return
   1318     // registers the usual way.
   1319     SmallVector<EVT, 1> PtrValueVTs;
   1320     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
   1321                     PtrValueVTs);
   1322 
   1323     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
   1324                                         DemoteReg, PtrValueVTs[0]);
   1325     SDValue RetOp = getValue(I.getOperand(0));
   1326 
   1327     SmallVector<EVT, 4> ValueVTs;
   1328     SmallVector<uint64_t, 4> Offsets;
   1329     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
   1330     unsigned NumValues = ValueVTs.size();
   1331 
   1332     SmallVector<SDValue, 4> Chains(NumValues);
   1333     for (unsigned i = 0; i != NumValues; ++i) {
   1334       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
   1335                                 RetPtr.getValueType(), RetPtr,
   1336                                 DAG.getIntPtrConstant(Offsets[i],
   1337                                                       getCurSDLoc()));
   1338       Chains[i] =
   1339         DAG.getStore(Chain, getCurSDLoc(),
   1340                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
   1341                      // FIXME: better loc info would be nice.
   1342                      Add, MachinePointerInfo(), false, false, 0);
   1343     }
   1344 
   1345     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
   1346                         MVT::Other, Chains);
   1347   } else if (I.getNumOperands() != 0) {
   1348     SmallVector<EVT, 4> ValueVTs;
   1349     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
   1350     unsigned NumValues = ValueVTs.size();
   1351     if (NumValues) {
   1352       SDValue RetOp = getValue(I.getOperand(0));
   1353 
   1354       const Function *F = I.getParent()->getParent();
   1355 
   1356       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   1357       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
   1358                                           Attribute::SExt))
   1359         ExtendKind = ISD::SIGN_EXTEND;
   1360       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
   1361                                                Attribute::ZExt))
   1362         ExtendKind = ISD::ZERO_EXTEND;
   1363 
   1364       LLVMContext &Context = F->getContext();
   1365       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
   1366                                                       Attribute::InReg);
   1367 
   1368       for (unsigned j = 0; j != NumValues; ++j) {
   1369         EVT VT = ValueVTs[j];
   1370 
   1371         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
   1372           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
   1373 
   1374         unsigned NumParts = TLI.getNumRegisters(Context, VT);
   1375         MVT PartVT = TLI.getRegisterType(Context, VT);
   1376         SmallVector<SDValue, 4> Parts(NumParts);
   1377         getCopyToParts(DAG, getCurSDLoc(),
   1378                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
   1379                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
   1380 
   1381         // 'inreg' on function refers to return value
   1382         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
   1383         if (RetInReg)
   1384           Flags.setInReg();
   1385 
   1386         // Propagate extension type if any
   1387         if (ExtendKind == ISD::SIGN_EXTEND)
   1388           Flags.setSExt();
   1389         else if (ExtendKind == ISD::ZERO_EXTEND)
   1390           Flags.setZExt();
   1391 
   1392         for (unsigned i = 0; i < NumParts; ++i) {
   1393           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
   1394                                         VT, /*isfixed=*/true, 0, 0));
   1395           OutVals.push_back(Parts[i]);
   1396         }
   1397       }
   1398     }
   1399   }
   1400 
   1401   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
   1402   CallingConv::ID CallConv =
   1403     DAG.getMachineFunction().getFunction()->getCallingConv();
   1404   Chain = DAG.getTargetLoweringInfo().LowerReturn(
   1405       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
   1406 
   1407   // Verify that the target's LowerReturn behaved as expected.
   1408   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
   1409          "LowerReturn didn't return a valid chain!");
   1410 
   1411   // Update the DAG with the new chain value resulting from return lowering.
   1412   DAG.setRoot(Chain);
   1413 }
   1414 
   1415 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
   1416 /// created for it, emit nodes to copy the value into the virtual
   1417 /// registers.
   1418 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
   1419   // Skip empty types
   1420   if (V->getType()->isEmptyTy())
   1421     return;
   1422 
   1423   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
   1424   if (VMI != FuncInfo.ValueMap.end()) {
   1425     assert(!V->use_empty() && "Unused value assigned virtual registers!");
   1426     CopyValueToVirtualRegister(V, VMI->second);
   1427   }
   1428 }
   1429 
   1430 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
   1431 /// the current basic block, add it to ValueMap now so that we'll get a
   1432 /// CopyTo/FromReg.
   1433 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
   1434   // No need to export constants.
   1435   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
   1436 
   1437   // Already exported?
   1438   if (FuncInfo.isExportedInst(V)) return;
   1439 
   1440   unsigned Reg = FuncInfo.InitializeRegForValue(V);
   1441   CopyValueToVirtualRegister(V, Reg);
   1442 }
   1443 
   1444 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
   1445                                                      const BasicBlock *FromBB) {
   1446   // The operands of the setcc have to be in this block.  We don't know
   1447   // how to export them from some other block.
   1448   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
   1449     // Can export from current BB.
   1450     if (VI->getParent() == FromBB)
   1451       return true;
   1452 
   1453     // Is already exported, noop.
   1454     return FuncInfo.isExportedInst(V);
   1455   }
   1456 
   1457   // If this is an argument, we can export it if the BB is the entry block or
   1458   // if it is already exported.
   1459   if (isa<Argument>(V)) {
   1460     if (FromBB == &FromBB->getParent()->getEntryBlock())
   1461       return true;
   1462 
   1463     // Otherwise, can only export this if it is already exported.
   1464     return FuncInfo.isExportedInst(V);
   1465   }
   1466 
   1467   // Otherwise, constants can always be exported.
   1468   return true;
   1469 }
   1470 
   1471 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
   1472 BranchProbability
   1473 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
   1474                                         const MachineBasicBlock *Dst) const {
   1475   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   1476   const BasicBlock *SrcBB = Src->getBasicBlock();
   1477   const BasicBlock *DstBB = Dst->getBasicBlock();
   1478   if (!BPI) {
   1479     // If BPI is not available, set the default probability as 1 / N, where N is
   1480     // the number of successors.
   1481     auto SuccSize = std::max<uint32_t>(
   1482         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
   1483     return BranchProbability(1, SuccSize);
   1484   }
   1485   return BPI->getEdgeProbability(SrcBB, DstBB);
   1486 }
   1487 
   1488 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
   1489                                                MachineBasicBlock *Dst,
   1490                                                BranchProbability Prob) {
   1491   if (!FuncInfo.BPI)
   1492     Src->addSuccessorWithoutProb(Dst);
   1493   else {
   1494     if (Prob.isUnknown())
   1495       Prob = getEdgeProbability(Src, Dst);
   1496     Src->addSuccessor(Dst, Prob);
   1497   }
   1498 }
   1499 
   1500 static bool InBlock(const Value *V, const BasicBlock *BB) {
   1501   if (const Instruction *I = dyn_cast<Instruction>(V))
   1502     return I->getParent() == BB;
   1503   return true;
   1504 }
   1505 
   1506 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
   1507 /// This function emits a branch and is used at the leaves of an OR or an
   1508 /// AND operator tree.
   1509 ///
   1510 void
   1511 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
   1512                                                   MachineBasicBlock *TBB,
   1513                                                   MachineBasicBlock *FBB,
   1514                                                   MachineBasicBlock *CurBB,
   1515                                                   MachineBasicBlock *SwitchBB,
   1516                                                   BranchProbability TProb,
   1517                                                   BranchProbability FProb) {
   1518   const BasicBlock *BB = CurBB->getBasicBlock();
   1519 
   1520   // If the leaf of the tree is a comparison, merge the condition into
   1521   // the caseblock.
   1522   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
   1523     // The operands of the cmp have to be in this block.  We don't know
   1524     // how to export them from some other block.  If this is the first block
   1525     // of the sequence, no exporting is needed.
   1526     if (CurBB == SwitchBB ||
   1527         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
   1528          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
   1529       ISD::CondCode Condition;
   1530       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
   1531         Condition = getICmpCondCode(IC->getPredicate());
   1532       } else {
   1533         const FCmpInst *FC = cast<FCmpInst>(Cond);
   1534         Condition = getFCmpCondCode(FC->getPredicate());
   1535         if (TM.Options.NoNaNsFPMath)
   1536           Condition = getFCmpCodeWithoutNaN(Condition);
   1537       }
   1538 
   1539       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
   1540                    TBB, FBB, CurBB, TProb, FProb);
   1541       SwitchCases.push_back(CB);
   1542       return;
   1543     }
   1544   }
   1545 
   1546   // Create a CaseBlock record representing this branch.
   1547   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
   1548                nullptr, TBB, FBB, CurBB, TProb, FProb);
   1549   SwitchCases.push_back(CB);
   1550 }
   1551 
   1552 /// FindMergedConditions - If Cond is an expression like
   1553 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
   1554                                                MachineBasicBlock *TBB,
   1555                                                MachineBasicBlock *FBB,
   1556                                                MachineBasicBlock *CurBB,
   1557                                                MachineBasicBlock *SwitchBB,
   1558                                                Instruction::BinaryOps Opc,
   1559                                                BranchProbability TProb,
   1560                                                BranchProbability FProb) {
   1561   // If this node is not part of the or/and tree, emit it as a branch.
   1562   const Instruction *BOp = dyn_cast<Instruction>(Cond);
   1563   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
   1564       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
   1565       BOp->getParent() != CurBB->getBasicBlock() ||
   1566       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
   1567       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
   1568     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
   1569                                  TProb, FProb);
   1570     return;
   1571   }
   1572 
   1573   //  Create TmpBB after CurBB.
   1574   MachineFunction::iterator BBI(CurBB);
   1575   MachineFunction &MF = DAG.getMachineFunction();
   1576   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
   1577   CurBB->getParent()->insert(++BBI, TmpBB);
   1578 
   1579   if (Opc == Instruction::Or) {
   1580     // Codegen X | Y as:
   1581     // BB1:
   1582     //   jmp_if_X TBB
   1583     //   jmp TmpBB
   1584     // TmpBB:
   1585     //   jmp_if_Y TBB
   1586     //   jmp FBB
   1587     //
   1588 
   1589     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
   1590     // The requirement is that
   1591     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
   1592     //     = TrueProb for original BB.
   1593     // Assuming the original probabilities are A and B, one choice is to set
   1594     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
   1595     // A/(1+B) and 2B/(1+B). This choice assumes that
   1596     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
   1597     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
   1598     // TmpBB, but the math is more complicated.
   1599 
   1600     auto NewTrueProb = TProb / 2;
   1601     auto NewFalseProb = TProb / 2 + FProb;
   1602     // Emit the LHS condition.
   1603     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
   1604                          NewTrueProb, NewFalseProb);
   1605 
   1606     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
   1607     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
   1608     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
   1609     // Emit the RHS condition into TmpBB.
   1610     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
   1611                          Probs[0], Probs[1]);
   1612   } else {
   1613     assert(Opc == Instruction::And && "Unknown merge op!");
   1614     // Codegen X & Y as:
   1615     // BB1:
   1616     //   jmp_if_X TmpBB
   1617     //   jmp FBB
   1618     // TmpBB:
   1619     //   jmp_if_Y TBB
   1620     //   jmp FBB
   1621     //
   1622     //  This requires creation of TmpBB after CurBB.
   1623 
   1624     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
   1625     // The requirement is that
   1626     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
   1627     //     = FalseProb for original BB.
   1628     // Assuming the original probabilities are A and B, one choice is to set
   1629     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
   1630     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
   1631     // TrueProb for BB1 * FalseProb for TmpBB.
   1632 
   1633     auto NewTrueProb = TProb + FProb / 2;
   1634     auto NewFalseProb = FProb / 2;
   1635     // Emit the LHS condition.
   1636     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
   1637                          NewTrueProb, NewFalseProb);
   1638 
   1639     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
   1640     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
   1641     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
   1642     // Emit the RHS condition into TmpBB.
   1643     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
   1644                          Probs[0], Probs[1]);
   1645   }
   1646 }
   1647 
   1648 /// If the set of cases should be emitted as a series of branches, return true.
   1649 /// If we should emit this as a bunch of and/or'd together conditions, return
   1650 /// false.
   1651 bool
   1652 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
   1653   if (Cases.size() != 2) return true;
   1654 
   1655   // If this is two comparisons of the same values or'd or and'd together, they
   1656   // will get folded into a single comparison, so don't emit two blocks.
   1657   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
   1658        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
   1659       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
   1660        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
   1661     return false;
   1662   }
   1663 
   1664   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
   1665   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
   1666   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
   1667       Cases[0].CC == Cases[1].CC &&
   1668       isa<Constant>(Cases[0].CmpRHS) &&
   1669       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
   1670     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
   1671       return false;
   1672     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
   1673       return false;
   1674   }
   1675 
   1676   return true;
   1677 }
   1678 
   1679 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
   1680   MachineBasicBlock *BrMBB = FuncInfo.MBB;
   1681 
   1682   // Update machine-CFG edges.
   1683   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
   1684 
   1685   if (I.isUnconditional()) {
   1686     // Update machine-CFG edges.
   1687     BrMBB->addSuccessor(Succ0MBB);
   1688 
   1689     // If this is not a fall-through branch or optimizations are switched off,
   1690     // emit the branch.
   1691     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
   1692       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
   1693                               MVT::Other, getControlRoot(),
   1694                               DAG.getBasicBlock(Succ0MBB)));
   1695 
   1696     return;
   1697   }
   1698 
   1699   // If this condition is one of the special cases we handle, do special stuff
   1700   // now.
   1701   const Value *CondVal = I.getCondition();
   1702   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
   1703 
   1704   // If this is a series of conditions that are or'd or and'd together, emit
   1705   // this as a sequence of branches instead of setcc's with and/or operations.
   1706   // As long as jumps are not expensive, this should improve performance.
   1707   // For example, instead of something like:
   1708   //     cmp A, B
   1709   //     C = seteq
   1710   //     cmp D, E
   1711   //     F = setle
   1712   //     or C, F
   1713   //     jnz foo
   1714   // Emit:
   1715   //     cmp A, B
   1716   //     je foo
   1717   //     cmp D, E
   1718   //     jle foo
   1719   //
   1720   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
   1721     Instruction::BinaryOps Opcode = BOp->getOpcode();
   1722     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
   1723         !I.getMetadata(LLVMContext::MD_unpredictable) &&
   1724         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
   1725       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
   1726                            Opcode,
   1727                            getEdgeProbability(BrMBB, Succ0MBB),
   1728                            getEdgeProbability(BrMBB, Succ1MBB));
   1729       // If the compares in later blocks need to use values not currently
   1730       // exported from this block, export them now.  This block should always
   1731       // be the first entry.
   1732       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
   1733 
   1734       // Allow some cases to be rejected.
   1735       if (ShouldEmitAsBranches(SwitchCases)) {
   1736         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
   1737           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
   1738           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
   1739         }
   1740 
   1741         // Emit the branch for this block.
   1742         visitSwitchCase(SwitchCases[0], BrMBB);
   1743         SwitchCases.erase(SwitchCases.begin());
   1744         return;
   1745       }
   1746 
   1747       // Okay, we decided not to do this, remove any inserted MBB's and clear
   1748       // SwitchCases.
   1749       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
   1750         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
   1751 
   1752       SwitchCases.clear();
   1753     }
   1754   }
   1755 
   1756   // Create a CaseBlock record representing this branch.
   1757   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
   1758                nullptr, Succ0MBB, Succ1MBB, BrMBB);
   1759 
   1760   // Use visitSwitchCase to actually insert the fast branch sequence for this
   1761   // cond branch.
   1762   visitSwitchCase(CB, BrMBB);
   1763 }
   1764 
   1765 /// visitSwitchCase - Emits the necessary code to represent a single node in
   1766 /// the binary search tree resulting from lowering a switch instruction.
   1767 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
   1768                                           MachineBasicBlock *SwitchBB) {
   1769   SDValue Cond;
   1770   SDValue CondLHS = getValue(CB.CmpLHS);
   1771   SDLoc dl = getCurSDLoc();
   1772 
   1773   // Build the setcc now.
   1774   if (!CB.CmpMHS) {
   1775     // Fold "(X == true)" to X and "(X == false)" to !X to
   1776     // handle common cases produced by branch lowering.
   1777     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
   1778         CB.CC == ISD::SETEQ)
   1779       Cond = CondLHS;
   1780     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
   1781              CB.CC == ISD::SETEQ) {
   1782       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
   1783       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
   1784     } else
   1785       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
   1786   } else {
   1787     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
   1788 
   1789     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
   1790     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
   1791 
   1792     SDValue CmpOp = getValue(CB.CmpMHS);
   1793     EVT VT = CmpOp.getValueType();
   1794 
   1795     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
   1796       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
   1797                           ISD::SETLE);
   1798     } else {
   1799       SDValue SUB = DAG.getNode(ISD::SUB, dl,
   1800                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
   1801       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
   1802                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
   1803     }
   1804   }
   1805 
   1806   // Update successor info
   1807   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
   1808   // TrueBB and FalseBB are always different unless the incoming IR is
   1809   // degenerate. This only happens when running llc on weird IR.
   1810   if (CB.TrueBB != CB.FalseBB)
   1811     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
   1812   SwitchBB->normalizeSuccProbs();
   1813 
   1814   // If the lhs block is the next block, invert the condition so that we can
   1815   // fall through to the lhs instead of the rhs block.
   1816   if (CB.TrueBB == NextBlock(SwitchBB)) {
   1817     std::swap(CB.TrueBB, CB.FalseBB);
   1818     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
   1819     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
   1820   }
   1821 
   1822   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
   1823                                MVT::Other, getControlRoot(), Cond,
   1824                                DAG.getBasicBlock(CB.TrueBB));
   1825 
   1826   // Insert the false branch. Do this even if it's a fall through branch,
   1827   // this makes it easier to do DAG optimizations which require inverting
   1828   // the branch condition.
   1829   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
   1830                        DAG.getBasicBlock(CB.FalseBB));
   1831 
   1832   DAG.setRoot(BrCond);
   1833 }
   1834 
   1835 /// visitJumpTable - Emit JumpTable node in the current MBB
   1836 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
   1837   // Emit the code for the jump table
   1838   assert(JT.Reg != -1U && "Should lower JT Header first!");
   1839   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   1840   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
   1841                                      JT.Reg, PTy);
   1842   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
   1843   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
   1844                                     MVT::Other, Index.getValue(1),
   1845                                     Table, Index);
   1846   DAG.setRoot(BrJumpTable);
   1847 }
   1848 
   1849 /// visitJumpTableHeader - This function emits necessary code to produce index
   1850 /// in the JumpTable from switch case.
   1851 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
   1852                                                JumpTableHeader &JTH,
   1853                                                MachineBasicBlock *SwitchBB) {
   1854   SDLoc dl = getCurSDLoc();
   1855 
   1856   // Subtract the lowest switch case value from the value being switched on and
   1857   // conditional branch to default mbb if the result is greater than the
   1858   // difference between smallest and largest cases.
   1859   SDValue SwitchOp = getValue(JTH.SValue);
   1860   EVT VT = SwitchOp.getValueType();
   1861   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
   1862                             DAG.getConstant(JTH.First, dl, VT));
   1863 
   1864   // The SDNode we just created, which holds the value being switched on minus
   1865   // the smallest case value, needs to be copied to a virtual register so it
   1866   // can be used as an index into the jump table in a subsequent basic block.
   1867   // This value may be smaller or larger than the target's pointer type, and
   1868   // therefore require extension or truncating.
   1869   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1870   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
   1871 
   1872   unsigned JumpTableReg =
   1873       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
   1874   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
   1875                                     JumpTableReg, SwitchOp);
   1876   JT.Reg = JumpTableReg;
   1877 
   1878   // Emit the range check for the jump table, and branch to the default block
   1879   // for the switch statement if the value being switched on exceeds the largest
   1880   // case in the switch.
   1881   SDValue CMP = DAG.getSetCC(
   1882       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
   1883                                  Sub.getValueType()),
   1884       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
   1885 
   1886   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
   1887                                MVT::Other, CopyTo, CMP,
   1888                                DAG.getBasicBlock(JT.Default));
   1889 
   1890   // Avoid emitting unnecessary branches to the next block.
   1891   if (JT.MBB != NextBlock(SwitchBB))
   1892     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
   1893                          DAG.getBasicBlock(JT.MBB));
   1894 
   1895   DAG.setRoot(BrCond);
   1896 }
   1897 
   1898 /// Codegen a new tail for a stack protector check ParentMBB which has had its
   1899 /// tail spliced into a stack protector check success bb.
   1900 ///
   1901 /// For a high level explanation of how this fits into the stack protector
   1902 /// generation see the comment on the declaration of class
   1903 /// StackProtectorDescriptor.
   1904 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
   1905                                                   MachineBasicBlock *ParentBB) {
   1906 
   1907   // First create the loads to the guard/stack slot for the comparison.
   1908   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1909   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
   1910 
   1911   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
   1912   int FI = MFI->getStackProtectorIndex();
   1913 
   1914   const Value *IRGuard = SPD.getGuard();
   1915   SDValue GuardPtr = getValue(IRGuard);
   1916   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
   1917 
   1918   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
   1919 
   1920   SDValue Guard;
   1921   SDLoc dl = getCurSDLoc();
   1922 
   1923   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
   1924   // guard value from the virtual register holding the value. Otherwise, emit a
   1925   // volatile load to retrieve the stack guard value.
   1926   unsigned GuardReg = SPD.getGuardReg();
   1927 
   1928   if (GuardReg && TLI.useLoadStackGuardNode())
   1929     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
   1930                                PtrTy);
   1931   else
   1932     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
   1933                         GuardPtr, MachinePointerInfo(IRGuard, 0),
   1934                         true, false, false, Align);
   1935 
   1936   SDValue StackSlot = DAG.getLoad(
   1937       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
   1938       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
   1939       false, false, Align);
   1940 
   1941   // Perform the comparison via a subtract/getsetcc.
   1942   EVT VT = Guard.getValueType();
   1943   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
   1944 
   1945   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
   1946                                                         *DAG.getContext(),
   1947                                                         Sub.getValueType()),
   1948                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
   1949 
   1950   // If the sub is not 0, then we know the guard/stackslot do not equal, so
   1951   // branch to failure MBB.
   1952   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
   1953                                MVT::Other, StackSlot.getOperand(0),
   1954                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
   1955   // Otherwise branch to success MBB.
   1956   SDValue Br = DAG.getNode(ISD::BR, dl,
   1957                            MVT::Other, BrCond,
   1958                            DAG.getBasicBlock(SPD.getSuccessMBB()));
   1959 
   1960   DAG.setRoot(Br);
   1961 }
   1962 
   1963 /// Codegen the failure basic block for a stack protector check.
   1964 ///
   1965 /// A failure stack protector machine basic block consists simply of a call to
   1966 /// __stack_chk_fail().
   1967 ///
   1968 /// For a high level explanation of how this fits into the stack protector
   1969 /// generation see the comment on the declaration of class
   1970 /// StackProtectorDescriptor.
   1971 void
   1972 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
   1973   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1974   SDValue Chain =
   1975       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
   1976                       None, false, getCurSDLoc(), false, false).second;
   1977   DAG.setRoot(Chain);
   1978 }
   1979 
   1980 /// visitBitTestHeader - This function emits necessary code to produce value
   1981 /// suitable for "bit tests"
   1982 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
   1983                                              MachineBasicBlock *SwitchBB) {
   1984   SDLoc dl = getCurSDLoc();
   1985 
   1986   // Subtract the minimum value
   1987   SDValue SwitchOp = getValue(B.SValue);
   1988   EVT VT = SwitchOp.getValueType();
   1989   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
   1990                             DAG.getConstant(B.First, dl, VT));
   1991 
   1992   // Check range
   1993   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   1994   SDValue RangeCmp = DAG.getSetCC(
   1995       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
   1996                                  Sub.getValueType()),
   1997       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
   1998 
   1999   // Determine the type of the test operands.
   2000   bool UsePtrType = false;
   2001   if (!TLI.isTypeLegal(VT))
   2002     UsePtrType = true;
   2003   else {
   2004     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
   2005       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
   2006         // Switch table case range are encoded into series of masks.
   2007         // Just use pointer type, it's guaranteed to fit.
   2008         UsePtrType = true;
   2009         break;
   2010       }
   2011   }
   2012   if (UsePtrType) {
   2013     VT = TLI.getPointerTy(DAG.getDataLayout());
   2014     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
   2015   }
   2016 
   2017   B.RegVT = VT.getSimpleVT();
   2018   B.Reg = FuncInfo.CreateReg(B.RegVT);
   2019   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
   2020 
   2021   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
   2022 
   2023   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
   2024   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
   2025   SwitchBB->normalizeSuccProbs();
   2026 
   2027   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
   2028                                 MVT::Other, CopyTo, RangeCmp,
   2029                                 DAG.getBasicBlock(B.Default));
   2030 
   2031   // Avoid emitting unnecessary branches to the next block.
   2032   if (MBB != NextBlock(SwitchBB))
   2033     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
   2034                           DAG.getBasicBlock(MBB));
   2035 
   2036   DAG.setRoot(BrRange);
   2037 }
   2038 
   2039 /// visitBitTestCase - this function produces one "bit test"
   2040 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
   2041                                            MachineBasicBlock* NextMBB,
   2042                                            BranchProbability BranchProbToNext,
   2043                                            unsigned Reg,
   2044                                            BitTestCase &B,
   2045                                            MachineBasicBlock *SwitchBB) {
   2046   SDLoc dl = getCurSDLoc();
   2047   MVT VT = BB.RegVT;
   2048   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
   2049   SDValue Cmp;
   2050   unsigned PopCount = countPopulation(B.Mask);
   2051   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2052   if (PopCount == 1) {
   2053     // Testing for a single bit; just compare the shift count with what it
   2054     // would need to be to shift a 1 bit in that position.
   2055     Cmp = DAG.getSetCC(
   2056         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
   2057         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
   2058         ISD::SETEQ);
   2059   } else if (PopCount == BB.Range) {
   2060     // There is only one zero bit in the range, test for it directly.
   2061     Cmp = DAG.getSetCC(
   2062         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
   2063         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
   2064         ISD::SETNE);
   2065   } else {
   2066     // Make desired shift
   2067     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
   2068                                     DAG.getConstant(1, dl, VT), ShiftOp);
   2069 
   2070     // Emit bit tests and jumps
   2071     SDValue AndOp = DAG.getNode(ISD::AND, dl,
   2072                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
   2073     Cmp = DAG.getSetCC(
   2074         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
   2075         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
   2076   }
   2077 
   2078   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
   2079   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
   2080   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
   2081   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
   2082   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
   2083   // one as they are relative probabilities (and thus work more like weights),
   2084   // and hence we need to normalize them to let the sum of them become one.
   2085   SwitchBB->normalizeSuccProbs();
   2086 
   2087   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
   2088                               MVT::Other, getControlRoot(),
   2089                               Cmp, DAG.getBasicBlock(B.TargetBB));
   2090 
   2091   // Avoid emitting unnecessary branches to the next block.
   2092   if (NextMBB != NextBlock(SwitchBB))
   2093     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
   2094                         DAG.getBasicBlock(NextMBB));
   2095 
   2096   DAG.setRoot(BrAnd);
   2097 }
   2098 
   2099 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
   2100   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
   2101 
   2102   // Retrieve successors. Look through artificial IR level blocks like
   2103   // catchswitch for successors.
   2104   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
   2105   const BasicBlock *EHPadBB = I.getSuccessor(1);
   2106 
   2107   const Value *Callee(I.getCalledValue());
   2108   const Function *Fn = dyn_cast<Function>(Callee);
   2109   if (isa<InlineAsm>(Callee))
   2110     visitInlineAsm(&I);
   2111   else if (Fn && Fn->isIntrinsic()) {
   2112     switch (Fn->getIntrinsicID()) {
   2113     default:
   2114       llvm_unreachable("Cannot invoke this intrinsic");
   2115     case Intrinsic::donothing:
   2116       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
   2117       break;
   2118     case Intrinsic::experimental_patchpoint_void:
   2119     case Intrinsic::experimental_patchpoint_i64:
   2120       visitPatchpoint(&I, EHPadBB);
   2121       break;
   2122     case Intrinsic::experimental_gc_statepoint:
   2123       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
   2124       break;
   2125     }
   2126   } else
   2127     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
   2128 
   2129   // If the value of the invoke is used outside of its defining block, make it
   2130   // available as a virtual register.
   2131   // We already took care of the exported value for the statepoint instruction
   2132   // during call to the LowerStatepoint.
   2133   if (!isStatepoint(I)) {
   2134     CopyToExportRegsIfNeeded(&I);
   2135   }
   2136 
   2137   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
   2138   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   2139   BranchProbability EHPadBBProb =
   2140       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
   2141           : BranchProbability::getZero();
   2142   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
   2143 
   2144   // Update successor info.
   2145   addSuccessorWithProb(InvokeMBB, Return);
   2146   for (auto &UnwindDest : UnwindDests) {
   2147     UnwindDest.first->setIsEHPad();
   2148     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
   2149   }
   2150   InvokeMBB->normalizeSuccProbs();
   2151 
   2152   // Drop into normal successor.
   2153   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
   2154                           MVT::Other, getControlRoot(),
   2155                           DAG.getBasicBlock(Return)));
   2156 }
   2157 
   2158 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
   2159   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
   2160 }
   2161 
   2162 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
   2163   assert(FuncInfo.MBB->isEHPad() &&
   2164          "Call to landingpad not in landing pad!");
   2165 
   2166   MachineBasicBlock *MBB = FuncInfo.MBB;
   2167   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   2168   AddLandingPadInfo(LP, MMI, MBB);
   2169 
   2170   // If there aren't registers to copy the values into (e.g., during SjLj
   2171   // exceptions), then don't bother to create these DAG nodes.
   2172   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2173   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
   2174   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
   2175       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
   2176     return;
   2177 
   2178   // If landingpad's return type is token type, we don't create DAG nodes
   2179   // for its exception pointer and selector value. The extraction of exception
   2180   // pointer or selector value from token type landingpads is not currently
   2181   // supported.
   2182   if (LP.getType()->isTokenTy())
   2183     return;
   2184 
   2185   SmallVector<EVT, 2> ValueVTs;
   2186   SDLoc dl = getCurSDLoc();
   2187   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
   2188   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
   2189 
   2190   // Get the two live-in registers as SDValues. The physregs have already been
   2191   // copied into virtual registers.
   2192   SDValue Ops[2];
   2193   if (FuncInfo.ExceptionPointerVirtReg) {
   2194     Ops[0] = DAG.getZExtOrTrunc(
   2195         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
   2196                            FuncInfo.ExceptionPointerVirtReg,
   2197                            TLI.getPointerTy(DAG.getDataLayout())),
   2198         dl, ValueVTs[0]);
   2199   } else {
   2200     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
   2201   }
   2202   Ops[1] = DAG.getZExtOrTrunc(
   2203       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
   2204                          FuncInfo.ExceptionSelectorVirtReg,
   2205                          TLI.getPointerTy(DAG.getDataLayout())),
   2206       dl, ValueVTs[1]);
   2207 
   2208   // Merge into one.
   2209   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
   2210                             DAG.getVTList(ValueVTs), Ops);
   2211   setValue(&LP, Res);
   2212 }
   2213 
   2214 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
   2215 #ifndef NDEBUG
   2216   for (const CaseCluster &CC : Clusters)
   2217     assert(CC.Low == CC.High && "Input clusters must be single-case");
   2218 #endif
   2219 
   2220   std::sort(Clusters.begin(), Clusters.end(),
   2221             [](const CaseCluster &a, const CaseCluster &b) {
   2222     return a.Low->getValue().slt(b.Low->getValue());
   2223   });
   2224 
   2225   // Merge adjacent clusters with the same destination.
   2226   const unsigned N = Clusters.size();
   2227   unsigned DstIndex = 0;
   2228   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
   2229     CaseCluster &CC = Clusters[SrcIndex];
   2230     const ConstantInt *CaseVal = CC.Low;
   2231     MachineBasicBlock *Succ = CC.MBB;
   2232 
   2233     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
   2234         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
   2235       // If this case has the same successor and is a neighbour, merge it into
   2236       // the previous cluster.
   2237       Clusters[DstIndex - 1].High = CaseVal;
   2238       Clusters[DstIndex - 1].Prob += CC.Prob;
   2239     } else {
   2240       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
   2241                    sizeof(Clusters[SrcIndex]));
   2242     }
   2243   }
   2244   Clusters.resize(DstIndex);
   2245 }
   2246 
   2247 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
   2248                                            MachineBasicBlock *Last) {
   2249   // Update JTCases.
   2250   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
   2251     if (JTCases[i].first.HeaderBB == First)
   2252       JTCases[i].first.HeaderBB = Last;
   2253 
   2254   // Update BitTestCases.
   2255   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
   2256     if (BitTestCases[i].Parent == First)
   2257       BitTestCases[i].Parent = Last;
   2258 }
   2259 
   2260 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
   2261   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
   2262 
   2263   // Update machine-CFG edges with unique successors.
   2264   SmallSet<BasicBlock*, 32> Done;
   2265   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
   2266     BasicBlock *BB = I.getSuccessor(i);
   2267     bool Inserted = Done.insert(BB).second;
   2268     if (!Inserted)
   2269         continue;
   2270 
   2271     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
   2272     addSuccessorWithProb(IndirectBrMBB, Succ);
   2273   }
   2274   IndirectBrMBB->normalizeSuccProbs();
   2275 
   2276   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
   2277                           MVT::Other, getControlRoot(),
   2278                           getValue(I.getAddress())));
   2279 }
   2280 
   2281 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
   2282   if (DAG.getTarget().Options.TrapUnreachable)
   2283     DAG.setRoot(
   2284         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
   2285 }
   2286 
   2287 void SelectionDAGBuilder::visitFSub(const User &I) {
   2288   // -0.0 - X --> fneg
   2289   Type *Ty = I.getType();
   2290   if (isa<Constant>(I.getOperand(0)) &&
   2291       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
   2292     SDValue Op2 = getValue(I.getOperand(1));
   2293     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
   2294                              Op2.getValueType(), Op2));
   2295     return;
   2296   }
   2297 
   2298   visitBinary(I, ISD::FSUB);
   2299 }
   2300 
   2301 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
   2302   SDValue Op1 = getValue(I.getOperand(0));
   2303   SDValue Op2 = getValue(I.getOperand(1));
   2304 
   2305   bool nuw = false;
   2306   bool nsw = false;
   2307   bool exact = false;
   2308   FastMathFlags FMF;
   2309 
   2310   if (const OverflowingBinaryOperator *OFBinOp =
   2311           dyn_cast<const OverflowingBinaryOperator>(&I)) {
   2312     nuw = OFBinOp->hasNoUnsignedWrap();
   2313     nsw = OFBinOp->hasNoSignedWrap();
   2314   }
   2315   if (const PossiblyExactOperator *ExactOp =
   2316           dyn_cast<const PossiblyExactOperator>(&I))
   2317     exact = ExactOp->isExact();
   2318   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
   2319     FMF = FPOp->getFastMathFlags();
   2320 
   2321   SDNodeFlags Flags;
   2322   Flags.setExact(exact);
   2323   Flags.setNoSignedWrap(nsw);
   2324   Flags.setNoUnsignedWrap(nuw);
   2325   if (EnableFMFInDAG) {
   2326     Flags.setAllowReciprocal(FMF.allowReciprocal());
   2327     Flags.setNoInfs(FMF.noInfs());
   2328     Flags.setNoNaNs(FMF.noNaNs());
   2329     Flags.setNoSignedZeros(FMF.noSignedZeros());
   2330     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
   2331   }
   2332   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
   2333                                      Op1, Op2, &Flags);
   2334   setValue(&I, BinNodeValue);
   2335 }
   2336 
   2337 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
   2338   SDValue Op1 = getValue(I.getOperand(0));
   2339   SDValue Op2 = getValue(I.getOperand(1));
   2340 
   2341   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
   2342       Op2.getValueType(), DAG.getDataLayout());
   2343 
   2344   // Coerce the shift amount to the right type if we can.
   2345   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
   2346     unsigned ShiftSize = ShiftTy.getSizeInBits();
   2347     unsigned Op2Size = Op2.getValueType().getSizeInBits();
   2348     SDLoc DL = getCurSDLoc();
   2349 
   2350     // If the operand is smaller than the shift count type, promote it.
   2351     if (ShiftSize > Op2Size)
   2352       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
   2353 
   2354     // If the operand is larger than the shift count type but the shift
   2355     // count type has enough bits to represent any shift value, truncate
   2356     // it now. This is a common case and it exposes the truncate to
   2357     // optimization early.
   2358     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
   2359       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
   2360     // Otherwise we'll need to temporarily settle for some other convenient
   2361     // type.  Type legalization will make adjustments once the shiftee is split.
   2362     else
   2363       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
   2364   }
   2365 
   2366   bool nuw = false;
   2367   bool nsw = false;
   2368   bool exact = false;
   2369 
   2370   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
   2371 
   2372     if (const OverflowingBinaryOperator *OFBinOp =
   2373             dyn_cast<const OverflowingBinaryOperator>(&I)) {
   2374       nuw = OFBinOp->hasNoUnsignedWrap();
   2375       nsw = OFBinOp->hasNoSignedWrap();
   2376     }
   2377     if (const PossiblyExactOperator *ExactOp =
   2378             dyn_cast<const PossiblyExactOperator>(&I))
   2379       exact = ExactOp->isExact();
   2380   }
   2381   SDNodeFlags Flags;
   2382   Flags.setExact(exact);
   2383   Flags.setNoSignedWrap(nsw);
   2384   Flags.setNoUnsignedWrap(nuw);
   2385   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
   2386                             &Flags);
   2387   setValue(&I, Res);
   2388 }
   2389 
   2390 void SelectionDAGBuilder::visitSDiv(const User &I) {
   2391   SDValue Op1 = getValue(I.getOperand(0));
   2392   SDValue Op2 = getValue(I.getOperand(1));
   2393 
   2394   SDNodeFlags Flags;
   2395   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
   2396                  cast<PossiblyExactOperator>(&I)->isExact());
   2397   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
   2398                            Op2, &Flags));
   2399 }
   2400 
   2401 void SelectionDAGBuilder::visitICmp(const User &I) {
   2402   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
   2403   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
   2404     predicate = IC->getPredicate();
   2405   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
   2406     predicate = ICmpInst::Predicate(IC->getPredicate());
   2407   SDValue Op1 = getValue(I.getOperand(0));
   2408   SDValue Op2 = getValue(I.getOperand(1));
   2409   ISD::CondCode Opcode = getICmpCondCode(predicate);
   2410 
   2411   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2412                                                         I.getType());
   2413   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
   2414 }
   2415 
   2416 void SelectionDAGBuilder::visitFCmp(const User &I) {
   2417   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
   2418   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
   2419     predicate = FC->getPredicate();
   2420   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
   2421     predicate = FCmpInst::Predicate(FC->getPredicate());
   2422   SDValue Op1 = getValue(I.getOperand(0));
   2423   SDValue Op2 = getValue(I.getOperand(1));
   2424   ISD::CondCode Condition = getFCmpCondCode(predicate);
   2425 
   2426   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
   2427   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
   2428   // further optimization, but currently FMF is only applicable to binary nodes.
   2429   if (TM.Options.NoNaNsFPMath)
   2430     Condition = getFCmpCodeWithoutNaN(Condition);
   2431   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2432                                                         I.getType());
   2433   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
   2434 }
   2435 
   2436 void SelectionDAGBuilder::visitSelect(const User &I) {
   2437   SmallVector<EVT, 4> ValueVTs;
   2438   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
   2439                   ValueVTs);
   2440   unsigned NumValues = ValueVTs.size();
   2441   if (NumValues == 0) return;
   2442 
   2443   SmallVector<SDValue, 4> Values(NumValues);
   2444   SDValue Cond     = getValue(I.getOperand(0));
   2445   SDValue LHSVal   = getValue(I.getOperand(1));
   2446   SDValue RHSVal   = getValue(I.getOperand(2));
   2447   auto BaseOps = {Cond};
   2448   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
   2449     ISD::VSELECT : ISD::SELECT;
   2450 
   2451   // Min/max matching is only viable if all output VTs are the same.
   2452   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
   2453     EVT VT = ValueVTs[0];
   2454     LLVMContext &Ctx = *DAG.getContext();
   2455     auto &TLI = DAG.getTargetLoweringInfo();
   2456 
   2457     // We care about the legality of the operation after it has been type
   2458     // legalized.
   2459     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
   2460            VT != TLI.getTypeToTransformTo(Ctx, VT))
   2461       VT = TLI.getTypeToTransformTo(Ctx, VT);
   2462 
   2463     // If the vselect is legal, assume we want to leave this as a vector setcc +
   2464     // vselect. Otherwise, if this is going to be scalarized, we want to see if
   2465     // min/max is legal on the scalar type.
   2466     bool UseScalarMinMax = VT.isVector() &&
   2467       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
   2468 
   2469     Value *LHS, *RHS;
   2470     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
   2471     ISD::NodeType Opc = ISD::DELETED_NODE;
   2472     switch (SPR.Flavor) {
   2473     case SPF_UMAX:    Opc = ISD::UMAX; break;
   2474     case SPF_UMIN:    Opc = ISD::UMIN; break;
   2475     case SPF_SMAX:    Opc = ISD::SMAX; break;
   2476     case SPF_SMIN:    Opc = ISD::SMIN; break;
   2477     case SPF_FMINNUM:
   2478       switch (SPR.NaNBehavior) {
   2479       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
   2480       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
   2481       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
   2482       case SPNB_RETURNS_ANY: {
   2483         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
   2484           Opc = ISD::FMINNUM;
   2485         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
   2486           Opc = ISD::FMINNAN;
   2487         else if (UseScalarMinMax)
   2488           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
   2489             ISD::FMINNUM : ISD::FMINNAN;
   2490         break;
   2491       }
   2492       }
   2493       break;
   2494     case SPF_FMAXNUM:
   2495       switch (SPR.NaNBehavior) {
   2496       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
   2497       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
   2498       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
   2499       case SPNB_RETURNS_ANY:
   2500 
   2501         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
   2502           Opc = ISD::FMAXNUM;
   2503         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
   2504           Opc = ISD::FMAXNAN;
   2505         else if (UseScalarMinMax)
   2506           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
   2507             ISD::FMAXNUM : ISD::FMAXNAN;
   2508         break;
   2509       }
   2510       break;
   2511     default: break;
   2512     }
   2513 
   2514     if (Opc != ISD::DELETED_NODE &&
   2515         (TLI.isOperationLegalOrCustom(Opc, VT) ||
   2516          (UseScalarMinMax &&
   2517           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
   2518         // If the underlying comparison instruction is used by any other
   2519         // instruction, the consumed instructions won't be destroyed, so it is
   2520         // not profitable to convert to a min/max.
   2521         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
   2522       OpCode = Opc;
   2523       LHSVal = getValue(LHS);
   2524       RHSVal = getValue(RHS);
   2525       BaseOps = {};
   2526     }
   2527   }
   2528 
   2529   for (unsigned i = 0; i != NumValues; ++i) {
   2530     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
   2531     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
   2532     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
   2533     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
   2534                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
   2535                             Ops);
   2536   }
   2537 
   2538   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
   2539                            DAG.getVTList(ValueVTs), Values));
   2540 }
   2541 
   2542 void SelectionDAGBuilder::visitTrunc(const User &I) {
   2543   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
   2544   SDValue N = getValue(I.getOperand(0));
   2545   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2546                                                         I.getType());
   2547   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
   2548 }
   2549 
   2550 void SelectionDAGBuilder::visitZExt(const User &I) {
   2551   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
   2552   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
   2553   SDValue N = getValue(I.getOperand(0));
   2554   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2555                                                         I.getType());
   2556   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
   2557 }
   2558 
   2559 void SelectionDAGBuilder::visitSExt(const User &I) {
   2560   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
   2561   // SExt also can't be a cast to bool for same reason. So, nothing much to do
   2562   SDValue N = getValue(I.getOperand(0));
   2563   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2564                                                         I.getType());
   2565   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
   2566 }
   2567 
   2568 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
   2569   // FPTrunc is never a no-op cast, no need to check
   2570   SDValue N = getValue(I.getOperand(0));
   2571   SDLoc dl = getCurSDLoc();
   2572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2573   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
   2574   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
   2575                            DAG.getTargetConstant(
   2576                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
   2577 }
   2578 
   2579 void SelectionDAGBuilder::visitFPExt(const User &I) {
   2580   // FPExt is never a no-op cast, no need to check
   2581   SDValue N = getValue(I.getOperand(0));
   2582   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2583                                                         I.getType());
   2584   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
   2585 }
   2586 
   2587 void SelectionDAGBuilder::visitFPToUI(const User &I) {
   2588   // FPToUI is never a no-op cast, no need to check
   2589   SDValue N = getValue(I.getOperand(0));
   2590   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2591                                                         I.getType());
   2592   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
   2593 }
   2594 
   2595 void SelectionDAGBuilder::visitFPToSI(const User &I) {
   2596   // FPToSI is never a no-op cast, no need to check
   2597   SDValue N = getValue(I.getOperand(0));
   2598   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2599                                                         I.getType());
   2600   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
   2601 }
   2602 
   2603 void SelectionDAGBuilder::visitUIToFP(const User &I) {
   2604   // UIToFP is never a no-op cast, no need to check
   2605   SDValue N = getValue(I.getOperand(0));
   2606   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2607                                                         I.getType());
   2608   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
   2609 }
   2610 
   2611 void SelectionDAGBuilder::visitSIToFP(const User &I) {
   2612   // SIToFP is never a no-op cast, no need to check
   2613   SDValue N = getValue(I.getOperand(0));
   2614   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2615                                                         I.getType());
   2616   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
   2617 }
   2618 
   2619 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
   2620   // What to do depends on the size of the integer and the size of the pointer.
   2621   // We can either truncate, zero extend, or no-op, accordingly.
   2622   SDValue N = getValue(I.getOperand(0));
   2623   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2624                                                         I.getType());
   2625   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
   2626 }
   2627 
   2628 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
   2629   // What to do depends on the size of the integer and the size of the pointer.
   2630   // We can either truncate, zero extend, or no-op, accordingly.
   2631   SDValue N = getValue(I.getOperand(0));
   2632   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2633                                                         I.getType());
   2634   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
   2635 }
   2636 
   2637 void SelectionDAGBuilder::visitBitCast(const User &I) {
   2638   SDValue N = getValue(I.getOperand(0));
   2639   SDLoc dl = getCurSDLoc();
   2640   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   2641                                                         I.getType());
   2642 
   2643   // BitCast assures us that source and destination are the same size so this is
   2644   // either a BITCAST or a no-op.
   2645   if (DestVT != N.getValueType())
   2646     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
   2647                              DestVT, N)); // convert types.
   2648   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
   2649   // might fold any kind of constant expression to an integer constant and that
   2650   // is not what we are looking for. Only regcognize a bitcast of a genuine
   2651   // constant integer as an opaque constant.
   2652   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
   2653     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
   2654                                  /*isOpaque*/true));
   2655   else
   2656     setValue(&I, N);            // noop cast.
   2657 }
   2658 
   2659 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
   2660   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2661   const Value *SV = I.getOperand(0);
   2662   SDValue N = getValue(SV);
   2663   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
   2664 
   2665   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
   2666   unsigned DestAS = I.getType()->getPointerAddressSpace();
   2667 
   2668   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
   2669     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
   2670 
   2671   setValue(&I, N);
   2672 }
   2673 
   2674 void SelectionDAGBuilder::visitInsertElement(const User &I) {
   2675   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2676   SDValue InVec = getValue(I.getOperand(0));
   2677   SDValue InVal = getValue(I.getOperand(1));
   2678   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
   2679                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
   2680   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
   2681                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
   2682                            InVec, InVal, InIdx));
   2683 }
   2684 
   2685 void SelectionDAGBuilder::visitExtractElement(const User &I) {
   2686   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2687   SDValue InVec = getValue(I.getOperand(0));
   2688   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
   2689                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
   2690   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
   2691                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
   2692                            InVec, InIdx));
   2693 }
   2694 
   2695 // Utility for visitShuffleVector - Return true if every element in Mask,
   2696 // beginning from position Pos and ending in Pos+Size, falls within the
   2697 // specified sequential range [L, L+Pos). or is undef.
   2698 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
   2699                                 unsigned Pos, unsigned Size, int Low) {
   2700   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
   2701     if (Mask[i] >= 0 && Mask[i] != Low)
   2702       return false;
   2703   return true;
   2704 }
   2705 
   2706 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
   2707   SDValue Src1 = getValue(I.getOperand(0));
   2708   SDValue Src2 = getValue(I.getOperand(1));
   2709 
   2710   SmallVector<int, 8> Mask;
   2711   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
   2712   unsigned MaskNumElts = Mask.size();
   2713 
   2714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2715   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
   2716   EVT SrcVT = Src1.getValueType();
   2717   unsigned SrcNumElts = SrcVT.getVectorNumElements();
   2718 
   2719   if (SrcNumElts == MaskNumElts) {
   2720     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
   2721                                       &Mask[0]));
   2722     return;
   2723   }
   2724 
   2725   // Normalize the shuffle vector since mask and vector length don't match.
   2726   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
   2727     // Mask is longer than the source vectors and is a multiple of the source
   2728     // vectors.  We can use concatenate vector to make the mask and vectors
   2729     // lengths match.
   2730     if (SrcNumElts*2 == MaskNumElts) {
   2731       // First check for Src1 in low and Src2 in high
   2732       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
   2733           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
   2734         // The shuffle is concatenating two vectors together.
   2735         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
   2736                                  VT, Src1, Src2));
   2737         return;
   2738       }
   2739       // Then check for Src2 in low and Src1 in high
   2740       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
   2741           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
   2742         // The shuffle is concatenating two vectors together.
   2743         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
   2744                                  VT, Src2, Src1));
   2745         return;
   2746       }
   2747     }
   2748 
   2749     // Pad both vectors with undefs to make them the same length as the mask.
   2750     unsigned NumConcat = MaskNumElts / SrcNumElts;
   2751     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
   2752     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
   2753     SDValue UndefVal = DAG.getUNDEF(SrcVT);
   2754 
   2755     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
   2756     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
   2757     MOps1[0] = Src1;
   2758     MOps2[0] = Src2;
   2759 
   2760     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
   2761                                                   getCurSDLoc(), VT, MOps1);
   2762     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
   2763                                                   getCurSDLoc(), VT, MOps2);
   2764 
   2765     // Readjust mask for new input vector length.
   2766     SmallVector<int, 8> MappedOps;
   2767     for (unsigned i = 0; i != MaskNumElts; ++i) {
   2768       int Idx = Mask[i];
   2769       if (Idx >= (int)SrcNumElts)
   2770         Idx -= SrcNumElts - MaskNumElts;
   2771       MappedOps.push_back(Idx);
   2772     }
   2773 
   2774     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
   2775                                       &MappedOps[0]));
   2776     return;
   2777   }
   2778 
   2779   if (SrcNumElts > MaskNumElts) {
   2780     // Analyze the access pattern of the vector to see if we can extract
   2781     // two subvectors and do the shuffle. The analysis is done by calculating
   2782     // the range of elements the mask access on both vectors.
   2783     int MinRange[2] = { static_cast<int>(SrcNumElts),
   2784                         static_cast<int>(SrcNumElts)};
   2785     int MaxRange[2] = {-1, -1};
   2786 
   2787     for (unsigned i = 0; i != MaskNumElts; ++i) {
   2788       int Idx = Mask[i];
   2789       unsigned Input = 0;
   2790       if (Idx < 0)
   2791         continue;
   2792 
   2793       if (Idx >= (int)SrcNumElts) {
   2794         Input = 1;
   2795         Idx -= SrcNumElts;
   2796       }
   2797       if (Idx > MaxRange[Input])
   2798         MaxRange[Input] = Idx;
   2799       if (Idx < MinRange[Input])
   2800         MinRange[Input] = Idx;
   2801     }
   2802 
   2803     // Check if the access is smaller than the vector size and can we find
   2804     // a reasonable extract index.
   2805     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
   2806                                    // Extract.
   2807     int StartIdx[2];  // StartIdx to extract from
   2808     for (unsigned Input = 0; Input < 2; ++Input) {
   2809       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
   2810         RangeUse[Input] = 0; // Unused
   2811         StartIdx[Input] = 0;
   2812         continue;
   2813       }
   2814 
   2815       // Find a good start index that is a multiple of the mask length. Then
   2816       // see if the rest of the elements are in range.
   2817       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
   2818       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
   2819           StartIdx[Input] + MaskNumElts <= SrcNumElts)
   2820         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
   2821     }
   2822 
   2823     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
   2824       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
   2825       return;
   2826     }
   2827     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
   2828       // Extract appropriate subvector and generate a vector shuffle
   2829       for (unsigned Input = 0; Input < 2; ++Input) {
   2830         SDValue &Src = Input == 0 ? Src1 : Src2;
   2831         if (RangeUse[Input] == 0)
   2832           Src = DAG.getUNDEF(VT);
   2833         else {
   2834           SDLoc dl = getCurSDLoc();
   2835           Src = DAG.getNode(
   2836               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
   2837               DAG.getConstant(StartIdx[Input], dl,
   2838                               TLI.getVectorIdxTy(DAG.getDataLayout())));
   2839         }
   2840       }
   2841 
   2842       // Calculate new mask.
   2843       SmallVector<int, 8> MappedOps;
   2844       for (unsigned i = 0; i != MaskNumElts; ++i) {
   2845         int Idx = Mask[i];
   2846         if (Idx >= 0) {
   2847           if (Idx < (int)SrcNumElts)
   2848             Idx -= StartIdx[0];
   2849           else
   2850             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
   2851         }
   2852         MappedOps.push_back(Idx);
   2853       }
   2854 
   2855       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
   2856                                         &MappedOps[0]));
   2857       return;
   2858     }
   2859   }
   2860 
   2861   // We can't use either concat vectors or extract subvectors so fall back to
   2862   // replacing the shuffle with extract and build vector.
   2863   // to insert and build vector.
   2864   EVT EltVT = VT.getVectorElementType();
   2865   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
   2866   SDLoc dl = getCurSDLoc();
   2867   SmallVector<SDValue,8> Ops;
   2868   for (unsigned i = 0; i != MaskNumElts; ++i) {
   2869     int Idx = Mask[i];
   2870     SDValue Res;
   2871 
   2872     if (Idx < 0) {
   2873       Res = DAG.getUNDEF(EltVT);
   2874     } else {
   2875       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
   2876       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
   2877 
   2878       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
   2879                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
   2880     }
   2881 
   2882     Ops.push_back(Res);
   2883   }
   2884 
   2885   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
   2886 }
   2887 
   2888 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
   2889   const Value *Op0 = I.getOperand(0);
   2890   const Value *Op1 = I.getOperand(1);
   2891   Type *AggTy = I.getType();
   2892   Type *ValTy = Op1->getType();
   2893   bool IntoUndef = isa<UndefValue>(Op0);
   2894   bool FromUndef = isa<UndefValue>(Op1);
   2895 
   2896   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
   2897 
   2898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2899   SmallVector<EVT, 4> AggValueVTs;
   2900   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
   2901   SmallVector<EVT, 4> ValValueVTs;
   2902   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
   2903 
   2904   unsigned NumAggValues = AggValueVTs.size();
   2905   unsigned NumValValues = ValValueVTs.size();
   2906   SmallVector<SDValue, 4> Values(NumAggValues);
   2907 
   2908   // Ignore an insertvalue that produces an empty object
   2909   if (!NumAggValues) {
   2910     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
   2911     return;
   2912   }
   2913 
   2914   SDValue Agg = getValue(Op0);
   2915   unsigned i = 0;
   2916   // Copy the beginning value(s) from the original aggregate.
   2917   for (; i != LinearIndex; ++i)
   2918     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   2919                 SDValue(Agg.getNode(), Agg.getResNo() + i);
   2920   // Copy values from the inserted value(s).
   2921   if (NumValValues) {
   2922     SDValue Val = getValue(Op1);
   2923     for (; i != LinearIndex + NumValValues; ++i)
   2924       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   2925                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
   2926   }
   2927   // Copy remaining value(s) from the original aggregate.
   2928   for (; i != NumAggValues; ++i)
   2929     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
   2930                 SDValue(Agg.getNode(), Agg.getResNo() + i);
   2931 
   2932   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
   2933                            DAG.getVTList(AggValueVTs), Values));
   2934 }
   2935 
   2936 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
   2937   const Value *Op0 = I.getOperand(0);
   2938   Type *AggTy = Op0->getType();
   2939   Type *ValTy = I.getType();
   2940   bool OutOfUndef = isa<UndefValue>(Op0);
   2941 
   2942   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
   2943 
   2944   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2945   SmallVector<EVT, 4> ValValueVTs;
   2946   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
   2947 
   2948   unsigned NumValValues = ValValueVTs.size();
   2949 
   2950   // Ignore a extractvalue that produces an empty object
   2951   if (!NumValValues) {
   2952     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
   2953     return;
   2954   }
   2955 
   2956   SmallVector<SDValue, 4> Values(NumValValues);
   2957 
   2958   SDValue Agg = getValue(Op0);
   2959   // Copy out the selected value(s).
   2960   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
   2961     Values[i - LinearIndex] =
   2962       OutOfUndef ?
   2963         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
   2964         SDValue(Agg.getNode(), Agg.getResNo() + i);
   2965 
   2966   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
   2967                            DAG.getVTList(ValValueVTs), Values));
   2968 }
   2969 
   2970 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
   2971   Value *Op0 = I.getOperand(0);
   2972   // Note that the pointer operand may be a vector of pointers. Take the scalar
   2973   // element which holds a pointer.
   2974   Type *Ty = Op0->getType()->getScalarType();
   2975   unsigned AS = Ty->getPointerAddressSpace();
   2976   SDValue N = getValue(Op0);
   2977   SDLoc dl = getCurSDLoc();
   2978 
   2979   // Normalize Vector GEP - all scalar operands should be converted to the
   2980   // splat vector.
   2981   unsigned VectorWidth = I.getType()->isVectorTy() ?
   2982     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
   2983 
   2984   if (VectorWidth && !N.getValueType().isVector()) {
   2985     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
   2986     SmallVector<SDValue, 16> Ops(VectorWidth, N);
   2987     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
   2988   }
   2989   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
   2990        OI != E; ++OI) {
   2991     const Value *Idx = *OI;
   2992     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
   2993       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
   2994       if (Field) {
   2995         // N = N + Offset
   2996         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
   2997         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
   2998                         DAG.getConstant(Offset, dl, N.getValueType()));
   2999       }
   3000 
   3001       Ty = StTy->getElementType(Field);
   3002     } else {
   3003       Ty = cast<SequentialType>(Ty)->getElementType();
   3004       MVT PtrTy =
   3005           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
   3006       unsigned PtrSize = PtrTy.getSizeInBits();
   3007       APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
   3008 
   3009       // If this is a scalar constant or a splat vector of constants,
   3010       // handle it quickly.
   3011       const auto *CI = dyn_cast<ConstantInt>(Idx);
   3012       if (!CI && isa<ConstantDataVector>(Idx) &&
   3013           cast<ConstantDataVector>(Idx)->getSplatValue())
   3014         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
   3015 
   3016       if (CI) {
   3017         if (CI->isZero())
   3018           continue;
   3019         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
   3020         SDValue OffsVal = VectorWidth ?
   3021           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
   3022           DAG.getConstant(Offs, dl, PtrTy);
   3023         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal);
   3024         continue;
   3025       }
   3026 
   3027       // N = N + Idx * ElementSize;
   3028       SDValue IdxN = getValue(Idx);
   3029 
   3030       if (!IdxN.getValueType().isVector() && VectorWidth) {
   3031         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
   3032         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
   3033         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
   3034       }
   3035       // If the index is smaller or larger than intptr_t, truncate or extend
   3036       // it.
   3037       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
   3038 
   3039       // If this is a multiply by a power of two, turn it into a shl
   3040       // immediately.  This is a very common case.
   3041       if (ElementSize != 1) {
   3042         if (ElementSize.isPowerOf2()) {
   3043           unsigned Amt = ElementSize.logBase2();
   3044           IdxN = DAG.getNode(ISD::SHL, dl,
   3045                              N.getValueType(), IdxN,
   3046                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
   3047         } else {
   3048           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
   3049           IdxN = DAG.getNode(ISD::MUL, dl,
   3050                              N.getValueType(), IdxN, Scale);
   3051         }
   3052       }
   3053 
   3054       N = DAG.getNode(ISD::ADD, dl,
   3055                       N.getValueType(), N, IdxN);
   3056     }
   3057   }
   3058 
   3059   setValue(&I, N);
   3060 }
   3061 
   3062 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
   3063   // If this is a fixed sized alloca in the entry block of the function,
   3064   // allocate it statically on the stack.
   3065   if (FuncInfo.StaticAllocaMap.count(&I))
   3066     return;   // getValue will auto-populate this.
   3067 
   3068   SDLoc dl = getCurSDLoc();
   3069   Type *Ty = I.getAllocatedType();
   3070   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3071   auto &DL = DAG.getDataLayout();
   3072   uint64_t TySize = DL.getTypeAllocSize(Ty);
   3073   unsigned Align =
   3074       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
   3075 
   3076   SDValue AllocSize = getValue(I.getArraySize());
   3077 
   3078   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
   3079   if (AllocSize.getValueType() != IntPtr)
   3080     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
   3081 
   3082   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
   3083                           AllocSize,
   3084                           DAG.getConstant(TySize, dl, IntPtr));
   3085 
   3086   // Handle alignment.  If the requested alignment is less than or equal to
   3087   // the stack alignment, ignore it.  If the size is greater than or equal to
   3088   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
   3089   unsigned StackAlign =
   3090       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
   3091   if (Align <= StackAlign)
   3092     Align = 0;
   3093 
   3094   // Round the size of the allocation up to the stack alignment size
   3095   // by add SA-1 to the size.
   3096   AllocSize = DAG.getNode(ISD::ADD, dl,
   3097                           AllocSize.getValueType(), AllocSize,
   3098                           DAG.getIntPtrConstant(StackAlign - 1, dl));
   3099 
   3100   // Mask out the low bits for alignment purposes.
   3101   AllocSize = DAG.getNode(ISD::AND, dl,
   3102                           AllocSize.getValueType(), AllocSize,
   3103                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
   3104                                                 dl));
   3105 
   3106   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
   3107   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
   3108   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
   3109   setValue(&I, DSA);
   3110   DAG.setRoot(DSA.getValue(1));
   3111 
   3112   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
   3113 }
   3114 
   3115 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
   3116   if (I.isAtomic())
   3117     return visitAtomicLoad(I);
   3118 
   3119   const Value *SV = I.getOperand(0);
   3120   SDValue Ptr = getValue(SV);
   3121 
   3122   Type *Ty = I.getType();
   3123 
   3124   bool isVolatile = I.isVolatile();
   3125   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
   3126 
   3127   // The IR notion of invariant_load only guarantees that all *non-faulting*
   3128   // invariant loads result in the same value.  The MI notion of invariant load
   3129   // guarantees that the load can be legally moved to any location within its
   3130   // containing function.  The MI notion of invariant_load is stronger than the
   3131   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
   3132   // with a guarantee that the location being loaded from is dereferenceable
   3133   // throughout the function's lifetime.
   3134 
   3135   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
   3136                      isDereferenceablePointer(SV, DAG.getDataLayout());
   3137   unsigned Alignment = I.getAlignment();
   3138 
   3139   AAMDNodes AAInfo;
   3140   I.getAAMetadata(AAInfo);
   3141   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
   3142 
   3143   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3144   SmallVector<EVT, 4> ValueVTs;
   3145   SmallVector<uint64_t, 4> Offsets;
   3146   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
   3147   unsigned NumValues = ValueVTs.size();
   3148   if (NumValues == 0)
   3149     return;
   3150 
   3151   SDValue Root;
   3152   bool ConstantMemory = false;
   3153   if (isVolatile || NumValues > MaxParallelChains)
   3154     // Serialize volatile loads with other side effects.
   3155     Root = getRoot();
   3156   else if (AA->pointsToConstantMemory(MemoryLocation(
   3157                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
   3158     // Do not serialize (non-volatile) loads of constant memory with anything.
   3159     Root = DAG.getEntryNode();
   3160     ConstantMemory = true;
   3161   } else {
   3162     // Do not serialize non-volatile loads against each other.
   3163     Root = DAG.getRoot();
   3164   }
   3165 
   3166   SDLoc dl = getCurSDLoc();
   3167 
   3168   if (isVolatile)
   3169     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
   3170 
   3171   SmallVector<SDValue, 4> Values(NumValues);
   3172   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
   3173   EVT PtrVT = Ptr.getValueType();
   3174   unsigned ChainI = 0;
   3175   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
   3176     // Serializing loads here may result in excessive register pressure, and
   3177     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
   3178     // could recover a bit by hoisting nodes upward in the chain by recognizing
   3179     // they are side-effect free or do not alias. The optimizer should really
   3180     // avoid this case by converting large object/array copies to llvm.memcpy
   3181     // (MaxParallelChains should always remain as failsafe).
   3182     if (ChainI == MaxParallelChains) {
   3183       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
   3184       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3185                                   makeArrayRef(Chains.data(), ChainI));
   3186       Root = Chain;
   3187       ChainI = 0;
   3188     }
   3189     SDValue A = DAG.getNode(ISD::ADD, dl,
   3190                             PtrVT, Ptr,
   3191                             DAG.getConstant(Offsets[i], dl, PtrVT));
   3192     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
   3193                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
   3194                             isNonTemporal, isInvariant, Alignment, AAInfo,
   3195                             Ranges);
   3196 
   3197     Values[i] = L;
   3198     Chains[ChainI] = L.getValue(1);
   3199   }
   3200 
   3201   if (!ConstantMemory) {
   3202     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3203                                 makeArrayRef(Chains.data(), ChainI));
   3204     if (isVolatile)
   3205       DAG.setRoot(Chain);
   3206     else
   3207       PendingLoads.push_back(Chain);
   3208   }
   3209 
   3210   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
   3211                            DAG.getVTList(ValueVTs), Values));
   3212 }
   3213 
   3214 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
   3215   if (I.isAtomic())
   3216     return visitAtomicStore(I);
   3217 
   3218   const Value *SrcV = I.getOperand(0);
   3219   const Value *PtrV = I.getOperand(1);
   3220 
   3221   SmallVector<EVT, 4> ValueVTs;
   3222   SmallVector<uint64_t, 4> Offsets;
   3223   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
   3224                   SrcV->getType(), ValueVTs, &Offsets);
   3225   unsigned NumValues = ValueVTs.size();
   3226   if (NumValues == 0)
   3227     return;
   3228 
   3229   // Get the lowered operands. Note that we do this after
   3230   // checking if NumResults is zero, because with zero results
   3231   // the operands won't have values in the map.
   3232   SDValue Src = getValue(SrcV);
   3233   SDValue Ptr = getValue(PtrV);
   3234 
   3235   SDValue Root = getRoot();
   3236   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
   3237   EVT PtrVT = Ptr.getValueType();
   3238   bool isVolatile = I.isVolatile();
   3239   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
   3240   unsigned Alignment = I.getAlignment();
   3241   SDLoc dl = getCurSDLoc();
   3242 
   3243   AAMDNodes AAInfo;
   3244   I.getAAMetadata(AAInfo);
   3245 
   3246   unsigned ChainI = 0;
   3247   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
   3248     // See visitLoad comments.
   3249     if (ChainI == MaxParallelChains) {
   3250       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3251                                   makeArrayRef(Chains.data(), ChainI));
   3252       Root = Chain;
   3253       ChainI = 0;
   3254     }
   3255     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
   3256                               DAG.getConstant(Offsets[i], dl, PtrVT));
   3257     SDValue St = DAG.getStore(Root, dl,
   3258                               SDValue(Src.getNode(), Src.getResNo() + i),
   3259                               Add, MachinePointerInfo(PtrV, Offsets[i]),
   3260                               isVolatile, isNonTemporal, Alignment, AAInfo);
   3261     Chains[ChainI] = St;
   3262   }
   3263 
   3264   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
   3265                                   makeArrayRef(Chains.data(), ChainI));
   3266   DAG.setRoot(StoreNode);
   3267 }
   3268 
   3269 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
   3270   SDLoc sdl = getCurSDLoc();
   3271 
   3272   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
   3273   Value  *PtrOperand = I.getArgOperand(1);
   3274   SDValue Ptr = getValue(PtrOperand);
   3275   SDValue Src0 = getValue(I.getArgOperand(0));
   3276   SDValue Mask = getValue(I.getArgOperand(3));
   3277   EVT VT = Src0.getValueType();
   3278   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
   3279   if (!Alignment)
   3280     Alignment = DAG.getEVTAlignment(VT);
   3281 
   3282   AAMDNodes AAInfo;
   3283   I.getAAMetadata(AAInfo);
   3284 
   3285   MachineMemOperand *MMO =
   3286     DAG.getMachineFunction().
   3287     getMachineMemOperand(MachinePointerInfo(PtrOperand),
   3288                           MachineMemOperand::MOStore,  VT.getStoreSize(),
   3289                           Alignment, AAInfo);
   3290   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
   3291                                          MMO, false);
   3292   DAG.setRoot(StoreNode);
   3293   setValue(&I, StoreNode);
   3294 }
   3295 
   3296 // Get a uniform base for the Gather/Scatter intrinsic.
   3297 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
   3298 // We try to represent it as a base pointer + vector of indices.
   3299 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
   3300 // The first operand of the GEP may be a single pointer or a vector of pointers
   3301 // Example:
   3302 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
   3303 //  or
   3304 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
   3305 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
   3306 //
   3307 // When the first GEP operand is a single pointer - it is the uniform base we
   3308 // are looking for. If first operand of the GEP is a splat vector - we
   3309 // extract the spalt value and use it as a uniform base.
   3310 // In all other cases the function returns 'false'.
   3311 //
   3312 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
   3313                            SelectionDAGBuilder* SDB) {
   3314 
   3315   SelectionDAG& DAG = SDB->DAG;
   3316   LLVMContext &Context = *DAG.getContext();
   3317 
   3318   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
   3319   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
   3320   if (!GEP || GEP->getNumOperands() > 2)
   3321     return false;
   3322 
   3323   const Value *GEPPtr = GEP->getPointerOperand();
   3324   if (!GEPPtr->getType()->isVectorTy())
   3325     Ptr = GEPPtr;
   3326   else if (!(Ptr = getSplatValue(GEPPtr)))
   3327     return false;
   3328 
   3329   Value *IndexVal = GEP->getOperand(1);
   3330 
   3331   // The operands of the GEP may be defined in another basic block.
   3332   // In this case we'll not find nodes for the operands.
   3333   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
   3334     return false;
   3335 
   3336   Base = SDB->getValue(Ptr);
   3337   Index = SDB->getValue(IndexVal);
   3338 
   3339   // Suppress sign extension.
   3340   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
   3341     if (SDB->findValue(Sext->getOperand(0))) {
   3342       IndexVal = Sext->getOperand(0);
   3343       Index = SDB->getValue(IndexVal);
   3344     }
   3345   }
   3346   if (!Index.getValueType().isVector()) {
   3347     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
   3348     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
   3349     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
   3350     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
   3351   }
   3352   return true;
   3353 }
   3354 
   3355 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
   3356   SDLoc sdl = getCurSDLoc();
   3357 
   3358   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
   3359   const Value *Ptr = I.getArgOperand(1);
   3360   SDValue Src0 = getValue(I.getArgOperand(0));
   3361   SDValue Mask = getValue(I.getArgOperand(3));
   3362   EVT VT = Src0.getValueType();
   3363   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
   3364   if (!Alignment)
   3365     Alignment = DAG.getEVTAlignment(VT);
   3366   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3367 
   3368   AAMDNodes AAInfo;
   3369   I.getAAMetadata(AAInfo);
   3370 
   3371   SDValue Base;
   3372   SDValue Index;
   3373   const Value *BasePtr = Ptr;
   3374   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
   3375 
   3376   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
   3377   MachineMemOperand *MMO = DAG.getMachineFunction().
   3378     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
   3379                          MachineMemOperand::MOStore,  VT.getStoreSize(),
   3380                          Alignment, AAInfo);
   3381   if (!UniformBase) {
   3382     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
   3383     Index = getValue(Ptr);
   3384   }
   3385   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
   3386   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
   3387                                          Ops, MMO);
   3388   DAG.setRoot(Scatter);
   3389   setValue(&I, Scatter);
   3390 }
   3391 
   3392 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
   3393   SDLoc sdl = getCurSDLoc();
   3394 
   3395   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
   3396   Value  *PtrOperand = I.getArgOperand(0);
   3397   SDValue Ptr = getValue(PtrOperand);
   3398   SDValue Src0 = getValue(I.getArgOperand(3));
   3399   SDValue Mask = getValue(I.getArgOperand(2));
   3400 
   3401   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3402   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
   3403   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
   3404   if (!Alignment)
   3405     Alignment = DAG.getEVTAlignment(VT);
   3406 
   3407   AAMDNodes AAInfo;
   3408   I.getAAMetadata(AAInfo);
   3409   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
   3410 
   3411   SDValue InChain = DAG.getRoot();
   3412   if (AA->pointsToConstantMemory(MemoryLocation(
   3413           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
   3414           AAInfo))) {
   3415     // Do not serialize (non-volatile) loads of constant memory with anything.
   3416     InChain = DAG.getEntryNode();
   3417   }
   3418 
   3419   MachineMemOperand *MMO =
   3420     DAG.getMachineFunction().
   3421     getMachineMemOperand(MachinePointerInfo(PtrOperand),
   3422                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
   3423                           Alignment, AAInfo, Ranges);
   3424 
   3425   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
   3426                                    ISD::NON_EXTLOAD);
   3427   SDValue OutChain = Load.getValue(1);
   3428   DAG.setRoot(OutChain);
   3429   setValue(&I, Load);
   3430 }
   3431 
   3432 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
   3433   SDLoc sdl = getCurSDLoc();
   3434 
   3435   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
   3436   const Value *Ptr = I.getArgOperand(0);
   3437   SDValue Src0 = getValue(I.getArgOperand(3));
   3438   SDValue Mask = getValue(I.getArgOperand(2));
   3439 
   3440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3441   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
   3442   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
   3443   if (!Alignment)
   3444     Alignment = DAG.getEVTAlignment(VT);
   3445 
   3446   AAMDNodes AAInfo;
   3447   I.getAAMetadata(AAInfo);
   3448   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
   3449 
   3450   SDValue Root = DAG.getRoot();
   3451   SDValue Base;
   3452   SDValue Index;
   3453   const Value *BasePtr = Ptr;
   3454   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
   3455   bool ConstantMemory = false;
   3456   if (UniformBase &&
   3457       AA->pointsToConstantMemory(MemoryLocation(
   3458           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
   3459           AAInfo))) {
   3460     // Do not serialize (non-volatile) loads of constant memory with anything.
   3461     Root = DAG.getEntryNode();
   3462     ConstantMemory = true;
   3463   }
   3464 
   3465   MachineMemOperand *MMO =
   3466     DAG.getMachineFunction().
   3467     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
   3468                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
   3469                          Alignment, AAInfo, Ranges);
   3470 
   3471   if (!UniformBase) {
   3472     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
   3473     Index = getValue(Ptr);
   3474   }
   3475   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
   3476   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
   3477                                        Ops, MMO);
   3478 
   3479   SDValue OutChain = Gather.getValue(1);
   3480   if (!ConstantMemory)
   3481     PendingLoads.push_back(OutChain);
   3482   setValue(&I, Gather);
   3483 }
   3484 
   3485 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
   3486   SDLoc dl = getCurSDLoc();
   3487   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
   3488   AtomicOrdering FailureOrder = I.getFailureOrdering();
   3489   SynchronizationScope Scope = I.getSynchScope();
   3490 
   3491   SDValue InChain = getRoot();
   3492 
   3493   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
   3494   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
   3495   SDValue L = DAG.getAtomicCmpSwap(
   3496       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
   3497       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
   3498       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
   3499       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
   3500 
   3501   SDValue OutChain = L.getValue(2);
   3502 
   3503   setValue(&I, L);
   3504   DAG.setRoot(OutChain);
   3505 }
   3506 
   3507 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
   3508   SDLoc dl = getCurSDLoc();
   3509   ISD::NodeType NT;
   3510   switch (I.getOperation()) {
   3511   default: llvm_unreachable("Unknown atomicrmw operation");
   3512   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
   3513   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
   3514   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
   3515   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
   3516   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
   3517   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
   3518   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
   3519   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
   3520   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
   3521   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
   3522   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
   3523   }
   3524   AtomicOrdering Order = I.getOrdering();
   3525   SynchronizationScope Scope = I.getSynchScope();
   3526 
   3527   SDValue InChain = getRoot();
   3528 
   3529   SDValue L =
   3530     DAG.getAtomic(NT, dl,
   3531                   getValue(I.getValOperand()).getSimpleValueType(),
   3532                   InChain,
   3533                   getValue(I.getPointerOperand()),
   3534                   getValue(I.getValOperand()),
   3535                   I.getPointerOperand(),
   3536                   /* Alignment=*/ 0, Order, Scope);
   3537 
   3538   SDValue OutChain = L.getValue(1);
   3539 
   3540   setValue(&I, L);
   3541   DAG.setRoot(OutChain);
   3542 }
   3543 
   3544 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
   3545   SDLoc dl = getCurSDLoc();
   3546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3547   SDValue Ops[3];
   3548   Ops[0] = getRoot();
   3549   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
   3550                            TLI.getPointerTy(DAG.getDataLayout()));
   3551   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
   3552                            TLI.getPointerTy(DAG.getDataLayout()));
   3553   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
   3554 }
   3555 
   3556 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
   3557   SDLoc dl = getCurSDLoc();
   3558   AtomicOrdering Order = I.getOrdering();
   3559   SynchronizationScope Scope = I.getSynchScope();
   3560 
   3561   SDValue InChain = getRoot();
   3562 
   3563   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3564   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
   3565 
   3566   if (I.getAlignment() < VT.getSizeInBits() / 8)
   3567     report_fatal_error("Cannot generate unaligned atomic load");
   3568 
   3569   MachineMemOperand *MMO =
   3570       DAG.getMachineFunction().
   3571       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
   3572                            MachineMemOperand::MOVolatile |
   3573                            MachineMemOperand::MOLoad,
   3574                            VT.getStoreSize(),
   3575                            I.getAlignment() ? I.getAlignment() :
   3576                                               DAG.getEVTAlignment(VT));
   3577 
   3578   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
   3579   SDValue L =
   3580       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
   3581                     getValue(I.getPointerOperand()), MMO,
   3582                     Order, Scope);
   3583 
   3584   SDValue OutChain = L.getValue(1);
   3585 
   3586   setValue(&I, L);
   3587   DAG.setRoot(OutChain);
   3588 }
   3589 
   3590 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
   3591   SDLoc dl = getCurSDLoc();
   3592 
   3593   AtomicOrdering Order = I.getOrdering();
   3594   SynchronizationScope Scope = I.getSynchScope();
   3595 
   3596   SDValue InChain = getRoot();
   3597 
   3598   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3599   EVT VT =
   3600       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
   3601 
   3602   if (I.getAlignment() < VT.getSizeInBits() / 8)
   3603     report_fatal_error("Cannot generate unaligned atomic store");
   3604 
   3605   SDValue OutChain =
   3606     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
   3607                   InChain,
   3608                   getValue(I.getPointerOperand()),
   3609                   getValue(I.getValueOperand()),
   3610                   I.getPointerOperand(), I.getAlignment(),
   3611                   Order, Scope);
   3612 
   3613   DAG.setRoot(OutChain);
   3614 }
   3615 
   3616 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
   3617 /// node.
   3618 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
   3619                                                unsigned Intrinsic) {
   3620   bool HasChain = !I.doesNotAccessMemory();
   3621   bool OnlyLoad = HasChain && I.onlyReadsMemory();
   3622 
   3623   // Build the operand list.
   3624   SmallVector<SDValue, 8> Ops;
   3625   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
   3626     if (OnlyLoad) {
   3627       // We don't need to serialize loads against other loads.
   3628       Ops.push_back(DAG.getRoot());
   3629     } else {
   3630       Ops.push_back(getRoot());
   3631     }
   3632   }
   3633 
   3634   // Info is set by getTgtMemInstrinsic
   3635   TargetLowering::IntrinsicInfo Info;
   3636   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   3637   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
   3638 
   3639   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
   3640   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
   3641       Info.opc == ISD::INTRINSIC_W_CHAIN)
   3642     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
   3643                                         TLI.getPointerTy(DAG.getDataLayout())));
   3644 
   3645   // Add all operands of the call to the operand list.
   3646   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
   3647     SDValue Op = getValue(I.getArgOperand(i));
   3648     Ops.push_back(Op);
   3649   }
   3650 
   3651   SmallVector<EVT, 4> ValueVTs;
   3652   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
   3653 
   3654   if (HasChain)
   3655     ValueVTs.push_back(MVT::Other);
   3656 
   3657   SDVTList VTs = DAG.getVTList(ValueVTs);
   3658 
   3659   // Create the node.
   3660   SDValue Result;
   3661   if (IsTgtIntrinsic) {
   3662     // This is target intrinsic that touches memory
   3663     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
   3664                                      VTs, Ops, Info.memVT,
   3665                                    MachinePointerInfo(Info.ptrVal, Info.offset),
   3666                                      Info.align, Info.vol,
   3667                                      Info.readMem, Info.writeMem, Info.size);
   3668   } else if (!HasChain) {
   3669     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
   3670   } else if (!I.getType()->isVoidTy()) {
   3671     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
   3672   } else {
   3673     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
   3674   }
   3675 
   3676   if (HasChain) {
   3677     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
   3678     if (OnlyLoad)
   3679       PendingLoads.push_back(Chain);
   3680     else
   3681       DAG.setRoot(Chain);
   3682   }
   3683 
   3684   if (!I.getType()->isVoidTy()) {
   3685     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
   3686       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
   3687       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
   3688     }
   3689 
   3690     setValue(&I, Result);
   3691   }
   3692 }
   3693 
   3694 /// GetSignificand - Get the significand and build it into a floating-point
   3695 /// number with exponent of 1:
   3696 ///
   3697 ///   Op = (Op & 0x007fffff) | 0x3f800000;
   3698 ///
   3699 /// where Op is the hexadecimal representation of floating point value.
   3700 static SDValue
   3701 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
   3702   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
   3703                            DAG.getConstant(0x007fffff, dl, MVT::i32));
   3704   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
   3705                            DAG.getConstant(0x3f800000, dl, MVT::i32));
   3706   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
   3707 }
   3708 
   3709 /// GetExponent - Get the exponent:
   3710 ///
   3711 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
   3712 ///
   3713 /// where Op is the hexadecimal representation of floating point value.
   3714 static SDValue
   3715 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
   3716             SDLoc dl) {
   3717   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
   3718                            DAG.getConstant(0x7f800000, dl, MVT::i32));
   3719   SDValue t1 = DAG.getNode(
   3720       ISD::SRL, dl, MVT::i32, t0,
   3721       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
   3722   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
   3723                            DAG.getConstant(127, dl, MVT::i32));
   3724   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
   3725 }
   3726 
   3727 /// getF32Constant - Get 32-bit floating point constant.
   3728 static SDValue
   3729 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
   3730   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
   3731                            MVT::f32);
   3732 }
   3733 
   3734 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
   3735                                        SelectionDAG &DAG) {
   3736   // TODO: What fast-math-flags should be set on the floating-point nodes?
   3737 
   3738   //   IntegerPartOfX = ((int32_t)(t0);
   3739   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
   3740 
   3741   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
   3742   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
   3743   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
   3744 
   3745   //   IntegerPartOfX <<= 23;
   3746   IntegerPartOfX = DAG.getNode(
   3747       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
   3748       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
   3749                                   DAG.getDataLayout())));
   3750 
   3751   SDValue TwoToFractionalPartOfX;
   3752   if (LimitFloatPrecision <= 6) {
   3753     // For floating-point precision of 6:
   3754     //
   3755     //   TwoToFractionalPartOfX =
   3756     //     0.997535578f +
   3757     //       (0.735607626f + 0.252464424f * x) * x;
   3758     //
   3759     // error 0.0144103317, which is 6 bits
   3760     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3761                              getF32Constant(DAG, 0x3e814304, dl));
   3762     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3763                              getF32Constant(DAG, 0x3f3c50c8, dl));
   3764     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3765     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3766                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
   3767   } else if (LimitFloatPrecision <= 12) {
   3768     // For floating-point precision of 12:
   3769     //
   3770     //   TwoToFractionalPartOfX =
   3771     //     0.999892986f +
   3772     //       (0.696457318f +
   3773     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
   3774     //
   3775     // error 0.000107046256, which is 13 to 14 bits
   3776     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3777                              getF32Constant(DAG, 0x3da235e3, dl));
   3778     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3779                              getF32Constant(DAG, 0x3e65b8f3, dl));
   3780     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3781     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3782                              getF32Constant(DAG, 0x3f324b07, dl));
   3783     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3784     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3785                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
   3786   } else { // LimitFloatPrecision <= 18
   3787     // For floating-point precision of 18:
   3788     //
   3789     //   TwoToFractionalPartOfX =
   3790     //     0.999999982f +
   3791     //       (0.693148872f +
   3792     //         (0.240227044f +
   3793     //           (0.554906021e-1f +
   3794     //             (0.961591928e-2f +
   3795     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
   3796     // error 2.47208000*10^(-7), which is better than 18 bits
   3797     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3798                              getF32Constant(DAG, 0x3924b03e, dl));
   3799     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   3800                              getF32Constant(DAG, 0x3ab24b87, dl));
   3801     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3802     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3803                              getF32Constant(DAG, 0x3c1d8c17, dl));
   3804     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3805     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   3806                              getF32Constant(DAG, 0x3d634a1d, dl));
   3807     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3808     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3809                              getF32Constant(DAG, 0x3e75fe14, dl));
   3810     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3811     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
   3812                               getF32Constant(DAG, 0x3f317234, dl));
   3813     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
   3814     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
   3815                                          getF32Constant(DAG, 0x3f800000, dl));
   3816   }
   3817 
   3818   // Add the exponent into the result in integer domain.
   3819   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
   3820   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   3821                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
   3822 }
   3823 
   3824 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
   3825 /// limited-precision mode.
   3826 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
   3827                          const TargetLowering &TLI) {
   3828   if (Op.getValueType() == MVT::f32 &&
   3829       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3830 
   3831     // Put the exponent in the right bit position for later addition to the
   3832     // final result:
   3833     //
   3834     //   #define LOG2OFe 1.4426950f
   3835     //   t0 = Op * LOG2OFe
   3836 
   3837     // TODO: What fast-math-flags should be set here?
   3838     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
   3839                              getF32Constant(DAG, 0x3fb8aa3b, dl));
   3840     return getLimitedPrecisionExp2(t0, dl, DAG);
   3841   }
   3842 
   3843   // No special expansion.
   3844   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
   3845 }
   3846 
   3847 /// expandLog - Lower a log intrinsic. Handles the special sequences for
   3848 /// limited-precision mode.
   3849 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
   3850                          const TargetLowering &TLI) {
   3851 
   3852   // TODO: What fast-math-flags should be set on the floating-point nodes?
   3853 
   3854   if (Op.getValueType() == MVT::f32 &&
   3855       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3856     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3857 
   3858     // Scale the exponent by log(2) [0.69314718f].
   3859     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
   3860     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
   3861                                         getF32Constant(DAG, 0x3f317218, dl));
   3862 
   3863     // Get the significand and build it into a floating-point number with
   3864     // exponent of 1.
   3865     SDValue X = GetSignificand(DAG, Op1, dl);
   3866 
   3867     SDValue LogOfMantissa;
   3868     if (LimitFloatPrecision <= 6) {
   3869       // For floating-point precision of 6:
   3870       //
   3871       //   LogofMantissa =
   3872       //     -1.1609546f +
   3873       //       (1.4034025f - 0.23903021f * x) * x;
   3874       //
   3875       // error 0.0034276066, which is better than 8 bits
   3876       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3877                                getF32Constant(DAG, 0xbe74c456, dl));
   3878       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3879                                getF32Constant(DAG, 0x3fb3a2b1, dl));
   3880       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3881       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3882                                   getF32Constant(DAG, 0x3f949a29, dl));
   3883     } else if (LimitFloatPrecision <= 12) {
   3884       // For floating-point precision of 12:
   3885       //
   3886       //   LogOfMantissa =
   3887       //     -1.7417939f +
   3888       //       (2.8212026f +
   3889       //         (-1.4699568f +
   3890       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
   3891       //
   3892       // error 0.000061011436, which is 14 bits
   3893       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3894                                getF32Constant(DAG, 0xbd67b6d6, dl));
   3895       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3896                                getF32Constant(DAG, 0x3ee4f4b8, dl));
   3897       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3898       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3899                                getF32Constant(DAG, 0x3fbc278b, dl));
   3900       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3901       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3902                                getF32Constant(DAG, 0x40348e95, dl));
   3903       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3904       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3905                                   getF32Constant(DAG, 0x3fdef31a, dl));
   3906     } else { // LimitFloatPrecision <= 18
   3907       // For floating-point precision of 18:
   3908       //
   3909       //   LogOfMantissa =
   3910       //     -2.1072184f +
   3911       //       (4.2372794f +
   3912       //         (-3.7029485f +
   3913       //           (2.2781945f +
   3914       //             (-0.87823314f +
   3915       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
   3916       //
   3917       // error 0.0000023660568, which is better than 18 bits
   3918       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3919                                getF32Constant(DAG, 0xbc91e5ac, dl));
   3920       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3921                                getF32Constant(DAG, 0x3e4350aa, dl));
   3922       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3923       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3924                                getF32Constant(DAG, 0x3f60d3e3, dl));
   3925       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3926       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3927                                getF32Constant(DAG, 0x4011cdf0, dl));
   3928       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   3929       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   3930                                getF32Constant(DAG, 0x406cfd1c, dl));
   3931       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   3932       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   3933                                getF32Constant(DAG, 0x408797cb, dl));
   3934       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   3935       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
   3936                                   getF32Constant(DAG, 0x4006dcab, dl));
   3937     }
   3938 
   3939     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
   3940   }
   3941 
   3942   // No special expansion.
   3943   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
   3944 }
   3945 
   3946 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
   3947 /// limited-precision mode.
   3948 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
   3949                           const TargetLowering &TLI) {
   3950 
   3951   // TODO: What fast-math-flags should be set on the floating-point nodes?
   3952 
   3953   if (Op.getValueType() == MVT::f32 &&
   3954       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   3955     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   3956 
   3957     // Get the exponent.
   3958     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
   3959 
   3960     // Get the significand and build it into a floating-point number with
   3961     // exponent of 1.
   3962     SDValue X = GetSignificand(DAG, Op1, dl);
   3963 
   3964     // Different possible minimax approximations of significand in
   3965     // floating-point for various degrees of accuracy over [1,2].
   3966     SDValue Log2ofMantissa;
   3967     if (LimitFloatPrecision <= 6) {
   3968       // For floating-point precision of 6:
   3969       //
   3970       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
   3971       //
   3972       // error 0.0049451742, which is more than 7 bits
   3973       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3974                                getF32Constant(DAG, 0xbeb08fe0, dl));
   3975       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3976                                getF32Constant(DAG, 0x40019463, dl));
   3977       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3978       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3979                                    getF32Constant(DAG, 0x3fd6633d, dl));
   3980     } else if (LimitFloatPrecision <= 12) {
   3981       // For floating-point precision of 12:
   3982       //
   3983       //   Log2ofMantissa =
   3984       //     -2.51285454f +
   3985       //       (4.07009056f +
   3986       //         (-2.12067489f +
   3987       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
   3988       //
   3989       // error 0.0000876136000, which is better than 13 bits
   3990       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   3991                                getF32Constant(DAG, 0xbda7262e, dl));
   3992       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   3993                                getF32Constant(DAG, 0x3f25280b, dl));
   3994       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   3995       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   3996                                getF32Constant(DAG, 0x4007b923, dl));
   3997       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   3998       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   3999                                getF32Constant(DAG, 0x40823e2f, dl));
   4000       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4001       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   4002                                    getF32Constant(DAG, 0x4020d29c, dl));
   4003     } else { // LimitFloatPrecision <= 18
   4004       // For floating-point precision of 18:
   4005       //
   4006       //   Log2ofMantissa =
   4007       //     -3.0400495f +
   4008       //       (6.1129976f +
   4009       //         (-5.3420409f +
   4010       //           (3.2865683f +
   4011       //             (-1.2669343f +
   4012       //               (0.27515199f -
   4013       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
   4014       //
   4015       // error 0.0000018516, which is better than 18 bits
   4016       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4017                                getF32Constant(DAG, 0xbcd2769e, dl));
   4018       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   4019                                getF32Constant(DAG, 0x3e8ce0b9, dl));
   4020       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4021       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   4022                                getF32Constant(DAG, 0x3fa22ae7, dl));
   4023       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4024       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
   4025                                getF32Constant(DAG, 0x40525723, dl));
   4026       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4027       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
   4028                                getF32Constant(DAG, 0x40aaf200, dl));
   4029       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4030       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
   4031                                getF32Constant(DAG, 0x40c39dad, dl));
   4032       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
   4033       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
   4034                                    getF32Constant(DAG, 0x4042902c, dl));
   4035     }
   4036 
   4037     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
   4038   }
   4039 
   4040   // No special expansion.
   4041   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
   4042 }
   4043 
   4044 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
   4045 /// limited-precision mode.
   4046 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
   4047                            const TargetLowering &TLI) {
   4048 
   4049   // TODO: What fast-math-flags should be set on the floating-point nodes?
   4050 
   4051   if (Op.getValueType() == MVT::f32 &&
   4052       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4053     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
   4054 
   4055     // Scale the exponent by log10(2) [0.30102999f].
   4056     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
   4057     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
   4058                                         getF32Constant(DAG, 0x3e9a209a, dl));
   4059 
   4060     // Get the significand and build it into a floating-point number with
   4061     // exponent of 1.
   4062     SDValue X = GetSignificand(DAG, Op1, dl);
   4063 
   4064     SDValue Log10ofMantissa;
   4065     if (LimitFloatPrecision <= 6) {
   4066       // For floating-point precision of 6:
   4067       //
   4068       //   Log10ofMantissa =
   4069       //     -0.50419619f +
   4070       //       (0.60948995f - 0.10380950f * x) * x;
   4071       //
   4072       // error 0.0014886165, which is 6 bits
   4073       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4074                                getF32Constant(DAG, 0xbdd49a13, dl));
   4075       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
   4076                                getF32Constant(DAG, 0x3f1c0789, dl));
   4077       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4078       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
   4079                                     getF32Constant(DAG, 0x3f011300, dl));
   4080     } else if (LimitFloatPrecision <= 12) {
   4081       // For floating-point precision of 12:
   4082       //
   4083       //   Log10ofMantissa =
   4084       //     -0.64831180f +
   4085       //       (0.91751397f +
   4086       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
   4087       //
   4088       // error 0.00019228036, which is better than 12 bits
   4089       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4090                                getF32Constant(DAG, 0x3d431f31, dl));
   4091       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
   4092                                getF32Constant(DAG, 0x3ea21fb2, dl));
   4093       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4094       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4095                                getF32Constant(DAG, 0x3f6ae232, dl));
   4096       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4097       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
   4098                                     getF32Constant(DAG, 0x3f25f7c3, dl));
   4099     } else { // LimitFloatPrecision <= 18
   4100       // For floating-point precision of 18:
   4101       //
   4102       //   Log10ofMantissa =
   4103       //     -0.84299375f +
   4104       //       (1.5327582f +
   4105       //         (-1.0688956f +
   4106       //           (0.49102474f +
   4107       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
   4108       //
   4109       // error 0.0000037995730, which is better than 18 bits
   4110       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
   4111                                getF32Constant(DAG, 0x3c5d51ce, dl));
   4112       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
   4113                                getF32Constant(DAG, 0x3e00685a, dl));
   4114       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
   4115       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
   4116                                getF32Constant(DAG, 0x3efb6798, dl));
   4117       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
   4118       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
   4119                                getF32Constant(DAG, 0x3f88d192, dl));
   4120       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
   4121       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
   4122                                getF32Constant(DAG, 0x3fc4316c, dl));
   4123       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
   4124       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
   4125                                     getF32Constant(DAG, 0x3f57ce70, dl));
   4126     }
   4127 
   4128     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
   4129   }
   4130 
   4131   // No special expansion.
   4132   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
   4133 }
   4134 
   4135 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
   4136 /// limited-precision mode.
   4137 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
   4138                           const TargetLowering &TLI) {
   4139   if (Op.getValueType() == MVT::f32 &&
   4140       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
   4141     return getLimitedPrecisionExp2(Op, dl, DAG);
   4142 
   4143   // No special expansion.
   4144   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
   4145 }
   4146 
   4147 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
   4148 /// limited-precision mode with x == 10.0f.
   4149 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
   4150                          SelectionDAG &DAG, const TargetLowering &TLI) {
   4151   bool IsExp10 = false;
   4152   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
   4153       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
   4154     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
   4155       APFloat Ten(10.0f);
   4156       IsExp10 = LHSC->isExactlyValue(Ten);
   4157     }
   4158   }
   4159 
   4160   // TODO: What fast-math-flags should be set on the FMUL node?
   4161   if (IsExp10) {
   4162     // Put the exponent in the right bit position for later addition to the
   4163     // final result:
   4164     //
   4165     //   #define LOG2OF10 3.3219281f
   4166     //   t0 = Op * LOG2OF10;
   4167     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
   4168                              getF32Constant(DAG, 0x40549a78, dl));
   4169     return getLimitedPrecisionExp2(t0, dl, DAG);
   4170   }
   4171 
   4172   // No special expansion.
   4173   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
   4174 }
   4175 
   4176 
   4177 /// ExpandPowI - Expand a llvm.powi intrinsic.
   4178 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
   4179                           SelectionDAG &DAG) {
   4180   // If RHS is a constant, we can expand this out to a multiplication tree,
   4181   // otherwise we end up lowering to a call to __powidf2 (for example).  When
   4182   // optimizing for size, we only want to do this if the expansion would produce
   4183   // a small number of multiplies, otherwise we do the full expansion.
   4184   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
   4185     // Get the exponent as a positive value.
   4186     unsigned Val = RHSC->getSExtValue();
   4187     if ((int)Val < 0) Val = -Val;
   4188 
   4189     // powi(x, 0) -> 1.0
   4190     if (Val == 0)
   4191       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
   4192 
   4193     const Function *F = DAG.getMachineFunction().getFunction();
   4194     if (!F->optForSize() ||
   4195         // If optimizing for size, don't insert too many multiplies.
   4196         // This inserts up to 5 multiplies.
   4197         countPopulation(Val) + Log2_32(Val) < 7) {
   4198       // We use the simple binary decomposition method to generate the multiply
   4199       // sequence.  There are more optimal ways to do this (for example,
   4200       // powi(x,15) generates one more multiply than it should), but this has
   4201       // the benefit of being both really simple and much better than a libcall.
   4202       SDValue Res;  // Logically starts equal to 1.0
   4203       SDValue CurSquare = LHS;
   4204       // TODO: Intrinsics should have fast-math-flags that propagate to these
   4205       // nodes.
   4206       while (Val) {
   4207         if (Val & 1) {
   4208           if (Res.getNode())
   4209             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
   4210           else
   4211             Res = CurSquare;  // 1.0*CurSquare.
   4212         }
   4213 
   4214         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
   4215                                 CurSquare, CurSquare);
   4216         Val >>= 1;
   4217       }
   4218 
   4219       // If the original was negative, invert the result, producing 1/(x*x*x).
   4220       if (RHSC->getSExtValue() < 0)
   4221         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
   4222                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
   4223       return Res;
   4224     }
   4225   }
   4226 
   4227   // Otherwise, expand to a libcall.
   4228   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
   4229 }
   4230 
   4231 // getUnderlyingArgReg - Find underlying register used for a truncated or
   4232 // bitcasted argument.
   4233 static unsigned getUnderlyingArgReg(const SDValue &N) {
   4234   switch (N.getOpcode()) {
   4235   case ISD::CopyFromReg:
   4236     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
   4237   case ISD::BITCAST:
   4238   case ISD::AssertZext:
   4239   case ISD::AssertSext:
   4240   case ISD::TRUNCATE:
   4241     return getUnderlyingArgReg(N.getOperand(0));
   4242   default:
   4243     return 0;
   4244   }
   4245 }
   4246 
   4247 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
   4248 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
   4249 /// At the end of instruction selection, they will be inserted to the entry BB.
   4250 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
   4251     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
   4252     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
   4253   const Argument *Arg = dyn_cast<Argument>(V);
   4254   if (!Arg)
   4255     return false;
   4256 
   4257   MachineFunction &MF = DAG.getMachineFunction();
   4258   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
   4259 
   4260   // Ignore inlined function arguments here.
   4261   //
   4262   // FIXME: Should we be checking DL->inlinedAt() to determine this?
   4263   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
   4264     return false;
   4265 
   4266   Optional<MachineOperand> Op;
   4267   // Some arguments' frame index is recorded during argument lowering.
   4268   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
   4269     Op = MachineOperand::CreateFI(FI);
   4270 
   4271   if (!Op && N.getNode()) {
   4272     unsigned Reg = getUnderlyingArgReg(N);
   4273     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
   4274       MachineRegisterInfo &RegInfo = MF.getRegInfo();
   4275       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
   4276       if (PR)
   4277         Reg = PR;
   4278     }
   4279     if (Reg)
   4280       Op = MachineOperand::CreateReg(Reg, false);
   4281   }
   4282 
   4283   if (!Op) {
   4284     // Check if ValueMap has reg number.
   4285     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
   4286     if (VMI != FuncInfo.ValueMap.end())
   4287       Op = MachineOperand::CreateReg(VMI->second, false);
   4288   }
   4289 
   4290   if (!Op && N.getNode())
   4291     // Check if frame index is available.
   4292     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
   4293       if (FrameIndexSDNode *FINode =
   4294           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
   4295         Op = MachineOperand::CreateFI(FINode->getIndex());
   4296 
   4297   if (!Op)
   4298     return false;
   4299 
   4300   assert(Variable->isValidLocationForIntrinsic(DL) &&
   4301          "Expected inlined-at fields to agree");
   4302   if (Op->isReg())
   4303     FuncInfo.ArgDbgValues.push_back(
   4304         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
   4305                 Op->getReg(), Offset, Variable, Expr));
   4306   else
   4307     FuncInfo.ArgDbgValues.push_back(
   4308         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
   4309             .addOperand(*Op)
   4310             .addImm(Offset)
   4311             .addMetadata(Variable)
   4312             .addMetadata(Expr));
   4313 
   4314   return true;
   4315 }
   4316 
   4317 // VisualStudio defines setjmp as _setjmp
   4318 #if defined(_MSC_VER) && defined(setjmp) && \
   4319                          !defined(setjmp_undefined_for_msvc)
   4320 #  pragma push_macro("setjmp")
   4321 #  undef setjmp
   4322 #  define setjmp_undefined_for_msvc
   4323 #endif
   4324 
   4325 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
   4326 /// we want to emit this as a call to a named external function, return the name
   4327 /// otherwise lower it and return null.
   4328 const char *
   4329 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
   4330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   4331   SDLoc sdl = getCurSDLoc();
   4332   DebugLoc dl = getCurDebugLoc();
   4333   SDValue Res;
   4334 
   4335   switch (Intrinsic) {
   4336   default:
   4337     // By default, turn this into a target intrinsic node.
   4338     visitTargetIntrinsic(I, Intrinsic);
   4339     return nullptr;
   4340   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
   4341   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
   4342   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
   4343   case Intrinsic::returnaddress:
   4344     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
   4345                              TLI.getPointerTy(DAG.getDataLayout()),
   4346                              getValue(I.getArgOperand(0))));
   4347     return nullptr;
   4348   case Intrinsic::frameaddress:
   4349     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
   4350                              TLI.getPointerTy(DAG.getDataLayout()),
   4351                              getValue(I.getArgOperand(0))));
   4352     return nullptr;
   4353   case Intrinsic::read_register: {
   4354     Value *Reg = I.getArgOperand(0);
   4355     SDValue Chain = getRoot();
   4356     SDValue RegName =
   4357         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
   4358     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
   4359     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
   4360       DAG.getVTList(VT, MVT::Other), Chain, RegName);
   4361     setValue(&I, Res);
   4362     DAG.setRoot(Res.getValue(1));
   4363     return nullptr;
   4364   }
   4365   case Intrinsic::write_register: {
   4366     Value *Reg = I.getArgOperand(0);
   4367     Value *RegValue = I.getArgOperand(1);
   4368     SDValue Chain = getRoot();
   4369     SDValue RegName =
   4370         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
   4371     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
   4372                             RegName, getValue(RegValue)));
   4373     return nullptr;
   4374   }
   4375   case Intrinsic::setjmp:
   4376     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
   4377   case Intrinsic::longjmp:
   4378     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
   4379   case Intrinsic::memcpy: {
   4380     SDValue Op1 = getValue(I.getArgOperand(0));
   4381     SDValue Op2 = getValue(I.getArgOperand(1));
   4382     SDValue Op3 = getValue(I.getArgOperand(2));
   4383     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4384     if (!Align)
   4385       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
   4386     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4387     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
   4388     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
   4389                                false, isTC,
   4390                                MachinePointerInfo(I.getArgOperand(0)),
   4391                                MachinePointerInfo(I.getArgOperand(1)));
   4392     updateDAGForMaybeTailCall(MC);
   4393     return nullptr;
   4394   }
   4395   case Intrinsic::memset: {
   4396     SDValue Op1 = getValue(I.getArgOperand(0));
   4397     SDValue Op2 = getValue(I.getArgOperand(1));
   4398     SDValue Op3 = getValue(I.getArgOperand(2));
   4399     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4400     if (!Align)
   4401       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
   4402     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4403     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
   4404     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
   4405                                isTC, MachinePointerInfo(I.getArgOperand(0)));
   4406     updateDAGForMaybeTailCall(MS);
   4407     return nullptr;
   4408   }
   4409   case Intrinsic::memmove: {
   4410     SDValue Op1 = getValue(I.getArgOperand(0));
   4411     SDValue Op2 = getValue(I.getArgOperand(1));
   4412     SDValue Op3 = getValue(I.getArgOperand(2));
   4413     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
   4414     if (!Align)
   4415       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
   4416     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
   4417     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
   4418     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
   4419                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
   4420                                 MachinePointerInfo(I.getArgOperand(1)));
   4421     updateDAGForMaybeTailCall(MM);
   4422     return nullptr;
   4423   }
   4424   case Intrinsic::dbg_declare: {
   4425     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
   4426     DILocalVariable *Variable = DI.getVariable();
   4427     DIExpression *Expression = DI.getExpression();
   4428     const Value *Address = DI.getAddress();
   4429     assert(Variable && "Missing variable");
   4430     if (!Address) {
   4431       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4432       return nullptr;
   4433     }
   4434 
   4435     // Check if address has undef value.
   4436     if (isa<UndefValue>(Address) ||
   4437         (Address->use_empty() && !isa<Argument>(Address))) {
   4438       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4439       return nullptr;
   4440     }
   4441 
   4442     SDValue &N = NodeMap[Address];
   4443     if (!N.getNode() && isa<Argument>(Address))
   4444       // Check unused arguments map.
   4445       N = UnusedArgNodeMap[Address];
   4446     SDDbgValue *SDV;
   4447     if (N.getNode()) {
   4448       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
   4449         Address = BCI->getOperand(0);
   4450       // Parameters are handled specially.
   4451       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
   4452       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
   4453       if (isParameter && FINode) {
   4454         // Byval parameter. We have a frame index at this point.
   4455         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
   4456                                         FINode->getIndex(), 0, dl, SDNodeOrder);
   4457       } else if (isa<Argument>(Address)) {
   4458         // Address is an argument, so try to emit its dbg value using
   4459         // virtual register info from the FuncInfo.ValueMap.
   4460         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
   4461                                  N);
   4462         return nullptr;
   4463       } else {
   4464         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
   4465                               true, 0, dl, SDNodeOrder);
   4466       }
   4467       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
   4468     } else {
   4469       // If Address is an argument then try to emit its dbg value using
   4470       // virtual register info from the FuncInfo.ValueMap.
   4471       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
   4472                                     N)) {
   4473         // If variable is pinned by a alloca in dominating bb then
   4474         // use StaticAllocaMap.
   4475         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
   4476           if (AI->getParent() != DI.getParent()) {
   4477             DenseMap<const AllocaInst*, int>::iterator SI =
   4478               FuncInfo.StaticAllocaMap.find(AI);
   4479             if (SI != FuncInfo.StaticAllocaMap.end()) {
   4480               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
   4481                                               0, dl, SDNodeOrder);
   4482               DAG.AddDbgValue(SDV, nullptr, false);
   4483               return nullptr;
   4484             }
   4485           }
   4486         }
   4487         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4488       }
   4489     }
   4490     return nullptr;
   4491   }
   4492   case Intrinsic::dbg_value: {
   4493     const DbgValueInst &DI = cast<DbgValueInst>(I);
   4494     assert(DI.getVariable() && "Missing variable");
   4495 
   4496     DILocalVariable *Variable = DI.getVariable();
   4497     DIExpression *Expression = DI.getExpression();
   4498     uint64_t Offset = DI.getOffset();
   4499     const Value *V = DI.getValue();
   4500     if (!V)
   4501       return nullptr;
   4502 
   4503     SDDbgValue *SDV;
   4504     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
   4505       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
   4506                                     SDNodeOrder);
   4507       DAG.AddDbgValue(SDV, nullptr, false);
   4508     } else {
   4509       // Do not use getValue() in here; we don't want to generate code at
   4510       // this point if it hasn't been done yet.
   4511       SDValue N = NodeMap[V];
   4512       if (!N.getNode() && isa<Argument>(V))
   4513         // Check unused arguments map.
   4514         N = UnusedArgNodeMap[V];
   4515       if (N.getNode()) {
   4516         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
   4517                                       false, N)) {
   4518           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
   4519                                 false, Offset, dl, SDNodeOrder);
   4520           DAG.AddDbgValue(SDV, N.getNode(), false);
   4521         }
   4522       } else if (!V->use_empty() ) {
   4523         // Do not call getValue(V) yet, as we don't want to generate code.
   4524         // Remember it for later.
   4525         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
   4526         DanglingDebugInfoMap[V] = DDI;
   4527       } else {
   4528         // We may expand this to cover more cases.  One case where we have no
   4529         // data available is an unreferenced parameter.
   4530         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
   4531       }
   4532     }
   4533 
   4534     // Build a debug info table entry.
   4535     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
   4536       V = BCI->getOperand(0);
   4537     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
   4538     // Don't handle byval struct arguments or VLAs, for example.
   4539     if (!AI) {
   4540       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
   4541       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
   4542       return nullptr;
   4543     }
   4544     DenseMap<const AllocaInst*, int>::iterator SI =
   4545       FuncInfo.StaticAllocaMap.find(AI);
   4546     if (SI == FuncInfo.StaticAllocaMap.end())
   4547       return nullptr; // VLAs.
   4548     return nullptr;
   4549   }
   4550 
   4551   case Intrinsic::eh_typeid_for: {
   4552     // Find the type id for the given typeinfo.
   4553     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
   4554     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
   4555     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
   4556     setValue(&I, Res);
   4557     return nullptr;
   4558   }
   4559 
   4560   case Intrinsic::eh_return_i32:
   4561   case Intrinsic::eh_return_i64:
   4562     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
   4563     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
   4564                             MVT::Other,
   4565                             getControlRoot(),
   4566                             getValue(I.getArgOperand(0)),
   4567                             getValue(I.getArgOperand(1))));
   4568     return nullptr;
   4569   case Intrinsic::eh_unwind_init:
   4570     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
   4571     return nullptr;
   4572   case Intrinsic::eh_dwarf_cfa: {
   4573     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
   4574                                         TLI.getPointerTy(DAG.getDataLayout()));
   4575     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
   4576                                  CfaArg.getValueType(),
   4577                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
   4578                                              CfaArg.getValueType()),
   4579                                  CfaArg);
   4580     SDValue FA = DAG.getNode(
   4581         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
   4582         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
   4583     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
   4584                              FA, Offset));
   4585     return nullptr;
   4586   }
   4587   case Intrinsic::eh_sjlj_callsite: {
   4588     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   4589     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
   4590     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
   4591     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
   4592 
   4593     MMI.setCurrentCallSite(CI->getZExtValue());
   4594     return nullptr;
   4595   }
   4596   case Intrinsic::eh_sjlj_functioncontext: {
   4597     // Get and store the index of the function context.
   4598     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
   4599     AllocaInst *FnCtx =
   4600       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
   4601     int FI = FuncInfo.StaticAllocaMap[FnCtx];
   4602     MFI->setFunctionContextIndex(FI);
   4603     return nullptr;
   4604   }
   4605   case Intrinsic::eh_sjlj_setjmp: {
   4606     SDValue Ops[2];
   4607     Ops[0] = getRoot();
   4608     Ops[1] = getValue(I.getArgOperand(0));
   4609     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
   4610                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
   4611     setValue(&I, Op.getValue(0));
   4612     DAG.setRoot(Op.getValue(1));
   4613     return nullptr;
   4614   }
   4615   case Intrinsic::eh_sjlj_longjmp: {
   4616     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
   4617                             getRoot(), getValue(I.getArgOperand(0))));
   4618     return nullptr;
   4619   }
   4620   case Intrinsic::eh_sjlj_setup_dispatch: {
   4621     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
   4622                             getRoot()));
   4623     return nullptr;
   4624   }
   4625 
   4626   case Intrinsic::masked_gather:
   4627     visitMaskedGather(I);
   4628     return nullptr;
   4629   case Intrinsic::masked_load:
   4630     visitMaskedLoad(I);
   4631     return nullptr;
   4632   case Intrinsic::masked_scatter:
   4633     visitMaskedScatter(I);
   4634     return nullptr;
   4635   case Intrinsic::masked_store:
   4636     visitMaskedStore(I);
   4637     return nullptr;
   4638   case Intrinsic::x86_mmx_pslli_w:
   4639   case Intrinsic::x86_mmx_pslli_d:
   4640   case Intrinsic::x86_mmx_pslli_q:
   4641   case Intrinsic::x86_mmx_psrli_w:
   4642   case Intrinsic::x86_mmx_psrli_d:
   4643   case Intrinsic::x86_mmx_psrli_q:
   4644   case Intrinsic::x86_mmx_psrai_w:
   4645   case Intrinsic::x86_mmx_psrai_d: {
   4646     SDValue ShAmt = getValue(I.getArgOperand(1));
   4647     if (isa<ConstantSDNode>(ShAmt)) {
   4648       visitTargetIntrinsic(I, Intrinsic);
   4649       return nullptr;
   4650     }
   4651     unsigned NewIntrinsic = 0;
   4652     EVT ShAmtVT = MVT::v2i32;
   4653     switch (Intrinsic) {
   4654     case Intrinsic::x86_mmx_pslli_w:
   4655       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
   4656       break;
   4657     case Intrinsic::x86_mmx_pslli_d:
   4658       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
   4659       break;
   4660     case Intrinsic::x86_mmx_pslli_q:
   4661       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
   4662       break;
   4663     case Intrinsic::x86_mmx_psrli_w:
   4664       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
   4665       break;
   4666     case Intrinsic::x86_mmx_psrli_d:
   4667       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
   4668       break;
   4669     case Intrinsic::x86_mmx_psrli_q:
   4670       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
   4671       break;
   4672     case Intrinsic::x86_mmx_psrai_w:
   4673       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
   4674       break;
   4675     case Intrinsic::x86_mmx_psrai_d:
   4676       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
   4677       break;
   4678     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   4679     }
   4680 
   4681     // The vector shift intrinsics with scalars uses 32b shift amounts but
   4682     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
   4683     // to be zero.
   4684     // We must do this early because v2i32 is not a legal type.
   4685     SDValue ShOps[2];
   4686     ShOps[0] = ShAmt;
   4687     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
   4688     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
   4689     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
   4690     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
   4691     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
   4692                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
   4693                        getValue(I.getArgOperand(0)), ShAmt);
   4694     setValue(&I, Res);
   4695     return nullptr;
   4696   }
   4697   case Intrinsic::convertff:
   4698   case Intrinsic::convertfsi:
   4699   case Intrinsic::convertfui:
   4700   case Intrinsic::convertsif:
   4701   case Intrinsic::convertuif:
   4702   case Intrinsic::convertss:
   4703   case Intrinsic::convertsu:
   4704   case Intrinsic::convertus:
   4705   case Intrinsic::convertuu: {
   4706     ISD::CvtCode Code = ISD::CVT_INVALID;
   4707     switch (Intrinsic) {
   4708     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   4709     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
   4710     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
   4711     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
   4712     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
   4713     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
   4714     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
   4715     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
   4716     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
   4717     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
   4718     }
   4719     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
   4720     const Value *Op1 = I.getArgOperand(0);
   4721     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
   4722                                DAG.getValueType(DestVT),
   4723                                DAG.getValueType(getValue(Op1).getValueType()),
   4724                                getValue(I.getArgOperand(1)),
   4725                                getValue(I.getArgOperand(2)),
   4726                                Code);
   4727     setValue(&I, Res);
   4728     return nullptr;
   4729   }
   4730   case Intrinsic::powi:
   4731     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
   4732                             getValue(I.getArgOperand(1)), DAG));
   4733     return nullptr;
   4734   case Intrinsic::log:
   4735     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
   4736     return nullptr;
   4737   case Intrinsic::log2:
   4738     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
   4739     return nullptr;
   4740   case Intrinsic::log10:
   4741     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
   4742     return nullptr;
   4743   case Intrinsic::exp:
   4744     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
   4745     return nullptr;
   4746   case Intrinsic::exp2:
   4747     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
   4748     return nullptr;
   4749   case Intrinsic::pow:
   4750     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
   4751                            getValue(I.getArgOperand(1)), DAG, TLI));
   4752     return nullptr;
   4753   case Intrinsic::sqrt:
   4754   case Intrinsic::fabs:
   4755   case Intrinsic::sin:
   4756   case Intrinsic::cos:
   4757   case Intrinsic::floor:
   4758   case Intrinsic::ceil:
   4759   case Intrinsic::trunc:
   4760   case Intrinsic::rint:
   4761   case Intrinsic::nearbyint:
   4762   case Intrinsic::round: {
   4763     unsigned Opcode;
   4764     switch (Intrinsic) {
   4765     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   4766     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
   4767     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
   4768     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
   4769     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
   4770     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
   4771     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
   4772     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
   4773     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
   4774     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
   4775     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
   4776     }
   4777 
   4778     setValue(&I, DAG.getNode(Opcode, sdl,
   4779                              getValue(I.getArgOperand(0)).getValueType(),
   4780                              getValue(I.getArgOperand(0))));
   4781     return nullptr;
   4782   }
   4783   case Intrinsic::minnum:
   4784     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
   4785                              getValue(I.getArgOperand(0)).getValueType(),
   4786                              getValue(I.getArgOperand(0)),
   4787                              getValue(I.getArgOperand(1))));
   4788     return nullptr;
   4789   case Intrinsic::maxnum:
   4790     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
   4791                              getValue(I.getArgOperand(0)).getValueType(),
   4792                              getValue(I.getArgOperand(0)),
   4793                              getValue(I.getArgOperand(1))));
   4794     return nullptr;
   4795   case Intrinsic::copysign:
   4796     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
   4797                              getValue(I.getArgOperand(0)).getValueType(),
   4798                              getValue(I.getArgOperand(0)),
   4799                              getValue(I.getArgOperand(1))));
   4800     return nullptr;
   4801   case Intrinsic::fma:
   4802     setValue(&I, DAG.getNode(ISD::FMA, sdl,
   4803                              getValue(I.getArgOperand(0)).getValueType(),
   4804                              getValue(I.getArgOperand(0)),
   4805                              getValue(I.getArgOperand(1)),
   4806                              getValue(I.getArgOperand(2))));
   4807     return nullptr;
   4808   case Intrinsic::fmuladd: {
   4809     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
   4810     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
   4811         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
   4812       setValue(&I, DAG.getNode(ISD::FMA, sdl,
   4813                                getValue(I.getArgOperand(0)).getValueType(),
   4814                                getValue(I.getArgOperand(0)),
   4815                                getValue(I.getArgOperand(1)),
   4816                                getValue(I.getArgOperand(2))));
   4817     } else {
   4818       // TODO: Intrinsic calls should have fast-math-flags.
   4819       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
   4820                                 getValue(I.getArgOperand(0)).getValueType(),
   4821                                 getValue(I.getArgOperand(0)),
   4822                                 getValue(I.getArgOperand(1)));
   4823       SDValue Add = DAG.getNode(ISD::FADD, sdl,
   4824                                 getValue(I.getArgOperand(0)).getValueType(),
   4825                                 Mul,
   4826                                 getValue(I.getArgOperand(2)));
   4827       setValue(&I, Add);
   4828     }
   4829     return nullptr;
   4830   }
   4831   case Intrinsic::convert_to_fp16:
   4832     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
   4833                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
   4834                                          getValue(I.getArgOperand(0)),
   4835                                          DAG.getTargetConstant(0, sdl,
   4836                                                                MVT::i32))));
   4837     return nullptr;
   4838   case Intrinsic::convert_from_fp16:
   4839     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
   4840                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
   4841                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
   4842                                          getValue(I.getArgOperand(0)))));
   4843     return nullptr;
   4844   case Intrinsic::pcmarker: {
   4845     SDValue Tmp = getValue(I.getArgOperand(0));
   4846     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
   4847     return nullptr;
   4848   }
   4849   case Intrinsic::readcyclecounter: {
   4850     SDValue Op = getRoot();
   4851     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
   4852                       DAG.getVTList(MVT::i64, MVT::Other), Op);
   4853     setValue(&I, Res);
   4854     DAG.setRoot(Res.getValue(1));
   4855     return nullptr;
   4856   }
   4857   case Intrinsic::bitreverse:
   4858     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
   4859                              getValue(I.getArgOperand(0)).getValueType(),
   4860                              getValue(I.getArgOperand(0))));
   4861     return nullptr;
   4862   case Intrinsic::bswap:
   4863     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
   4864                              getValue(I.getArgOperand(0)).getValueType(),
   4865                              getValue(I.getArgOperand(0))));
   4866     return nullptr;
   4867   case Intrinsic::cttz: {
   4868     SDValue Arg = getValue(I.getArgOperand(0));
   4869     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
   4870     EVT Ty = Arg.getValueType();
   4871     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
   4872                              sdl, Ty, Arg));
   4873     return nullptr;
   4874   }
   4875   case Intrinsic::ctlz: {
   4876     SDValue Arg = getValue(I.getArgOperand(0));
   4877     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
   4878     EVT Ty = Arg.getValueType();
   4879     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
   4880                              sdl, Ty, Arg));
   4881     return nullptr;
   4882   }
   4883   case Intrinsic::ctpop: {
   4884     SDValue Arg = getValue(I.getArgOperand(0));
   4885     EVT Ty = Arg.getValueType();
   4886     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
   4887     return nullptr;
   4888   }
   4889   case Intrinsic::stacksave: {
   4890     SDValue Op = getRoot();
   4891     Res = DAG.getNode(
   4892         ISD::STACKSAVE, sdl,
   4893         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
   4894     setValue(&I, Res);
   4895     DAG.setRoot(Res.getValue(1));
   4896     return nullptr;
   4897   }
   4898   case Intrinsic::stackrestore: {
   4899     Res = getValue(I.getArgOperand(0));
   4900     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
   4901     return nullptr;
   4902   }
   4903   case Intrinsic::get_dynamic_area_offset: {
   4904     SDValue Op = getRoot();
   4905     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
   4906     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
   4907     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
   4908     // target.
   4909     if (PtrTy != ResTy)
   4910       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
   4911                          " intrinsic!");
   4912     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
   4913                       Op);
   4914     DAG.setRoot(Op);
   4915     setValue(&I, Res);
   4916     return nullptr;
   4917   }
   4918   case Intrinsic::stackprotector: {
   4919     // Emit code into the DAG to store the stack guard onto the stack.
   4920     MachineFunction &MF = DAG.getMachineFunction();
   4921     MachineFrameInfo *MFI = MF.getFrameInfo();
   4922     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
   4923     SDValue Src, Chain = getRoot();
   4924     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
   4925     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
   4926 
   4927     // See if Ptr is a bitcast. If it is, look through it and see if we can get
   4928     // global variable __stack_chk_guard.
   4929     if (!GV)
   4930       if (const Operator *BC = dyn_cast<Operator>(Ptr))
   4931         if (BC->getOpcode() == Instruction::BitCast)
   4932           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
   4933 
   4934     if (GV && TLI.useLoadStackGuardNode()) {
   4935       // Emit a LOAD_STACK_GUARD node.
   4936       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
   4937                                                sdl, PtrTy, Chain);
   4938       MachinePointerInfo MPInfo(GV);
   4939       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
   4940       unsigned Flags = MachineMemOperand::MOLoad |
   4941                        MachineMemOperand::MOInvariant;
   4942       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
   4943                                          PtrTy.getSizeInBits() / 8,
   4944                                          DAG.getEVTAlignment(PtrTy));
   4945       Node->setMemRefs(MemRefs, MemRefs + 1);
   4946 
   4947       // Copy the guard value to a virtual register so that it can be
   4948       // retrieved in the epilogue.
   4949       Src = SDValue(Node, 0);
   4950       const TargetRegisterClass *RC =
   4951           TLI.getRegClassFor(Src.getSimpleValueType());
   4952       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
   4953 
   4954       SPDescriptor.setGuardReg(Reg);
   4955       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
   4956     } else {
   4957       Src = getValue(I.getArgOperand(0));   // The guard's value.
   4958     }
   4959 
   4960     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
   4961 
   4962     int FI = FuncInfo.StaticAllocaMap[Slot];
   4963     MFI->setStackProtectorIndex(FI);
   4964 
   4965     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
   4966 
   4967     // Store the stack protector onto the stack.
   4968     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
   4969                                                  DAG.getMachineFunction(), FI),
   4970                        true, false, 0);
   4971     setValue(&I, Res);
   4972     DAG.setRoot(Res);
   4973     return nullptr;
   4974   }
   4975   case Intrinsic::objectsize: {
   4976     // If we don't know by now, we're never going to know.
   4977     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
   4978 
   4979     assert(CI && "Non-constant type in __builtin_object_size?");
   4980 
   4981     SDValue Arg = getValue(I.getCalledValue());
   4982     EVT Ty = Arg.getValueType();
   4983 
   4984     if (CI->isZero())
   4985       Res = DAG.getConstant(-1ULL, sdl, Ty);
   4986     else
   4987       Res = DAG.getConstant(0, sdl, Ty);
   4988 
   4989     setValue(&I, Res);
   4990     return nullptr;
   4991   }
   4992   case Intrinsic::annotation:
   4993   case Intrinsic::ptr_annotation:
   4994     // Drop the intrinsic, but forward the value
   4995     setValue(&I, getValue(I.getOperand(0)));
   4996     return nullptr;
   4997   case Intrinsic::assume:
   4998   case Intrinsic::var_annotation:
   4999     // Discard annotate attributes and assumptions
   5000     return nullptr;
   5001 
   5002   case Intrinsic::init_trampoline: {
   5003     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
   5004 
   5005     SDValue Ops[6];
   5006     Ops[0] = getRoot();
   5007     Ops[1] = getValue(I.getArgOperand(0));
   5008     Ops[2] = getValue(I.getArgOperand(1));
   5009     Ops[3] = getValue(I.getArgOperand(2));
   5010     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
   5011     Ops[5] = DAG.getSrcValue(F);
   5012 
   5013     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
   5014 
   5015     DAG.setRoot(Res);
   5016     return nullptr;
   5017   }
   5018   case Intrinsic::adjust_trampoline: {
   5019     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
   5020                              TLI.getPointerTy(DAG.getDataLayout()),
   5021                              getValue(I.getArgOperand(0))));
   5022     return nullptr;
   5023   }
   5024   case Intrinsic::gcroot:
   5025     if (GFI) {
   5026       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
   5027       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
   5028 
   5029       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
   5030       GFI->addStackRoot(FI->getIndex(), TypeMap);
   5031     }
   5032     return nullptr;
   5033   case Intrinsic::gcread:
   5034   case Intrinsic::gcwrite:
   5035     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
   5036   case Intrinsic::flt_rounds:
   5037     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
   5038     return nullptr;
   5039 
   5040   case Intrinsic::expect: {
   5041     // Just replace __builtin_expect(exp, c) with EXP.
   5042     setValue(&I, getValue(I.getArgOperand(0)));
   5043     return nullptr;
   5044   }
   5045 
   5046   case Intrinsic::debugtrap:
   5047   case Intrinsic::trap: {
   5048     StringRef TrapFuncName =
   5049         I.getAttributes()
   5050             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
   5051             .getValueAsString();
   5052     if (TrapFuncName.empty()) {
   5053       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
   5054         ISD::TRAP : ISD::DEBUGTRAP;
   5055       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
   5056       return nullptr;
   5057     }
   5058     TargetLowering::ArgListTy Args;
   5059 
   5060     TargetLowering::CallLoweringInfo CLI(DAG);
   5061     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
   5062         CallingConv::C, I.getType(),
   5063         DAG.getExternalSymbol(TrapFuncName.data(),
   5064                               TLI.getPointerTy(DAG.getDataLayout())),
   5065         std::move(Args), 0);
   5066 
   5067     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
   5068     DAG.setRoot(Result.second);
   5069     return nullptr;
   5070   }
   5071 
   5072   case Intrinsic::uadd_with_overflow:
   5073   case Intrinsic::sadd_with_overflow:
   5074   case Intrinsic::usub_with_overflow:
   5075   case Intrinsic::ssub_with_overflow:
   5076   case Intrinsic::umul_with_overflow:
   5077   case Intrinsic::smul_with_overflow: {
   5078     ISD::NodeType Op;
   5079     switch (Intrinsic) {
   5080     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
   5081     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
   5082     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
   5083     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
   5084     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
   5085     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
   5086     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
   5087     }
   5088     SDValue Op1 = getValue(I.getArgOperand(0));
   5089     SDValue Op2 = getValue(I.getArgOperand(1));
   5090 
   5091     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
   5092     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
   5093     return nullptr;
   5094   }
   5095   case Intrinsic::prefetch: {
   5096     SDValue Ops[5];
   5097     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
   5098     Ops[0] = getRoot();
   5099     Ops[1] = getValue(I.getArgOperand(0));
   5100     Ops[2] = getValue(I.getArgOperand(1));
   5101     Ops[3] = getValue(I.getArgOperand(2));
   5102     Ops[4] = getValue(I.getArgOperand(3));
   5103     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
   5104                                         DAG.getVTList(MVT::Other), Ops,
   5105                                         EVT::getIntegerVT(*Context, 8),
   5106                                         MachinePointerInfo(I.getArgOperand(0)),
   5107                                         0, /* align */
   5108                                         false, /* volatile */
   5109                                         rw==0, /* read */
   5110                                         rw==1)); /* write */
   5111     return nullptr;
   5112   }
   5113   case Intrinsic::lifetime_start:
   5114   case Intrinsic::lifetime_end: {
   5115     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
   5116     // Stack coloring is not enabled in O0, discard region information.
   5117     if (TM.getOptLevel() == CodeGenOpt::None)
   5118       return nullptr;
   5119 
   5120     SmallVector<Value *, 4> Allocas;
   5121     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
   5122 
   5123     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
   5124            E = Allocas.end(); Object != E; ++Object) {
   5125       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
   5126 
   5127       // Could not find an Alloca.
   5128       if (!LifetimeObject)
   5129         continue;
   5130 
   5131       // First check that the Alloca is static, otherwise it won't have a
   5132       // valid frame index.
   5133       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
   5134       if (SI == FuncInfo.StaticAllocaMap.end())
   5135         return nullptr;
   5136 
   5137       int FI = SI->second;
   5138 
   5139       SDValue Ops[2];
   5140       Ops[0] = getRoot();
   5141       Ops[1] =
   5142           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
   5143       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
   5144 
   5145       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
   5146       DAG.setRoot(Res);
   5147     }
   5148     return nullptr;
   5149   }
   5150   case Intrinsic::invariant_start:
   5151     // Discard region information.
   5152     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
   5153     return nullptr;
   5154   case Intrinsic::invariant_end:
   5155     // Discard region information.
   5156     return nullptr;
   5157   case Intrinsic::stackprotectorcheck: {
   5158     // Do not actually emit anything for this basic block. Instead we initialize
   5159     // the stack protector descriptor and export the guard variable so we can
   5160     // access it in FinishBasicBlock.
   5161     const BasicBlock *BB = I.getParent();
   5162     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
   5163     ExportFromCurrentBlock(SPDescriptor.getGuard());
   5164 
   5165     // Flush our exports since we are going to process a terminator.
   5166     (void)getControlRoot();
   5167     return nullptr;
   5168   }
   5169   case Intrinsic::clear_cache:
   5170     return TLI.getClearCacheBuiltinName();
   5171   case Intrinsic::donothing:
   5172     // ignore
   5173     return nullptr;
   5174   case Intrinsic::experimental_stackmap: {
   5175     visitStackmap(I);
   5176     return nullptr;
   5177   }
   5178   case Intrinsic::experimental_patchpoint_void:
   5179   case Intrinsic::experimental_patchpoint_i64: {
   5180     visitPatchpoint(&I);
   5181     return nullptr;
   5182   }
   5183   case Intrinsic::experimental_gc_statepoint: {
   5184     visitStatepoint(I);
   5185     return nullptr;
   5186   }
   5187   case Intrinsic::experimental_gc_result_int:
   5188   case Intrinsic::experimental_gc_result_float:
   5189   case Intrinsic::experimental_gc_result_ptr:
   5190   case Intrinsic::experimental_gc_result: {
   5191     visitGCResult(I);
   5192     return nullptr;
   5193   }
   5194   case Intrinsic::experimental_gc_relocate: {
   5195     visitGCRelocate(I);
   5196     return nullptr;
   5197   }
   5198   case Intrinsic::instrprof_increment:
   5199     llvm_unreachable("instrprof failed to lower an increment");
   5200   case Intrinsic::instrprof_value_profile:
   5201     llvm_unreachable("instrprof failed to lower a value profiling call");
   5202   case Intrinsic::localescape: {
   5203     MachineFunction &MF = DAG.getMachineFunction();
   5204     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
   5205 
   5206     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
   5207     // is the same on all targets.
   5208     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
   5209       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
   5210       if (isa<ConstantPointerNull>(Arg))
   5211         continue; // Skip null pointers. They represent a hole in index space.
   5212       AllocaInst *Slot = cast<AllocaInst>(Arg);
   5213       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
   5214              "can only escape static allocas");
   5215       int FI = FuncInfo.StaticAllocaMap[Slot];
   5216       MCSymbol *FrameAllocSym =
   5217           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
   5218               GlobalValue::getRealLinkageName(MF.getName()), Idx);
   5219       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
   5220               TII->get(TargetOpcode::LOCAL_ESCAPE))
   5221           .addSym(FrameAllocSym)
   5222           .addFrameIndex(FI);
   5223     }
   5224 
   5225     return nullptr;
   5226   }
   5227 
   5228   case Intrinsic::localrecover: {
   5229     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
   5230     MachineFunction &MF = DAG.getMachineFunction();
   5231     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
   5232 
   5233     // Get the symbol that defines the frame offset.
   5234     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
   5235     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
   5236     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
   5237     MCSymbol *FrameAllocSym =
   5238         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
   5239             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
   5240 
   5241     // Create a MCSymbol for the label to avoid any target lowering
   5242     // that would make this PC relative.
   5243     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
   5244     SDValue OffsetVal =
   5245         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
   5246 
   5247     // Add the offset to the FP.
   5248     Value *FP = I.getArgOperand(1);
   5249     SDValue FPVal = getValue(FP);
   5250     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
   5251     setValue(&I, Add);
   5252 
   5253     return nullptr;
   5254   }
   5255 
   5256   case Intrinsic::eh_exceptionpointer:
   5257   case Intrinsic::eh_exceptioncode: {
   5258     // Get the exception pointer vreg, copy from it, and resize it to fit.
   5259     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
   5260     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
   5261     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
   5262     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
   5263     SDValue N =
   5264         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
   5265     if (Intrinsic == Intrinsic::eh_exceptioncode)
   5266       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
   5267     setValue(&I, N);
   5268     return nullptr;
   5269   }
   5270   }
   5271 }
   5272 
   5273 std::pair<SDValue, SDValue>
   5274 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
   5275                                     const BasicBlock *EHPadBB) {
   5276   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   5277   MCSymbol *BeginLabel = nullptr;
   5278 
   5279   if (EHPadBB) {
   5280     // Insert a label before the invoke call to mark the try range.  This can be
   5281     // used to detect deletion of the invoke via the MachineModuleInfo.
   5282     BeginLabel = MMI.getContext().createTempSymbol();
   5283 
   5284     // For SjLj, keep track of which landing pads go with which invokes
   5285     // so as to maintain the ordering of pads in the LSDA.
   5286     unsigned CallSiteIndex = MMI.getCurrentCallSite();
   5287     if (CallSiteIndex) {
   5288       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
   5289       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
   5290 
   5291       // Now that the call site is handled, stop tracking it.
   5292       MMI.setCurrentCallSite(0);
   5293     }
   5294 
   5295     // Both PendingLoads and PendingExports must be flushed here;
   5296     // this call might not return.
   5297     (void)getRoot();
   5298     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
   5299 
   5300     CLI.setChain(getRoot());
   5301   }
   5302   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   5303   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
   5304 
   5305   assert((CLI.IsTailCall || Result.second.getNode()) &&
   5306          "Non-null chain expected with non-tail call!");
   5307   assert((Result.second.getNode() || !Result.first.getNode()) &&
   5308          "Null value expected with tail call!");
   5309 
   5310   if (!Result.second.getNode()) {
   5311     // As a special case, a null chain means that a tail call has been emitted
   5312     // and the DAG root is already updated.
   5313     HasTailCall = true;
   5314 
   5315     // Since there's no actual continuation from this block, nothing can be
   5316     // relying on us setting vregs for them.
   5317     PendingExports.clear();
   5318   } else {
   5319     DAG.setRoot(Result.second);
   5320   }
   5321 
   5322   if (EHPadBB) {
   5323     // Insert a label at the end of the invoke call to mark the try range.  This
   5324     // can be used to detect deletion of the invoke via the MachineModuleInfo.
   5325     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
   5326     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
   5327 
   5328     // Inform MachineModuleInfo of range.
   5329     if (MMI.hasEHFunclets()) {
   5330       assert(CLI.CS);
   5331       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
   5332       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
   5333                                 BeginLabel, EndLabel);
   5334     } else {
   5335       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
   5336     }
   5337   }
   5338 
   5339   return Result;
   5340 }
   5341 
   5342 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
   5343                                       bool isTailCall,
   5344                                       const BasicBlock *EHPadBB) {
   5345   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   5346   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   5347   Type *RetTy = FTy->getReturnType();
   5348 
   5349   TargetLowering::ArgListTy Args;
   5350   TargetLowering::ArgListEntry Entry;
   5351   Args.reserve(CS.arg_size());
   5352 
   5353   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   5354        i != e; ++i) {
   5355     const Value *V = *i;
   5356 
   5357     // Skip empty types
   5358     if (V->getType()->isEmptyTy())
   5359       continue;
   5360 
   5361     SDValue ArgNode = getValue(V);
   5362     Entry.Node = ArgNode; Entry.Ty = V->getType();
   5363 
   5364     // Skip the first return-type Attribute to get to params.
   5365     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
   5366     Args.push_back(Entry);
   5367 
   5368     // If we have an explicit sret argument that is an Instruction, (i.e., it
   5369     // might point to function-local memory), we can't meaningfully tail-call.
   5370     if (Entry.isSRet && isa<Instruction>(V))
   5371       isTailCall = false;
   5372   }
   5373 
   5374   // Check if target-independent constraints permit a tail call here.
   5375   // Target-dependent constraints are checked within TLI->LowerCallTo.
   5376   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
   5377     isTailCall = false;
   5378 
   5379   TargetLowering::CallLoweringInfo CLI(DAG);
   5380   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
   5381     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
   5382     .setTailCall(isTailCall);
   5383   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
   5384 
   5385   if (Result.first.getNode())
   5386     setValue(CS.getInstruction(), Result.first);
   5387 }
   5388 
   5389 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
   5390 /// value is equal or not-equal to zero.
   5391 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
   5392   for (const User *U : V->users()) {
   5393     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
   5394       if (IC->isEquality())
   5395         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
   5396           if (C->isNullValue())
   5397             continue;
   5398     // Unknown instruction.
   5399     return false;
   5400   }
   5401   return true;
   5402 }
   5403 
   5404 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
   5405                              Type *LoadTy,
   5406                              SelectionDAGBuilder &Builder) {
   5407 
   5408   // Check to see if this load can be trivially constant folded, e.g. if the
   5409   // input is from a string literal.
   5410   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
   5411     // Cast pointer to the type we really want to load.
   5412     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
   5413                                          PointerType::getUnqual(LoadTy));
   5414 
   5415     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
   5416             const_cast<Constant *>(LoadInput), *Builder.DL))
   5417       return Builder.getValue(LoadCst);
   5418   }
   5419 
   5420   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
   5421   // still constant memory, the input chain can be the entry node.
   5422   SDValue Root;
   5423   bool ConstantMemory = false;
   5424 
   5425   // Do not serialize (non-volatile) loads of constant memory with anything.
   5426   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
   5427     Root = Builder.DAG.getEntryNode();
   5428     ConstantMemory = true;
   5429   } else {
   5430     // Do not serialize non-volatile loads against each other.
   5431     Root = Builder.DAG.getRoot();
   5432   }
   5433 
   5434   SDValue Ptr = Builder.getValue(PtrVal);
   5435   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
   5436                                         Ptr, MachinePointerInfo(PtrVal),
   5437                                         false /*volatile*/,
   5438                                         false /*nontemporal*/,
   5439                                         false /*isinvariant*/, 1 /* align=1 */);
   5440 
   5441   if (!ConstantMemory)
   5442     Builder.PendingLoads.push_back(LoadVal.getValue(1));
   5443   return LoadVal;
   5444 }
   5445 
   5446 /// processIntegerCallValue - Record the value for an instruction that
   5447 /// produces an integer result, converting the type where necessary.
   5448 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
   5449                                                   SDValue Value,
   5450                                                   bool IsSigned) {
   5451   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   5452                                                     I.getType(), true);
   5453   if (IsSigned)
   5454     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
   5455   else
   5456     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
   5457   setValue(&I, Value);
   5458 }
   5459 
   5460 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
   5461 /// If so, return true and lower it, otherwise return false and it will be
   5462 /// lowered like a normal call.
   5463 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
   5464   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
   5465   if (I.getNumArgOperands() != 3)
   5466     return false;
   5467 
   5468   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
   5469   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
   5470       !I.getArgOperand(2)->getType()->isIntegerTy() ||
   5471       !I.getType()->isIntegerTy())
   5472     return false;
   5473 
   5474   const Value *Size = I.getArgOperand(2);
   5475   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
   5476   if (CSize && CSize->getZExtValue() == 0) {
   5477     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
   5478                                                           I.getType(), true);
   5479     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
   5480     return true;
   5481   }
   5482 
   5483   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5484   std::pair<SDValue, SDValue> Res =
   5485     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
   5486                                 getValue(LHS), getValue(RHS), getValue(Size),
   5487                                 MachinePointerInfo(LHS),
   5488                                 MachinePointerInfo(RHS));
   5489   if (Res.first.getNode()) {
   5490     processIntegerCallValue(I, Res.first, true);
   5491     PendingLoads.push_back(Res.second);
   5492     return true;
   5493   }
   5494 
   5495   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
   5496   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
   5497   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
   5498     bool ActuallyDoIt = true;
   5499     MVT LoadVT;
   5500     Type *LoadTy;
   5501     switch (CSize->getZExtValue()) {
   5502     default:
   5503       LoadVT = MVT::Other;
   5504       LoadTy = nullptr;
   5505       ActuallyDoIt = false;
   5506       break;
   5507     case 2:
   5508       LoadVT = MVT::i16;
   5509       LoadTy = Type::getInt16Ty(CSize->getContext());
   5510       break;
   5511     case 4:
   5512       LoadVT = MVT::i32;
   5513       LoadTy = Type::getInt32Ty(CSize->getContext());
   5514       break;
   5515     case 8:
   5516       LoadVT = MVT::i64;
   5517       LoadTy = Type::getInt64Ty(CSize->getContext());
   5518       break;
   5519         /*
   5520     case 16:
   5521       LoadVT = MVT::v4i32;
   5522       LoadTy = Type::getInt32Ty(CSize->getContext());
   5523       LoadTy = VectorType::get(LoadTy, 4);
   5524       break;
   5525          */
   5526     }
   5527 
   5528     // This turns into unaligned loads.  We only do this if the target natively
   5529     // supports the MVT we'll be loading or if it is small enough (<= 4) that
   5530     // we'll only produce a small number of byte loads.
   5531 
   5532     // Require that we can find a legal MVT, and only do this if the target
   5533     // supports unaligned loads of that type.  Expanding into byte loads would
   5534     // bloat the code.
   5535     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   5536     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
   5537       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
   5538       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
   5539       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
   5540       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
   5541       // TODO: Check alignment of src and dest ptrs.
   5542       if (!TLI.isTypeLegal(LoadVT) ||
   5543           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
   5544           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
   5545         ActuallyDoIt = false;
   5546     }
   5547 
   5548     if (ActuallyDoIt) {
   5549       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
   5550       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
   5551 
   5552       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
   5553                                  ISD::SETNE);
   5554       processIntegerCallValue(I, Res, false);
   5555       return true;
   5556     }
   5557   }
   5558 
   5559 
   5560   return false;
   5561 }
   5562 
   5563 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
   5564 /// form.  If so, return true and lower it, otherwise return false and it
   5565 /// will be lowered like a normal call.
   5566 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
   5567   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
   5568   if (I.getNumArgOperands() != 3)
   5569     return false;
   5570 
   5571   const Value *Src = I.getArgOperand(0);
   5572   const Value *Char = I.getArgOperand(1);
   5573   const Value *Length = I.getArgOperand(2);
   5574   if (!Src->getType()->isPointerTy() ||
   5575       !Char->getType()->isIntegerTy() ||
   5576       !Length->getType()->isIntegerTy() ||
   5577       !I.getType()->isPointerTy())
   5578     return false;
   5579 
   5580   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5581   std::pair<SDValue, SDValue> Res =
   5582     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
   5583                                 getValue(Src), getValue(Char), getValue(Length),
   5584                                 MachinePointerInfo(Src));
   5585   if (Res.first.getNode()) {
   5586     setValue(&I, Res.first);
   5587     PendingLoads.push_back(Res.second);
   5588     return true;
   5589   }
   5590 
   5591   return false;
   5592 }
   5593 
   5594 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
   5595 /// optimized form.  If so, return true and lower it, otherwise return false
   5596 /// and it will be lowered like a normal call.
   5597 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
   5598   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
   5599   if (I.getNumArgOperands() != 2)
   5600     return false;
   5601 
   5602   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
   5603   if (!Arg0->getType()->isPointerTy() ||
   5604       !Arg1->getType()->isPointerTy() ||
   5605       !I.getType()->isPointerTy())
   5606     return false;
   5607 
   5608   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5609   std::pair<SDValue, SDValue> Res =
   5610     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
   5611                                 getValue(Arg0), getValue(Arg1),
   5612                                 MachinePointerInfo(Arg0),
   5613                                 MachinePointerInfo(Arg1), isStpcpy);
   5614   if (Res.first.getNode()) {
   5615     setValue(&I, Res.first);
   5616     DAG.setRoot(Res.second);
   5617     return true;
   5618   }
   5619 
   5620   return false;
   5621 }
   5622 
   5623 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
   5624 /// If so, return true and lower it, otherwise return false and it will be
   5625 /// lowered like a normal call.
   5626 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
   5627   // Verify that the prototype makes sense.  int strcmp(void*,void*)
   5628   if (I.getNumArgOperands() != 2)
   5629     return false;
   5630 
   5631   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
   5632   if (!Arg0->getType()->isPointerTy() ||
   5633       !Arg1->getType()->isPointerTy() ||
   5634       !I.getType()->isIntegerTy())
   5635     return false;
   5636 
   5637   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5638   std::pair<SDValue, SDValue> Res =
   5639     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
   5640                                 getValue(Arg0), getValue(Arg1),
   5641                                 MachinePointerInfo(Arg0),
   5642                                 MachinePointerInfo(Arg1));
   5643   if (Res.first.getNode()) {
   5644     processIntegerCallValue(I, Res.first, true);
   5645     PendingLoads.push_back(Res.second);
   5646     return true;
   5647   }
   5648 
   5649   return false;
   5650 }
   5651 
   5652 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
   5653 /// form.  If so, return true and lower it, otherwise return false and it
   5654 /// will be lowered like a normal call.
   5655 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
   5656   // Verify that the prototype makes sense.  size_t strlen(char *)
   5657   if (I.getNumArgOperands() != 1)
   5658     return false;
   5659 
   5660   const Value *Arg0 = I.getArgOperand(0);
   5661   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
   5662     return false;
   5663 
   5664   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5665   std::pair<SDValue, SDValue> Res =
   5666     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
   5667                                 getValue(Arg0), MachinePointerInfo(Arg0));
   5668   if (Res.first.getNode()) {
   5669     processIntegerCallValue(I, Res.first, false);
   5670     PendingLoads.push_back(Res.second);
   5671     return true;
   5672   }
   5673 
   5674   return false;
   5675 }
   5676 
   5677 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
   5678 /// form.  If so, return true and lower it, otherwise return false and it
   5679 /// will be lowered like a normal call.
   5680 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
   5681   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
   5682   if (I.getNumArgOperands() != 2)
   5683     return false;
   5684 
   5685   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
   5686   if (!Arg0->getType()->isPointerTy() ||
   5687       !Arg1->getType()->isIntegerTy() ||
   5688       !I.getType()->isIntegerTy())
   5689     return false;
   5690 
   5691   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
   5692   std::pair<SDValue, SDValue> Res =
   5693     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
   5694                                  getValue(Arg0), getValue(Arg1),
   5695                                  MachinePointerInfo(Arg0));
   5696   if (Res.first.getNode()) {
   5697     processIntegerCallValue(I, Res.first, false);
   5698     PendingLoads.push_back(Res.second);
   5699     return true;
   5700   }
   5701 
   5702   return false;
   5703 }
   5704 
   5705 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
   5706 /// operation (as expected), translate it to an SDNode with the specified opcode
   5707 /// and return true.
   5708 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
   5709                                               unsigned Opcode) {
   5710   // Sanity check that it really is a unary floating-point call.
   5711   if (I.getNumArgOperands() != 1 ||
   5712       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
   5713       I.getType() != I.getArgOperand(0)->getType() ||
   5714       !I.onlyReadsMemory())
   5715     return false;
   5716 
   5717   SDValue Tmp = getValue(I.getArgOperand(0));
   5718   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
   5719   return true;
   5720 }
   5721 
   5722 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
   5723 /// operation (as expected), translate it to an SDNode with the specified opcode
   5724 /// and return true.
   5725 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
   5726                                                unsigned Opcode) {
   5727   // Sanity check that it really is a binary floating-point call.
   5728   if (I.getNumArgOperands() != 2 ||
   5729       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
   5730       I.getType() != I.getArgOperand(0)->getType() ||
   5731       I.getType() != I.getArgOperand(1)->getType() ||
   5732       !I.onlyReadsMemory())
   5733     return false;
   5734 
   5735   SDValue Tmp0 = getValue(I.getArgOperand(0));
   5736   SDValue Tmp1 = getValue(I.getArgOperand(1));
   5737   EVT VT = Tmp0.getValueType();
   5738   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
   5739   return true;
   5740 }
   5741 
   5742 void SelectionDAGBuilder::visitCall(const CallInst &I) {
   5743   // Handle inline assembly differently.
   5744   if (isa<InlineAsm>(I.getCalledValue())) {
   5745     visitInlineAsm(&I);
   5746     return;
   5747   }
   5748 
   5749   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
   5750   ComputeUsesVAFloatArgument(I, &MMI);
   5751 
   5752   const char *RenameFn = nullptr;
   5753   if (Function *F = I.getCalledFunction()) {
   5754     if (F->isDeclaration()) {
   5755       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
   5756         if (unsigned IID = II->getIntrinsicID(F)) {
   5757           RenameFn = visitIntrinsicCall(I, IID);
   5758           if (!RenameFn)
   5759             return;
   5760         }
   5761       }
   5762       if (Intrinsic::ID IID = F->getIntrinsicID()) {
   5763         RenameFn = visitIntrinsicCall(I, IID);
   5764         if (!RenameFn)
   5765           return;
   5766       }
   5767     }
   5768 
   5769     // Check for well-known libc/libm calls.  If the function is internal, it
   5770     // can't be a library call.
   5771     LibFunc::Func Func;
   5772     if (!F->hasLocalLinkage() && F->hasName() &&
   5773         LibInfo->getLibFunc(F->getName(), Func) &&
   5774         LibInfo->hasOptimizedCodeGen(Func)) {
   5775       switch (Func) {
   5776       default: break;
   5777       case LibFunc::copysign:
   5778       case LibFunc::copysignf:
   5779       case LibFunc::copysignl:
   5780         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
   5781             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
   5782             I.getType() == I.getArgOperand(0)->getType() &&
   5783             I.getType() == I.getArgOperand(1)->getType() &&
   5784             I.onlyReadsMemory()) {
   5785           SDValue LHS = getValue(I.getArgOperand(0));
   5786           SDValue RHS = getValue(I.getArgOperand(1));
   5787           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
   5788                                    LHS.getValueType(), LHS, RHS));
   5789           return;
   5790         }
   5791         break;
   5792       case LibFunc::fabs:
   5793       case LibFunc::fabsf:
   5794       case LibFunc::fabsl:
   5795         if (visitUnaryFloatCall(I, ISD::FABS))
   5796           return;
   5797         break;
   5798       case LibFunc::fmin:
   5799       case LibFunc::fminf:
   5800       case LibFunc::fminl:
   5801         if (visitBinaryFloatCall(I, ISD::FMINNUM))
   5802           return;
   5803         break;
   5804       case LibFunc::fmax:
   5805       case LibFunc::fmaxf:
   5806       case LibFunc::fmaxl:
   5807         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
   5808           return;
   5809         break;
   5810       case LibFunc::sin:
   5811       case LibFunc::sinf:
   5812       case LibFunc::sinl:
   5813         if (visitUnaryFloatCall(I, ISD::FSIN))
   5814           return;
   5815         break;
   5816       case LibFunc::cos:
   5817       case LibFunc::cosf:
   5818       case LibFunc::cosl:
   5819         if (visitUnaryFloatCall(I, ISD::FCOS))
   5820           return;
   5821         break;
   5822       case LibFunc::sqrt:
   5823       case LibFunc::sqrtf:
   5824       case LibFunc::sqrtl:
   5825       case LibFunc::sqrt_finite:
   5826       case LibFunc::sqrtf_finite:
   5827       case LibFunc::sqrtl_finite:
   5828         if (visitUnaryFloatCall(I, ISD::FSQRT))
   5829           return;
   5830         break;
   5831       case LibFunc::floor:
   5832       case LibFunc::floorf:
   5833       case LibFunc::floorl:
   5834         if (visitUnaryFloatCall(I, ISD::FFLOOR))
   5835           return;
   5836         break;
   5837       case LibFunc::nearbyint:
   5838       case LibFunc::nearbyintf:
   5839       case LibFunc::nearbyintl:
   5840         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
   5841           return;
   5842         break;
   5843       case LibFunc::ceil:
   5844       case LibFunc::ceilf:
   5845       case LibFunc::ceill:
   5846         if (visitUnaryFloatCall(I, ISD::FCEIL))
   5847           return;
   5848         break;
   5849       case LibFunc::rint:
   5850       case LibFunc::rintf:
   5851       case LibFunc::rintl:
   5852         if (visitUnaryFloatCall(I, ISD::FRINT))
   5853           return;
   5854         break;
   5855       case LibFunc::round:
   5856       case LibFunc::roundf:
   5857       case LibFunc::roundl:
   5858         if (visitUnaryFloatCall(I, ISD::FROUND))
   5859           return;
   5860         break;
   5861       case LibFunc::trunc:
   5862       case LibFunc::truncf:
   5863       case LibFunc::truncl:
   5864         if (visitUnaryFloatCall(I, ISD::FTRUNC))
   5865           return;
   5866         break;
   5867       case LibFunc::log2:
   5868       case LibFunc::log2f:
   5869       case LibFunc::log2l:
   5870         if (visitUnaryFloatCall(I, ISD::FLOG2))
   5871           return;
   5872         break;
   5873       case LibFunc::exp2:
   5874       case LibFunc::exp2f:
   5875       case LibFunc::exp2l:
   5876         if (visitUnaryFloatCall(I, ISD::FEXP2))
   5877           return;
   5878         break;
   5879       case LibFunc::memcmp:
   5880         if (visitMemCmpCall(I))
   5881           return;
   5882         break;
   5883       case LibFunc::memchr:
   5884         if (visitMemChrCall(I))
   5885           return;
   5886         break;
   5887       case LibFunc::strcpy:
   5888         if (visitStrCpyCall(I, false))
   5889           return;
   5890         break;
   5891       case LibFunc::stpcpy:
   5892         if (visitStrCpyCall(I, true))
   5893           return;
   5894         break;
   5895       case LibFunc::strcmp:
   5896         if (visitStrCmpCall(I))
   5897           return;
   5898         break;
   5899       case LibFunc::strlen:
   5900         if (visitStrLenCall(I))
   5901           return;
   5902         break;
   5903       case LibFunc::strnlen:
   5904         if (visitStrNLenCall(I))
   5905           return;
   5906         break;
   5907       }
   5908     }
   5909   }
   5910 
   5911   SDValue Callee;
   5912   if (!RenameFn)
   5913     Callee = getValue(I.getCalledValue());
   5914   else
   5915     Callee = DAG.getExternalSymbol(
   5916         RenameFn,
   5917         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
   5918 
   5919   // Check if we can potentially perform a tail call. More detailed checking is
   5920   // be done within LowerCallTo, after more information about the call is known.
   5921   LowerCallTo(&I, Callee, I.isTailCall());
   5922 }
   5923 
   5924 namespace {
   5925 
   5926 /// AsmOperandInfo - This contains information for each constraint that we are
   5927 /// lowering.
   5928 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
   5929 public:
   5930   /// CallOperand - If this is the result output operand or a clobber
   5931   /// this is null, otherwise it is the incoming operand to the CallInst.
   5932   /// This gets modified as the asm is processed.
   5933   SDValue CallOperand;
   5934 
   5935   /// AssignedRegs - If this is a register or register class operand, this
   5936   /// contains the set of register corresponding to the operand.
   5937   RegsForValue AssignedRegs;
   5938 
   5939   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
   5940     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
   5941   }
   5942 
   5943   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
   5944   /// corresponds to.  If there is no Value* for this operand, it returns
   5945   /// MVT::Other.
   5946   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
   5947                            const DataLayout &DL) const {
   5948     if (!CallOperandVal) return MVT::Other;
   5949 
   5950     if (isa<BasicBlock>(CallOperandVal))
   5951       return TLI.getPointerTy(DL);
   5952 
   5953     llvm::Type *OpTy = CallOperandVal->getType();
   5954 
   5955     // FIXME: code duplicated from TargetLowering::ParseConstraints().
   5956     // If this is an indirect operand, the operand is a pointer to the
   5957     // accessed type.
   5958     if (isIndirect) {
   5959       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
   5960       if (!PtrTy)
   5961         report_fatal_error("Indirect operand for inline asm not a pointer!");
   5962       OpTy = PtrTy->getElementType();
   5963     }
   5964 
   5965     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
   5966     if (StructType *STy = dyn_cast<StructType>(OpTy))
   5967       if (STy->getNumElements() == 1)
   5968         OpTy = STy->getElementType(0);
   5969 
   5970     // If OpTy is not a single value, it may be a struct/union that we
   5971     // can tile with integers.
   5972     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
   5973       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
   5974       switch (BitSize) {
   5975       default: break;
   5976       case 1:
   5977       case 8:
   5978       case 16:
   5979       case 32:
   5980       case 64:
   5981       case 128:
   5982         OpTy = IntegerType::get(Context, BitSize);
   5983         break;
   5984       }
   5985     }
   5986 
   5987     return TLI.getValueType(DL, OpTy, true);
   5988   }
   5989 };
   5990 
   5991 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
   5992 
   5993 } // end anonymous namespace
   5994 
   5995 /// GetRegistersForValue - Assign registers (virtual or physical) for the
   5996 /// specified operand.  We prefer to assign virtual registers, to allow the
   5997 /// register allocator to handle the assignment process.  However, if the asm
   5998 /// uses features that we can't model on machineinstrs, we have SDISel do the
   5999 /// allocation.  This produces generally horrible, but correct, code.
   6000 ///
   6001 ///   OpInfo describes the operand.
   6002 ///
   6003 static void GetRegistersForValue(SelectionDAG &DAG,
   6004                                  const TargetLowering &TLI,
   6005                                  SDLoc DL,
   6006                                  SDISelAsmOperandInfo &OpInfo) {
   6007   LLVMContext &Context = *DAG.getContext();
   6008 
   6009   MachineFunction &MF = DAG.getMachineFunction();
   6010   SmallVector<unsigned, 4> Regs;
   6011 
   6012   // If this is a constraint for a single physreg, or a constraint for a
   6013   // register class, find it.
   6014   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
   6015       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
   6016                                        OpInfo.ConstraintCode,
   6017                                        OpInfo.ConstraintVT);
   6018 
   6019   unsigned NumRegs = 1;
   6020   if (OpInfo.ConstraintVT != MVT::Other) {
   6021     // If this is a FP input in an integer register (or visa versa) insert a bit
   6022     // cast of the input value.  More generally, handle any case where the input
   6023     // value disagrees with the register class we plan to stick this in.
   6024     if (OpInfo.Type == InlineAsm::isInput &&
   6025         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
   6026       // Try to convert to the first EVT that the reg class contains.  If the
   6027       // types are identical size, use a bitcast to convert (e.g. two differing
   6028       // vector types).
   6029       MVT RegVT = *PhysReg.second->vt_begin();
   6030       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
   6031         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
   6032                                          RegVT, OpInfo.CallOperand);
   6033         OpInfo.ConstraintVT = RegVT;
   6034       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
   6035         // If the input is a FP value and we want it in FP registers, do a
   6036         // bitcast to the corresponding integer type.  This turns an f64 value
   6037         // into i64, which can be passed with two i32 values on a 32-bit
   6038         // machine.
   6039         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
   6040         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
   6041                                          RegVT, OpInfo.CallOperand);
   6042         OpInfo.ConstraintVT = RegVT;
   6043       }
   6044     }
   6045 
   6046     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
   6047   }
   6048 
   6049   MVT RegVT;
   6050   EVT ValueVT = OpInfo.ConstraintVT;
   6051 
   6052   // If this is a constraint for a specific physical register, like {r17},
   6053   // assign it now.
   6054   if (unsigned AssignedReg = PhysReg.first) {
   6055     const TargetRegisterClass *RC = PhysReg.second;
   6056     if (OpInfo.ConstraintVT == MVT::Other)
   6057       ValueVT = *RC->vt_begin();
   6058 
   6059     // Get the actual register value type.  This is important, because the user
   6060     // may have asked for (e.g.) the AX register in i32 type.  We need to
   6061     // remember that AX is actually i16 to get the right extension.
   6062     RegVT = *RC->vt_begin();
   6063 
   6064     // This is a explicit reference to a physical register.
   6065     Regs.push_back(AssignedReg);
   6066 
   6067     // If this is an expanded reference, add the rest of the regs to Regs.
   6068     if (NumRegs != 1) {
   6069       TargetRegisterClass::iterator I = RC->begin();
   6070       for (; *I != AssignedReg; ++I)
   6071         assert(I != RC->end() && "Didn't find reg!");
   6072 
   6073       // Already added the first reg.
   6074       --NumRegs; ++I;
   6075       for (; NumRegs; --NumRegs, ++I) {
   6076         assert(I != RC->end() && "Ran out of registers to allocate!");
   6077         Regs.push_back(*I);
   6078       }
   6079     }
   6080 
   6081     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
   6082     return;
   6083   }
   6084 
   6085   // Otherwise, if this was a reference to an LLVM register class, create vregs
   6086   // for this reference.
   6087   if (const TargetRegisterClass *RC = PhysReg.second) {
   6088     RegVT = *RC->vt_begin();
   6089     if (OpInfo.ConstraintVT == MVT::Other)
   6090       ValueVT = RegVT;
   6091 
   6092     // Create the appropriate number of virtual registers.
   6093     MachineRegisterInfo &RegInfo = MF.getRegInfo();
   6094     for (; NumRegs; --NumRegs)
   6095       Regs.push_back(RegInfo.createVirtualRegister(RC));
   6096 
   6097     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
   6098     return;
   6099   }
   6100 
   6101   // Otherwise, we couldn't allocate enough registers for this.
   6102 }
   6103 
   6104 /// visitInlineAsm - Handle a call to an InlineAsm object.
   6105 ///
   6106 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
   6107   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
   6108 
   6109   /// ConstraintOperands - Information about all of the constraints.
   6110   SDISelAsmOperandInfoVector ConstraintOperands;
   6111 
   6112   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6113   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
   6114       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
   6115 
   6116   bool hasMemory = false;
   6117 
   6118   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
   6119   unsigned ResNo = 0;   // ResNo - The result number of the next output.
   6120   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   6121     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
   6122     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
   6123 
   6124     MVT OpVT = MVT::Other;
   6125 
   6126     // Compute the value type for each operand.
   6127     switch (OpInfo.Type) {
   6128     case InlineAsm::isOutput:
   6129       // Indirect outputs just consume an argument.
   6130       if (OpInfo.isIndirect) {
   6131         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   6132         break;
   6133       }
   6134 
   6135       // The return value of the call is this value.  As such, there is no
   6136       // corresponding argument.
   6137       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
   6138       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
   6139         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
   6140                                       STy->getElementType(ResNo));
   6141       } else {
   6142         assert(ResNo == 0 && "Asm only has one result!");
   6143         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
   6144       }
   6145       ++ResNo;
   6146       break;
   6147     case InlineAsm::isInput:
   6148       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
   6149       break;
   6150     case InlineAsm::isClobber:
   6151       // Nothing to do.
   6152       break;
   6153     }
   6154 
   6155     // If this is an input or an indirect output, process the call argument.
   6156     // BasicBlocks are labels, currently appearing only in asm's.
   6157     if (OpInfo.CallOperandVal) {
   6158       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
   6159         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
   6160       } else {
   6161         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
   6162       }
   6163 
   6164       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
   6165                                          DAG.getDataLayout()).getSimpleVT();
   6166     }
   6167 
   6168     OpInfo.ConstraintVT = OpVT;
   6169 
   6170     // Indirect operand accesses access memory.
   6171     if (OpInfo.isIndirect)
   6172       hasMemory = true;
   6173     else {
   6174       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
   6175         TargetLowering::ConstraintType
   6176           CType = TLI.getConstraintType(OpInfo.Codes[j]);
   6177         if (CType == TargetLowering::C_Memory) {
   6178           hasMemory = true;
   6179           break;
   6180         }
   6181       }
   6182     }
   6183   }
   6184 
   6185   SDValue Chain, Flag;
   6186 
   6187   // We won't need to flush pending loads if this asm doesn't touch
   6188   // memory and is nonvolatile.
   6189   if (hasMemory || IA->hasSideEffects())
   6190     Chain = getRoot();
   6191   else
   6192     Chain = DAG.getRoot();
   6193 
   6194   // Second pass over the constraints: compute which constraint option to use
   6195   // and assign registers to constraints that want a specific physreg.
   6196   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   6197     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   6198 
   6199     // If this is an output operand with a matching input operand, look up the
   6200     // matching input. If their types mismatch, e.g. one is an integer, the
   6201     // other is floating point, or their sizes are different, flag it as an
   6202     // error.
   6203     if (OpInfo.hasMatchingInput()) {
   6204       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
   6205 
   6206       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
   6207         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
   6208         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
   6209             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
   6210                                              OpInfo.ConstraintVT);
   6211         std::pair<unsigned, const TargetRegisterClass *> InputRC =
   6212             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
   6213                                              Input.ConstraintVT);
   6214         if ((OpInfo.ConstraintVT.isInteger() !=
   6215              Input.ConstraintVT.isInteger()) ||
   6216             (MatchRC.second != InputRC.second)) {
   6217           report_fatal_error("Unsupported asm: input constraint"
   6218                              " with a matching output constraint of"
   6219                              " incompatible type!");
   6220         }
   6221         Input.ConstraintVT = OpInfo.ConstraintVT;
   6222       }
   6223     }
   6224 
   6225     // Compute the constraint code and ConstraintType to use.
   6226     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
   6227 
   6228     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
   6229         OpInfo.Type == InlineAsm::isClobber)
   6230       continue;
   6231 
   6232     // If this is a memory input, and if the operand is not indirect, do what we
   6233     // need to to provide an address for the memory input.
   6234     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
   6235         !OpInfo.isIndirect) {
   6236       assert((OpInfo.isMultipleAlternative ||
   6237               (OpInfo.Type == InlineAsm::isInput)) &&
   6238              "Can only indirectify direct input operands!");
   6239 
   6240       // Memory operands really want the address of the value.  If we don't have
   6241       // an indirect input, put it in the constpool if we can, otherwise spill
   6242       // it to a stack slot.
   6243       // TODO: This isn't quite right. We need to handle these according to
   6244       // the addressing mode that the constraint wants. Also, this may take
   6245       // an additional register for the computation and we don't want that
   6246       // either.
   6247 
   6248       // If the operand is a float, integer, or vector constant, spill to a
   6249       // constant pool entry to get its address.
   6250       const Value *OpVal = OpInfo.CallOperandVal;
   6251       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
   6252           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
   6253         OpInfo.CallOperand = DAG.getConstantPool(
   6254             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
   6255       } else {
   6256         // Otherwise, create a stack slot and emit a store to it before the
   6257         // asm.
   6258         Type *Ty = OpVal->getType();
   6259         auto &DL = DAG.getDataLayout();
   6260         uint64_t TySize = DL.getTypeAllocSize(Ty);
   6261         unsigned Align = DL.getPrefTypeAlignment(Ty);
   6262         MachineFunction &MF = DAG.getMachineFunction();
   6263         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
   6264         SDValue StackSlot =
   6265             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
   6266         Chain = DAG.getStore(
   6267             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
   6268             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
   6269             false, false, 0);
   6270         OpInfo.CallOperand = StackSlot;
   6271       }
   6272 
   6273       // There is no longer a Value* corresponding to this operand.
   6274       OpInfo.CallOperandVal = nullptr;
   6275 
   6276       // It is now an indirect operand.
   6277       OpInfo.isIndirect = true;
   6278     }
   6279 
   6280     // If this constraint is for a specific register, allocate it before
   6281     // anything else.
   6282     if (OpInfo.ConstraintType == TargetLowering::C_Register)
   6283       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
   6284   }
   6285 
   6286   // Second pass - Loop over all of the operands, assigning virtual or physregs
   6287   // to register class operands.
   6288   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   6289     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   6290 
   6291     // C_Register operands have already been allocated, Other/Memory don't need
   6292     // to be.
   6293     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
   6294       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
   6295   }
   6296 
   6297   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
   6298   std::vector<SDValue> AsmNodeOperands;
   6299   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
   6300   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
   6301       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
   6302 
   6303   // If we have a !srcloc metadata node associated with it, we want to attach
   6304   // this to the ultimately generated inline asm machineinstr.  To do this, we
   6305   // pass in the third operand as this (potentially null) inline asm MDNode.
   6306   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
   6307   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
   6308 
   6309   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
   6310   // bits as operand 3.
   6311   unsigned ExtraInfo = 0;
   6312   if (IA->hasSideEffects())
   6313     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
   6314   if (IA->isAlignStack())
   6315     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
   6316   // Set the asm dialect.
   6317   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
   6318 
   6319   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
   6320   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
   6321     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
   6322 
   6323     // Compute the constraint code and ConstraintType to use.
   6324     TLI.ComputeConstraintToUse(OpInfo, SDValue());
   6325 
   6326     // Ideally, we would only check against memory constraints.  However, the
   6327     // meaning of an other constraint can be target-specific and we can't easily
   6328     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
   6329     // for other constriants as well.
   6330     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
   6331         OpInfo.ConstraintType == TargetLowering::C_Other) {
   6332       if (OpInfo.Type == InlineAsm::isInput)
   6333         ExtraInfo |= InlineAsm::Extra_MayLoad;
   6334       else if (OpInfo.Type == InlineAsm::isOutput)
   6335         ExtraInfo |= InlineAsm::Extra_MayStore;
   6336       else if (OpInfo.Type == InlineAsm::isClobber)
   6337         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
   6338     }
   6339   }
   6340 
   6341   AsmNodeOperands.push_back(DAG.getTargetConstant(
   6342       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
   6343 
   6344   // Loop over all of the inputs, copying the operand values into the
   6345   // appropriate registers and processing the output regs.
   6346   RegsForValue RetValRegs;
   6347 
   6348   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
   6349   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
   6350 
   6351   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
   6352     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
   6353 
   6354     switch (OpInfo.Type) {
   6355     case InlineAsm::isOutput: {
   6356       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
   6357           OpInfo.ConstraintType != TargetLowering::C_Register) {
   6358         // Memory output, or 'other' output (e.g. 'X' constraint).
   6359         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
   6360 
   6361         unsigned ConstraintID =
   6362             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
   6363         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
   6364                "Failed to convert memory constraint code to constraint id.");
   6365 
   6366         // Add information to the INLINEASM node to know about this output.
   6367         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
   6368         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
   6369         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
   6370                                                         MVT::i32));
   6371         AsmNodeOperands.push_back(OpInfo.CallOperand);
   6372         break;
   6373       }
   6374 
   6375       // Otherwise, this is a register or register class output.
   6376 
   6377       // Copy the output from the appropriate register.  Find a register that
   6378       // we can use.
   6379       if (OpInfo.AssignedRegs.Regs.empty()) {
   6380         LLVMContext &Ctx = *DAG.getContext();
   6381         Ctx.emitError(CS.getInstruction(),
   6382                       "couldn't allocate output register for constraint '" +
   6383                           Twine(OpInfo.ConstraintCode) + "'");
   6384         return;
   6385       }
   6386 
   6387       // If this is an indirect operand, store through the pointer after the
   6388       // asm.
   6389       if (OpInfo.isIndirect) {
   6390         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
   6391                                                       OpInfo.CallOperandVal));
   6392       } else {
   6393         // This is the result value of the call.
   6394         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
   6395         // Concatenate this output onto the outputs list.
   6396         RetValRegs.append(OpInfo.AssignedRegs);
   6397       }
   6398 
   6399       // Add information to the INLINEASM node to know that this register is
   6400       // set.
   6401       OpInfo.AssignedRegs
   6402           .AddInlineAsmOperands(OpInfo.isEarlyClobber
   6403                                     ? InlineAsm::Kind_RegDefEarlyClobber
   6404                                     : InlineAsm::Kind_RegDef,
   6405                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
   6406       break;
   6407     }
   6408     case InlineAsm::isInput: {
   6409       SDValue InOperandVal = OpInfo.CallOperand;
   6410 
   6411       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
   6412         // If this is required to match an output register we have already set,
   6413         // just use its register.
   6414         unsigned OperandNo = OpInfo.getMatchedOperand();
   6415 
   6416         // Scan until we find the definition we already emitted of this operand.
   6417         // When we find it, create a RegsForValue operand.
   6418         unsigned CurOp = InlineAsm::Op_FirstOperand;
   6419         for (; OperandNo; --OperandNo) {
   6420           // Advance to the next operand.
   6421           unsigned OpFlag =
   6422             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
   6423           assert((InlineAsm::isRegDefKind(OpFlag) ||
   6424                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
   6425                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
   6426           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
   6427         }
   6428 
   6429         unsigned OpFlag =
   6430           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
   6431         if (InlineAsm::isRegDefKind(OpFlag) ||
   6432             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
   6433           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
   6434           if (OpInfo.isIndirect) {
   6435             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
   6436             LLVMContext &Ctx = *DAG.getContext();
   6437             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
   6438                                                " don't know how to handle tied "
   6439                                                "indirect register inputs");
   6440             return;
   6441           }
   6442 
   6443           RegsForValue MatchedRegs;
   6444           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
   6445           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
   6446           MatchedRegs.RegVTs.push_back(RegVT);
   6447           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
   6448           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
   6449                i != e; ++i) {
   6450             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
   6451               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
   6452             else {
   6453               LLVMContext &Ctx = *DAG.getContext();
   6454               Ctx.emitError(CS.getInstruction(),
   6455                             "inline asm error: This value"
   6456                             " type register class is not natively supported!");
   6457               return;
   6458             }
   6459           }
   6460           SDLoc dl = getCurSDLoc();
   6461           // Use the produced MatchedRegs object to
   6462           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
   6463                                     Chain, &Flag, CS.getInstruction());
   6464           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
   6465                                            true, OpInfo.getMatchedOperand(), dl,
   6466                                            DAG, AsmNodeOperands);
   6467           break;
   6468         }
   6469 
   6470         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
   6471         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
   6472                "Unexpected number of operands");
   6473         // Add information to the INLINEASM node to know about this input.
   6474         // See InlineAsm.h isUseOperandTiedToDef.
   6475         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
   6476         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
   6477                                                     OpInfo.getMatchedOperand());
   6478         AsmNodeOperands.push_back(DAG.getTargetConstant(
   6479             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
   6480         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
   6481         break;
   6482       }
   6483 
   6484       // Treat indirect 'X' constraint as memory.
   6485       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
   6486           OpInfo.isIndirect)
   6487         OpInfo.ConstraintType = TargetLowering::C_Memory;
   6488 
   6489       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
   6490         std::vector<SDValue> Ops;
   6491         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
   6492                                           Ops, DAG);
   6493         if (Ops.empty()) {
   6494           LLVMContext &Ctx = *DAG.getContext();
   6495           Ctx.emitError(CS.getInstruction(),
   6496                         "invalid operand for inline asm constraint '" +
   6497                             Twine(OpInfo.ConstraintCode) + "'");
   6498           return;
   6499         }
   6500 
   6501         // Add information to the INLINEASM node to know about this input.
   6502         unsigned ResOpType =
   6503           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
   6504         AsmNodeOperands.push_back(DAG.getTargetConstant(
   6505             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
   6506         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
   6507         break;
   6508       }
   6509 
   6510       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
   6511         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
   6512         assert(InOperandVal.getValueType() ==
   6513                    TLI.getPointerTy(DAG.getDataLayout()) &&
   6514                "Memory operands expect pointer values");
   6515 
   6516         unsigned ConstraintID =
   6517             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
   6518         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
   6519                "Failed to convert memory constraint code to constraint id.");
   6520 
   6521         // Add information to the INLINEASM node to know about this input.
   6522         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
   6523         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
   6524         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
   6525                                                         getCurSDLoc(),
   6526                                                         MVT::i32));
   6527         AsmNodeOperands.push_back(InOperandVal);
   6528         break;
   6529       }
   6530 
   6531       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
   6532               OpInfo.ConstraintType == TargetLowering::C_Register) &&
   6533              "Unknown constraint type!");
   6534 
   6535       // TODO: Support this.
   6536       if (OpInfo.isIndirect) {
   6537         LLVMContext &Ctx = *DAG.getContext();
   6538         Ctx.emitError(CS.getInstruction(),
   6539                       "Don't know how to handle indirect register inputs yet "
   6540                       "for constraint '" +
   6541                           Twine(OpInfo.ConstraintCode) + "'");
   6542         return;
   6543       }
   6544 
   6545       // Copy the input into the appropriate registers.
   6546       if (OpInfo.AssignedRegs.Regs.empty()) {
   6547         LLVMContext &Ctx = *DAG.getContext();
   6548         Ctx.emitError(CS.getInstruction(),
   6549                       "couldn't allocate input reg for constraint '" +
   6550                           Twine(OpInfo.ConstraintCode) + "'");
   6551         return;
   6552       }
   6553 
   6554       SDLoc dl = getCurSDLoc();
   6555 
   6556       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
   6557                                         Chain, &Flag, CS.getInstruction());
   6558 
   6559       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
   6560                                                dl, DAG, AsmNodeOperands);
   6561       break;
   6562     }
   6563     case InlineAsm::isClobber: {
   6564       // Add the clobbered value to the operand list, so that the register
   6565       // allocator is aware that the physreg got clobbered.
   6566       if (!OpInfo.AssignedRegs.Regs.empty())
   6567         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
   6568                                                  false, 0, getCurSDLoc(), DAG,
   6569                                                  AsmNodeOperands);
   6570       break;
   6571     }
   6572     }
   6573   }
   6574 
   6575   // Finish up input operands.  Set the input chain and add the flag last.
   6576   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
   6577   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
   6578 
   6579   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
   6580                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
   6581   Flag = Chain.getValue(1);
   6582 
   6583   // If this asm returns a register value, copy the result from that register
   6584   // and set it as the value of the call.
   6585   if (!RetValRegs.Regs.empty()) {
   6586     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
   6587                                              Chain, &Flag, CS.getInstruction());
   6588 
   6589     // FIXME: Why don't we do this for inline asms with MRVs?
   6590     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
   6591       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
   6592 
   6593       // If any of the results of the inline asm is a vector, it may have the
   6594       // wrong width/num elts.  This can happen for register classes that can
   6595       // contain multiple different value types.  The preg or vreg allocated may
   6596       // not have the same VT as was expected.  Convert it to the right type
   6597       // with bit_convert.
   6598       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
   6599         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
   6600                           ResultType, Val);
   6601 
   6602       } else if (ResultType != Val.getValueType() &&
   6603                  ResultType.isInteger() && Val.getValueType().isInteger()) {
   6604         // If a result value was tied to an input value, the computed result may
   6605         // have a wider width than the expected result.  Extract the relevant
   6606         // portion.
   6607         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
   6608       }
   6609 
   6610       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
   6611     }
   6612 
   6613     setValue(CS.getInstruction(), Val);
   6614     // Don't need to use this as a chain in this case.
   6615     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
   6616       return;
   6617   }
   6618 
   6619   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
   6620 
   6621   // Process indirect outputs, first output all of the flagged copies out of
   6622   // physregs.
   6623   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
   6624     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
   6625     const Value *Ptr = IndirectStoresToEmit[i].second;
   6626     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
   6627                                              Chain, &Flag, IA);
   6628     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
   6629   }
   6630 
   6631   // Emit the non-flagged stores from the physregs.
   6632   SmallVector<SDValue, 8> OutChains;
   6633   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
   6634     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
   6635                                StoresToEmit[i].first,
   6636                                getValue(StoresToEmit[i].second),
   6637                                MachinePointerInfo(StoresToEmit[i].second),
   6638                                false, false, 0);
   6639     OutChains.push_back(Val);
   6640   }
   6641 
   6642   if (!OutChains.empty())
   6643     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
   6644 
   6645   DAG.setRoot(Chain);
   6646 }
   6647 
   6648 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
   6649   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
   6650                           MVT::Other, getRoot(),
   6651                           getValue(I.getArgOperand(0)),
   6652                           DAG.getSrcValue(I.getArgOperand(0))));
   6653 }
   6654 
   6655 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
   6656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6657   const DataLayout &DL = DAG.getDataLayout();
   6658   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
   6659                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
   6660                            DAG.getSrcValue(I.getOperand(0)),
   6661                            DL.getABITypeAlignment(I.getType()));
   6662   setValue(&I, V);
   6663   DAG.setRoot(V.getValue(1));
   6664 }
   6665 
   6666 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
   6667   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
   6668                           MVT::Other, getRoot(),
   6669                           getValue(I.getArgOperand(0)),
   6670                           DAG.getSrcValue(I.getArgOperand(0))));
   6671 }
   6672 
   6673 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
   6674   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
   6675                           MVT::Other, getRoot(),
   6676                           getValue(I.getArgOperand(0)),
   6677                           getValue(I.getArgOperand(1)),
   6678                           DAG.getSrcValue(I.getArgOperand(0)),
   6679                           DAG.getSrcValue(I.getArgOperand(1))));
   6680 }
   6681 
   6682 /// \brief Lower an argument list according to the target calling convention.
   6683 ///
   6684 /// \return A tuple of <return-value, token-chain>
   6685 ///
   6686 /// This is a helper for lowering intrinsics that follow a target calling
   6687 /// convention or require stack pointer adjustment. Only a subset of the
   6688 /// intrinsic's operands need to participate in the calling convention.
   6689 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands(
   6690     ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee,
   6691     Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) {
   6692   TargetLowering::ArgListTy Args;
   6693   Args.reserve(NumArgs);
   6694 
   6695   // Populate the argument list.
   6696   // Attributes for args start at offset 1, after the return attribute.
   6697   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
   6698        ArgI != ArgE; ++ArgI) {
   6699     const Value *V = CS->getOperand(ArgI);
   6700 
   6701     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
   6702 
   6703     TargetLowering::ArgListEntry Entry;
   6704     Entry.Node = getValue(V);
   6705     Entry.Ty = V->getType();
   6706     Entry.setAttributes(&CS, AttrI);
   6707     Args.push_back(Entry);
   6708   }
   6709 
   6710   TargetLowering::CallLoweringInfo CLI(DAG);
   6711   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
   6712     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
   6713     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
   6714 
   6715   return lowerInvokable(CLI, EHPadBB);
   6716 }
   6717 
   6718 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
   6719 /// or patchpoint target node's operand list.
   6720 ///
   6721 /// Constants are converted to TargetConstants purely as an optimization to
   6722 /// avoid constant materialization and register allocation.
   6723 ///
   6724 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
   6725 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
   6726 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
   6727 /// address materialization and register allocation, but may also be required
   6728 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
   6729 /// alloca in the entry block, then the runtime may assume that the alloca's
   6730 /// StackMap location can be read immediately after compilation and that the
   6731 /// location is valid at any point during execution (this is similar to the
   6732 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
   6733 /// only available in a register, then the runtime would need to trap when
   6734 /// execution reaches the StackMap in order to read the alloca's location.
   6735 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
   6736                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
   6737                                 SelectionDAGBuilder &Builder) {
   6738   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
   6739     SDValue OpVal = Builder.getValue(CS.getArgument(i));
   6740     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
   6741       Ops.push_back(
   6742         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
   6743       Ops.push_back(
   6744         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
   6745     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
   6746       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
   6747       Ops.push_back(Builder.DAG.getTargetFrameIndex(
   6748           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
   6749     } else
   6750       Ops.push_back(OpVal);
   6751   }
   6752 }
   6753 
   6754 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
   6755 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
   6756   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
   6757   //                                  [live variables...])
   6758 
   6759   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
   6760 
   6761   SDValue Chain, InFlag, Callee, NullPtr;
   6762   SmallVector<SDValue, 32> Ops;
   6763 
   6764   SDLoc DL = getCurSDLoc();
   6765   Callee = getValue(CI.getCalledValue());
   6766   NullPtr = DAG.getIntPtrConstant(0, DL, true);
   6767 
   6768   // The stackmap intrinsic only records the live variables (the arguemnts
   6769   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
   6770   // intrinsic, this won't be lowered to a function call. This means we don't
   6771   // have to worry about calling conventions and target specific lowering code.
   6772   // Instead we perform the call lowering right here.
   6773   //
   6774   // chain, flag = CALLSEQ_START(chain, 0)
   6775   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
   6776   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
   6777   //
   6778   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
   6779   InFlag = Chain.getValue(1);
   6780 
   6781   // Add the <id> and <numBytes> constants.
   6782   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
   6783   Ops.push_back(DAG.getTargetConstant(
   6784                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
   6785   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
   6786   Ops.push_back(DAG.getTargetConstant(
   6787                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
   6788                   MVT::i32));
   6789 
   6790   // Push live variables for the stack map.
   6791   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
   6792 
   6793   // We are not pushing any register mask info here on the operands list,
   6794   // because the stackmap doesn't clobber anything.
   6795 
   6796   // Push the chain and the glue flag.
   6797   Ops.push_back(Chain);
   6798   Ops.push_back(InFlag);
   6799 
   6800   // Create the STACKMAP node.
   6801   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   6802   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
   6803   Chain = SDValue(SM, 0);
   6804   InFlag = Chain.getValue(1);
   6805 
   6806   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
   6807 
   6808   // Stackmaps don't generate values, so nothing goes into the NodeMap.
   6809 
   6810   // Set the root to the target-lowered call chain.
   6811   DAG.setRoot(Chain);
   6812 
   6813   // Inform the Frame Information that we have a stackmap in this function.
   6814   FuncInfo.MF->getFrameInfo()->setHasStackMap();
   6815 }
   6816 
   6817 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
   6818 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
   6819                                           const BasicBlock *EHPadBB) {
   6820   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
   6821   //                                                 i32 <numBytes>,
   6822   //                                                 i8* <target>,
   6823   //                                                 i32 <numArgs>,
   6824   //                                                 [Args...],
   6825   //                                                 [live variables...])
   6826 
   6827   CallingConv::ID CC = CS.getCallingConv();
   6828   bool IsAnyRegCC = CC == CallingConv::AnyReg;
   6829   bool HasDef = !CS->getType()->isVoidTy();
   6830   SDLoc dl = getCurSDLoc();
   6831   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
   6832 
   6833   // Handle immediate and symbolic callees.
   6834   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
   6835     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
   6836                                    /*isTarget=*/true);
   6837   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
   6838     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
   6839                                          SDLoc(SymbolicCallee),
   6840                                          SymbolicCallee->getValueType(0));
   6841 
   6842   // Get the real number of arguments participating in the call <numArgs>
   6843   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
   6844   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
   6845 
   6846   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
   6847   // Intrinsics include all meta-operands up to but not including CC.
   6848   unsigned NumMetaOpers = PatchPointOpers::CCPos;
   6849   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
   6850          "Not enough arguments provided to the patchpoint intrinsic");
   6851 
   6852   // For AnyRegCC the arguments are lowered later on manually.
   6853   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
   6854   Type *ReturnTy =
   6855     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
   6856   std::pair<SDValue, SDValue> Result = lowerCallOperands(
   6857       CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true);
   6858 
   6859   SDNode *CallEnd = Result.second.getNode();
   6860   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
   6861     CallEnd = CallEnd->getOperand(0).getNode();
   6862 
   6863   /// Get a call instruction from the call sequence chain.
   6864   /// Tail calls are not allowed.
   6865   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
   6866          "Expected a callseq node.");
   6867   SDNode *Call = CallEnd->getOperand(0).getNode();
   6868   bool HasGlue = Call->getGluedNode();
   6869 
   6870   // Replace the target specific call node with the patchable intrinsic.
   6871   SmallVector<SDValue, 8> Ops;
   6872 
   6873   // Add the <id> and <numBytes> constants.
   6874   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
   6875   Ops.push_back(DAG.getTargetConstant(
   6876                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
   6877   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
   6878   Ops.push_back(DAG.getTargetConstant(
   6879                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
   6880                   MVT::i32));
   6881 
   6882   // Add the callee.
   6883   Ops.push_back(Callee);
   6884 
   6885   // Adjust <numArgs> to account for any arguments that have been passed on the
   6886   // stack instead.
   6887   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
   6888   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
   6889   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
   6890   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
   6891 
   6892   // Add the calling convention
   6893   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
   6894 
   6895   // Add the arguments we omitted previously. The register allocator should
   6896   // place these in any free register.
   6897   if (IsAnyRegCC)
   6898     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
   6899       Ops.push_back(getValue(CS.getArgument(i)));
   6900 
   6901   // Push the arguments from the call instruction up to the register mask.
   6902   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
   6903   Ops.append(Call->op_begin() + 2, e);
   6904 
   6905   // Push live variables for the stack map.
   6906   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
   6907 
   6908   // Push the register mask info.
   6909   if (HasGlue)
   6910     Ops.push_back(*(Call->op_end()-2));
   6911   else
   6912     Ops.push_back(*(Call->op_end()-1));
   6913 
   6914   // Push the chain (this is originally the first operand of the call, but
   6915   // becomes now the last or second to last operand).
   6916   Ops.push_back(*(Call->op_begin()));
   6917 
   6918   // Push the glue flag (last operand).
   6919   if (HasGlue)
   6920     Ops.push_back(*(Call->op_end()-1));
   6921 
   6922   SDVTList NodeTys;
   6923   if (IsAnyRegCC && HasDef) {
   6924     // Create the return types based on the intrinsic definition
   6925     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6926     SmallVector<EVT, 3> ValueVTs;
   6927     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
   6928     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
   6929 
   6930     // There is always a chain and a glue type at the end
   6931     ValueVTs.push_back(MVT::Other);
   6932     ValueVTs.push_back(MVT::Glue);
   6933     NodeTys = DAG.getVTList(ValueVTs);
   6934   } else
   6935     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   6936 
   6937   // Replace the target specific call node with a PATCHPOINT node.
   6938   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
   6939                                          dl, NodeTys, Ops);
   6940 
   6941   // Update the NodeMap.
   6942   if (HasDef) {
   6943     if (IsAnyRegCC)
   6944       setValue(CS.getInstruction(), SDValue(MN, 0));
   6945     else
   6946       setValue(CS.getInstruction(), Result.first);
   6947   }
   6948 
   6949   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
   6950   // call sequence. Furthermore the location of the chain and glue can change
   6951   // when the AnyReg calling convention is used and the intrinsic returns a
   6952   // value.
   6953   if (IsAnyRegCC && HasDef) {
   6954     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
   6955     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
   6956     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
   6957   } else
   6958     DAG.ReplaceAllUsesWith(Call, MN);
   6959   DAG.DeleteNode(Call);
   6960 
   6961   // Inform the Frame Information that we have a patchpoint in this function.
   6962   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
   6963 }
   6964 
   6965 /// Returns an AttributeSet representing the attributes applied to the return
   6966 /// value of the given call.
   6967 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
   6968   SmallVector<Attribute::AttrKind, 2> Attrs;
   6969   if (CLI.RetSExt)
   6970     Attrs.push_back(Attribute::SExt);
   6971   if (CLI.RetZExt)
   6972     Attrs.push_back(Attribute::ZExt);
   6973   if (CLI.IsInReg)
   6974     Attrs.push_back(Attribute::InReg);
   6975 
   6976   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
   6977                            Attrs);
   6978 }
   6979 
   6980 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
   6981 /// implementation, which just calls LowerCall.
   6982 /// FIXME: When all targets are
   6983 /// migrated to using LowerCall, this hook should be integrated into SDISel.
   6984 std::pair<SDValue, SDValue>
   6985 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
   6986   // Handle the incoming return values from the call.
   6987   CLI.Ins.clear();
   6988   Type *OrigRetTy = CLI.RetTy;
   6989   SmallVector<EVT, 4> RetTys;
   6990   SmallVector<uint64_t, 4> Offsets;
   6991   auto &DL = CLI.DAG.getDataLayout();
   6992   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
   6993 
   6994   SmallVector<ISD::OutputArg, 4> Outs;
   6995   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
   6996 
   6997   bool CanLowerReturn =
   6998       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
   6999                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
   7000 
   7001   SDValue DemoteStackSlot;
   7002   int DemoteStackIdx = -100;
   7003   if (!CanLowerReturn) {
   7004     // FIXME: equivalent assert?
   7005     // assert(!CS.hasInAllocaArgument() &&
   7006     //        "sret demotion is incompatible with inalloca");
   7007     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
   7008     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
   7009     MachineFunction &MF = CLI.DAG.getMachineFunction();
   7010     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
   7011     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
   7012 
   7013     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
   7014     ArgListEntry Entry;
   7015     Entry.Node = DemoteStackSlot;
   7016     Entry.Ty = StackSlotPtrType;
   7017     Entry.isSExt = false;
   7018     Entry.isZExt = false;
   7019     Entry.isInReg = false;
   7020     Entry.isSRet = true;
   7021     Entry.isNest = false;
   7022     Entry.isByVal = false;
   7023     Entry.isReturned = false;
   7024     Entry.Alignment = Align;
   7025     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
   7026     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
   7027 
   7028     // sret demotion isn't compatible with tail-calls, since the sret argument
   7029     // points into the callers stack frame.
   7030     CLI.IsTailCall = false;
   7031   } else {
   7032     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   7033       EVT VT = RetTys[I];
   7034       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
   7035       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
   7036       for (unsigned i = 0; i != NumRegs; ++i) {
   7037         ISD::InputArg MyFlags;
   7038         MyFlags.VT = RegisterVT;
   7039         MyFlags.ArgVT = VT;
   7040         MyFlags.Used = CLI.IsReturnValueUsed;
   7041         if (CLI.RetSExt)
   7042           MyFlags.Flags.setSExt();
   7043         if (CLI.RetZExt)
   7044           MyFlags.Flags.setZExt();
   7045         if (CLI.IsInReg)
   7046           MyFlags.Flags.setInReg();
   7047         CLI.Ins.push_back(MyFlags);
   7048       }
   7049     }
   7050   }
   7051 
   7052   // Handle all of the outgoing arguments.
   7053   CLI.Outs.clear();
   7054   CLI.OutVals.clear();
   7055   ArgListTy &Args = CLI.getArgs();
   7056   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
   7057     SmallVector<EVT, 4> ValueVTs;
   7058     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
   7059     Type *FinalType = Args[i].Ty;
   7060     if (Args[i].isByVal)
   7061       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
   7062     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
   7063         FinalType, CLI.CallConv, CLI.IsVarArg);
   7064     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
   7065          ++Value) {
   7066       EVT VT = ValueVTs[Value];
   7067       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
   7068       SDValue Op = SDValue(Args[i].Node.getNode(),
   7069                            Args[i].Node.getResNo() + Value);
   7070       ISD::ArgFlagsTy Flags;
   7071       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
   7072 
   7073       if (Args[i].isZExt)
   7074         Flags.setZExt();
   7075       if (Args[i].isSExt)
   7076         Flags.setSExt();
   7077       if (Args[i].isInReg)
   7078         Flags.setInReg();
   7079       if (Args[i].isSRet)
   7080         Flags.setSRet();
   7081       if (Args[i].isByVal)
   7082         Flags.setByVal();
   7083       if (Args[i].isInAlloca) {
   7084         Flags.setInAlloca();
   7085         // Set the byval flag for CCAssignFn callbacks that don't know about
   7086         // inalloca.  This way we can know how many bytes we should've allocated
   7087         // and how many bytes a callee cleanup function will pop.  If we port
   7088         // inalloca to more targets, we'll have to add custom inalloca handling
   7089         // in the various CC lowering callbacks.
   7090         Flags.setByVal();
   7091       }
   7092       if (Args[i].isByVal || Args[i].isInAlloca) {
   7093         PointerType *Ty = cast<PointerType>(Args[i].Ty);
   7094         Type *ElementTy = Ty->getElementType();
   7095         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
   7096         // For ByVal, alignment should come from FE.  BE will guess if this
   7097         // info is not there but there are cases it cannot get right.
   7098         unsigned FrameAlign;
   7099         if (Args[i].Alignment)
   7100           FrameAlign = Args[i].Alignment;
   7101         else
   7102           FrameAlign = getByValTypeAlignment(ElementTy, DL);
   7103         Flags.setByValAlign(FrameAlign);
   7104       }
   7105       if (Args[i].isNest)
   7106         Flags.setNest();
   7107       if (NeedsRegBlock)
   7108         Flags.setInConsecutiveRegs();
   7109       Flags.setOrigAlign(OriginalAlignment);
   7110 
   7111       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
   7112       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
   7113       SmallVector<SDValue, 4> Parts(NumParts);
   7114       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
   7115 
   7116       if (Args[i].isSExt)
   7117         ExtendKind = ISD::SIGN_EXTEND;
   7118       else if (Args[i].isZExt)
   7119         ExtendKind = ISD::ZERO_EXTEND;
   7120 
   7121       // Conservatively only handle 'returned' on non-vectors for now
   7122       if (Args[i].isReturned && !Op.getValueType().isVector()) {
   7123         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
   7124                "unexpected use of 'returned'");
   7125         // Before passing 'returned' to the target lowering code, ensure that
   7126         // either the register MVT and the actual EVT are the same size or that
   7127         // the return value and argument are extended in the same way; in these
   7128         // cases it's safe to pass the argument register value unchanged as the
   7129         // return register value (although it's at the target's option whether
   7130         // to do so)
   7131         // TODO: allow code generation to take advantage of partially preserved
   7132         // registers rather than clobbering the entire register when the
   7133         // parameter extension method is not compatible with the return
   7134         // extension method
   7135         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
   7136             (ExtendKind != ISD::ANY_EXTEND &&
   7137              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
   7138         Flags.setReturned();
   7139       }
   7140 
   7141       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
   7142                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
   7143 
   7144       for (unsigned j = 0; j != NumParts; ++j) {
   7145         // if it isn't first piece, alignment must be 1
   7146         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
   7147                                i < CLI.NumFixedArgs,
   7148                                i, j*Parts[j].getValueType().getStoreSize());
   7149         if (NumParts > 1 && j == 0)
   7150           MyFlags.Flags.setSplit();
   7151         else if (j != 0)
   7152           MyFlags.Flags.setOrigAlign(1);
   7153 
   7154         CLI.Outs.push_back(MyFlags);
   7155         CLI.OutVals.push_back(Parts[j]);
   7156       }
   7157 
   7158       if (NeedsRegBlock && Value == NumValues - 1)
   7159         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
   7160     }
   7161   }
   7162 
   7163   SmallVector<SDValue, 4> InVals;
   7164   CLI.Chain = LowerCall(CLI, InVals);
   7165 
   7166   // Verify that the target's LowerCall behaved as expected.
   7167   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
   7168          "LowerCall didn't return a valid chain!");
   7169   assert((!CLI.IsTailCall || InVals.empty()) &&
   7170          "LowerCall emitted a return value for a tail call!");
   7171   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
   7172          "LowerCall didn't emit the correct number of values!");
   7173 
   7174   // For a tail call, the return value is merely live-out and there aren't
   7175   // any nodes in the DAG representing it. Return a special value to
   7176   // indicate that a tail call has been emitted and no more Instructions
   7177   // should be processed in the current block.
   7178   if (CLI.IsTailCall) {
   7179     CLI.DAG.setRoot(CLI.Chain);
   7180     return std::make_pair(SDValue(), SDValue());
   7181   }
   7182 
   7183   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
   7184           assert(InVals[i].getNode() &&
   7185                  "LowerCall emitted a null value!");
   7186           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
   7187                  "LowerCall emitted a value with the wrong type!");
   7188         });
   7189 
   7190   SmallVector<SDValue, 4> ReturnValues;
   7191   if (!CanLowerReturn) {
   7192     // The instruction result is the result of loading from the
   7193     // hidden sret parameter.
   7194     SmallVector<EVT, 1> PVTs;
   7195     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
   7196 
   7197     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
   7198     assert(PVTs.size() == 1 && "Pointers should fit in one register");
   7199     EVT PtrVT = PVTs[0];
   7200 
   7201     unsigned NumValues = RetTys.size();
   7202     ReturnValues.resize(NumValues);
   7203     SmallVector<SDValue, 4> Chains(NumValues);
   7204 
   7205     for (unsigned i = 0; i < NumValues; ++i) {
   7206       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
   7207                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
   7208                                                         PtrVT));
   7209       SDValue L = CLI.DAG.getLoad(
   7210           RetTys[i], CLI.DL, CLI.Chain, Add,
   7211           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
   7212                                             DemoteStackIdx, Offsets[i]),
   7213           false, false, false, 1);
   7214       ReturnValues[i] = L;
   7215       Chains[i] = L.getValue(1);
   7216     }
   7217 
   7218     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
   7219   } else {
   7220     // Collect the legal value parts into potentially illegal values
   7221     // that correspond to the original function's return values.
   7222     ISD::NodeType AssertOp = ISD::DELETED_NODE;
   7223     if (CLI.RetSExt)
   7224       AssertOp = ISD::AssertSext;
   7225     else if (CLI.RetZExt)
   7226       AssertOp = ISD::AssertZext;
   7227     unsigned CurReg = 0;
   7228     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
   7229       EVT VT = RetTys[I];
   7230       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
   7231       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
   7232 
   7233       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
   7234                                               NumRegs, RegisterVT, VT, nullptr,
   7235                                               AssertOp));
   7236       CurReg += NumRegs;
   7237     }
   7238 
   7239     // For a function returning void, there is no return value. We can't create
   7240     // such a node, so we just return a null return value in that case. In
   7241     // that case, nothing will actually look at the value.
   7242     if (ReturnValues.empty())
   7243       return std::make_pair(SDValue(), CLI.Chain);
   7244   }
   7245 
   7246   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
   7247                                 CLI.DAG.getVTList(RetTys), ReturnValues);
   7248   return std::make_pair(Res, CLI.Chain);
   7249 }
   7250 
   7251 void TargetLowering::LowerOperationWrapper(SDNode *N,
   7252                                            SmallVectorImpl<SDValue> &Results,
   7253                                            SelectionDAG &DAG) const {
   7254   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
   7255   if (Res.getNode())
   7256     Results.push_back(Res);
   7257 }
   7258 
   7259 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   7260   llvm_unreachable("LowerOperation not implemented for this target!");
   7261 }
   7262 
   7263 void
   7264 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
   7265   SDValue Op = getNonRegisterValue(V);
   7266   assert((Op.getOpcode() != ISD::CopyFromReg ||
   7267           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
   7268          "Copy from a reg to the same reg!");
   7269   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
   7270 
   7271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7272   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
   7273                    V->getType());
   7274   SDValue Chain = DAG.getEntryNode();
   7275 
   7276   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
   7277                               FuncInfo.PreferredExtendType.end())
   7278                                  ? ISD::ANY_EXTEND
   7279                                  : FuncInfo.PreferredExtendType[V];
   7280   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
   7281   PendingExports.push_back(Chain);
   7282 }
   7283 
   7284 #include "llvm/CodeGen/SelectionDAGISel.h"
   7285 
   7286 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
   7287 /// entry block, return true.  This includes arguments used by switches, since
   7288 /// the switch may expand into multiple basic blocks.
   7289 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
   7290   // With FastISel active, we may be splitting blocks, so force creation
   7291   // of virtual registers for all non-dead arguments.
   7292   if (FastISel)
   7293     return A->use_empty();
   7294 
   7295   const BasicBlock &Entry = A->getParent()->front();
   7296   for (const User *U : A->users())
   7297     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
   7298       return false;  // Use not in entry block.
   7299 
   7300   return true;
   7301 }
   7302 
   7303 void SelectionDAGISel::LowerArguments(const Function &F) {
   7304   SelectionDAG &DAG = SDB->DAG;
   7305   SDLoc dl = SDB->getCurSDLoc();
   7306   const DataLayout &DL = DAG.getDataLayout();
   7307   SmallVector<ISD::InputArg, 16> Ins;
   7308 
   7309   if (!FuncInfo->CanLowerReturn) {
   7310     // Put in an sret pointer parameter before all the other parameters.
   7311     SmallVector<EVT, 1> ValueVTs;
   7312     ComputeValueVTs(*TLI, DAG.getDataLayout(),
   7313                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
   7314 
   7315     // NOTE: Assuming that a pointer will never break down to more than one VT
   7316     // or one register.
   7317     ISD::ArgFlagsTy Flags;
   7318     Flags.setSRet();
   7319     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
   7320     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
   7321                          ISD::InputArg::NoArgIndex, 0);
   7322     Ins.push_back(RetArg);
   7323   }
   7324 
   7325   // Set up the incoming argument description vector.
   7326   unsigned Idx = 1;
   7327   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
   7328        I != E; ++I, ++Idx) {
   7329     SmallVector<EVT, 4> ValueVTs;
   7330     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
   7331     bool isArgValueUsed = !I->use_empty();
   7332     unsigned PartBase = 0;
   7333     Type *FinalType = I->getType();
   7334     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
   7335       FinalType = cast<PointerType>(FinalType)->getElementType();
   7336     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
   7337         FinalType, F.getCallingConv(), F.isVarArg());
   7338     for (unsigned Value = 0, NumValues = ValueVTs.size();
   7339          Value != NumValues; ++Value) {
   7340       EVT VT = ValueVTs[Value];
   7341       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
   7342       ISD::ArgFlagsTy Flags;
   7343       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
   7344 
   7345       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
   7346         Flags.setZExt();
   7347       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
   7348         Flags.setSExt();
   7349       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
   7350         Flags.setInReg();
   7351       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
   7352         Flags.setSRet();
   7353       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
   7354         Flags.setByVal();
   7355       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
   7356         Flags.setInAlloca();
   7357         // Set the byval flag for CCAssignFn callbacks that don't know about
   7358         // inalloca.  This way we can know how many bytes we should've allocated
   7359         // and how many bytes a callee cleanup function will pop.  If we port
   7360         // inalloca to more targets, we'll have to add custom inalloca handling
   7361         // in the various CC lowering callbacks.
   7362         Flags.setByVal();
   7363       }
   7364       if (F.getCallingConv() == CallingConv::X86_INTR) {
   7365         // IA Interrupt passes frame (1st parameter) by value in the stack.
   7366         if (Idx == 1)
   7367           Flags.setByVal();
   7368       }
   7369       if (Flags.isByVal() || Flags.isInAlloca()) {
   7370         PointerType *Ty = cast<PointerType>(I->getType());
   7371         Type *ElementTy = Ty->getElementType();
   7372         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
   7373         // For ByVal, alignment should be passed from FE.  BE will guess if
   7374         // this info is not there but there are cases it cannot get right.
   7375         unsigned FrameAlign;
   7376         if (F.getParamAlignment(Idx))
   7377           FrameAlign = F.getParamAlignment(Idx);
   7378         else
   7379           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
   7380         Flags.setByValAlign(FrameAlign);
   7381       }
   7382       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
   7383         Flags.setNest();
   7384       if (NeedsRegBlock)
   7385         Flags.setInConsecutiveRegs();
   7386       Flags.setOrigAlign(OriginalAlignment);
   7387 
   7388       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
   7389       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
   7390       for (unsigned i = 0; i != NumRegs; ++i) {
   7391         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
   7392                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
   7393         if (NumRegs > 1 && i == 0)
   7394           MyFlags.Flags.setSplit();
   7395         // if it isn't first piece, alignment must be 1
   7396         else if (i > 0)
   7397           MyFlags.Flags.setOrigAlign(1);
   7398         Ins.push_back(MyFlags);
   7399       }
   7400       if (NeedsRegBlock && Value == NumValues - 1)
   7401         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
   7402       PartBase += VT.getStoreSize();
   7403     }
   7404   }
   7405 
   7406   // Call the target to set up the argument values.
   7407   SmallVector<SDValue, 8> InVals;
   7408   SDValue NewRoot = TLI->LowerFormalArguments(
   7409       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
   7410 
   7411   // Verify that the target's LowerFormalArguments behaved as expected.
   7412   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
   7413          "LowerFormalArguments didn't return a valid chain!");
   7414   assert(InVals.size() == Ins.size() &&
   7415          "LowerFormalArguments didn't emit the correct number of values!");
   7416   DEBUG({
   7417       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
   7418         assert(InVals[i].getNode() &&
   7419                "LowerFormalArguments emitted a null value!");
   7420         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
   7421                "LowerFormalArguments emitted a value with the wrong type!");
   7422       }
   7423     });
   7424 
   7425   // Update the DAG with the new chain value resulting from argument lowering.
   7426   DAG.setRoot(NewRoot);
   7427 
   7428   // Set up the argument values.
   7429   unsigned i = 0;
   7430   Idx = 1;
   7431   if (!FuncInfo->CanLowerReturn) {
   7432     // Create a virtual register for the sret pointer, and put in a copy
   7433     // from the sret argument into it.
   7434     SmallVector<EVT, 1> ValueVTs;
   7435     ComputeValueVTs(*TLI, DAG.getDataLayout(),
   7436                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
   7437     MVT VT = ValueVTs[0].getSimpleVT();
   7438     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
   7439     ISD::NodeType AssertOp = ISD::DELETED_NODE;
   7440     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
   7441                                         RegVT, VT, nullptr, AssertOp);
   7442 
   7443     MachineFunction& MF = SDB->DAG.getMachineFunction();
   7444     MachineRegisterInfo& RegInfo = MF.getRegInfo();
   7445     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
   7446     FuncInfo->DemoteRegister = SRetReg;
   7447     NewRoot =
   7448         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
   7449     DAG.setRoot(NewRoot);
   7450 
   7451     // i indexes lowered arguments.  Bump it past the hidden sret argument.
   7452     // Idx indexes LLVM arguments.  Don't touch it.
   7453     ++i;
   7454   }
   7455 
   7456   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
   7457       ++I, ++Idx) {
   7458     SmallVector<SDValue, 4> ArgValues;
   7459     SmallVector<EVT, 4> ValueVTs;
   7460     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
   7461     unsigned NumValues = ValueVTs.size();
   7462 
   7463     // If this argument is unused then remember its value. It is used to generate
   7464     // debugging information.
   7465     if (I->use_empty() && NumValues) {
   7466       SDB->setUnusedArgValue(&*I, InVals[i]);
   7467 
   7468       // Also remember any frame index for use in FastISel.
   7469       if (FrameIndexSDNode *FI =
   7470           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
   7471         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
   7472     }
   7473 
   7474     for (unsigned Val = 0; Val != NumValues; ++Val) {
   7475       EVT VT = ValueVTs[Val];
   7476       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
   7477       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
   7478 
   7479       if (!I->use_empty()) {
   7480         ISD::NodeType AssertOp = ISD::DELETED_NODE;
   7481         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
   7482           AssertOp = ISD::AssertSext;
   7483         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
   7484           AssertOp = ISD::AssertZext;
   7485 
   7486         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
   7487                                              NumParts, PartVT, VT,
   7488                                              nullptr, AssertOp));
   7489       }
   7490 
   7491       i += NumParts;
   7492     }
   7493 
   7494     // We don't need to do anything else for unused arguments.
   7495     if (ArgValues.empty())
   7496       continue;
   7497 
   7498     // Note down frame index.
   7499     if (FrameIndexSDNode *FI =
   7500         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
   7501       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
   7502 
   7503     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
   7504                                      SDB->getCurSDLoc());
   7505 
   7506     SDB->setValue(&*I, Res);
   7507     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
   7508       if (LoadSDNode *LNode =
   7509           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
   7510         if (FrameIndexSDNode *FI =
   7511             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
   7512         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
   7513     }
   7514 
   7515     // If this argument is live outside of the entry block, insert a copy from
   7516     // wherever we got it to the vreg that other BB's will reference it as.
   7517     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
   7518       // If we can, though, try to skip creating an unnecessary vreg.
   7519       // FIXME: This isn't very clean... it would be nice to make this more
   7520       // general.  It's also subtly incompatible with the hacks FastISel
   7521       // uses with vregs.
   7522       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
   7523       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   7524         FuncInfo->ValueMap[&*I] = Reg;
   7525         continue;
   7526       }
   7527     }
   7528     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
   7529       FuncInfo->InitializeRegForValue(&*I);
   7530       SDB->CopyToExportRegsIfNeeded(&*I);
   7531     }
   7532   }
   7533 
   7534   assert(i == InVals.size() && "Argument register count mismatch!");
   7535 
   7536   // Finally, if the target has anything special to do, allow it to do so.
   7537   EmitFunctionEntryCode();
   7538 }
   7539 
   7540 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
   7541 /// ensure constants are generated when needed.  Remember the virtual registers
   7542 /// that need to be added to the Machine PHI nodes as input.  We cannot just
   7543 /// directly add them, because expansion might result in multiple MBB's for one
   7544 /// BB.  As such, the start of the BB might correspond to a different MBB than
   7545 /// the end.
   7546 ///
   7547 void
   7548 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
   7549   const TerminatorInst *TI = LLVMBB->getTerminator();
   7550 
   7551   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
   7552 
   7553   // Check PHI nodes in successors that expect a value to be available from this
   7554   // block.
   7555   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
   7556     const BasicBlock *SuccBB = TI->getSuccessor(succ);
   7557     if (!isa<PHINode>(SuccBB->begin())) continue;
   7558     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
   7559 
   7560     // If this terminator has multiple identical successors (common for
   7561     // switches), only handle each succ once.
   7562     if (!SuccsHandled.insert(SuccMBB).second)
   7563       continue;
   7564 
   7565     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
   7566 
   7567     // At this point we know that there is a 1-1 correspondence between LLVM PHI
   7568     // nodes and Machine PHI nodes, but the incoming operands have not been
   7569     // emitted yet.
   7570     for (BasicBlock::const_iterator I = SuccBB->begin();
   7571          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   7572       // Ignore dead phi's.
   7573       if (PN->use_empty()) continue;
   7574 
   7575       // Skip empty types
   7576       if (PN->getType()->isEmptyTy())
   7577         continue;
   7578 
   7579       unsigned Reg;
   7580       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
   7581 
   7582       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
   7583         unsigned &RegOut = ConstantsOut[C];
   7584         if (RegOut == 0) {
   7585           RegOut = FuncInfo.CreateRegs(C->getType());
   7586           CopyValueToVirtualRegister(C, RegOut);
   7587         }
   7588         Reg = RegOut;
   7589       } else {
   7590         DenseMap<const Value *, unsigned>::iterator I =
   7591           FuncInfo.ValueMap.find(PHIOp);
   7592         if (I != FuncInfo.ValueMap.end())
   7593           Reg = I->second;
   7594         else {
   7595           assert(isa<AllocaInst>(PHIOp) &&
   7596                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
   7597                  "Didn't codegen value into a register!??");
   7598           Reg = FuncInfo.CreateRegs(PHIOp->getType());
   7599           CopyValueToVirtualRegister(PHIOp, Reg);
   7600         }
   7601       }
   7602 
   7603       // Remember that this register needs to added to the machine PHI node as
   7604       // the input for this MBB.
   7605       SmallVector<EVT, 4> ValueVTs;
   7606       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7607       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
   7608       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
   7609         EVT VT = ValueVTs[vti];
   7610         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
   7611         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
   7612           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
   7613         Reg += NumRegisters;
   7614       }
   7615     }
   7616   }
   7617 
   7618   ConstantsOut.clear();
   7619 }
   7620 
   7621 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
   7622 /// is 0.
   7623 MachineBasicBlock *
   7624 SelectionDAGBuilder::StackProtectorDescriptor::
   7625 AddSuccessorMBB(const BasicBlock *BB,
   7626                 MachineBasicBlock *ParentMBB,
   7627                 bool IsLikely,
   7628                 MachineBasicBlock *SuccMBB) {
   7629   // If SuccBB has not been created yet, create it.
   7630   if (!SuccMBB) {
   7631     MachineFunction *MF = ParentMBB->getParent();
   7632     MachineFunction::iterator BBI(ParentMBB);
   7633     SuccMBB = MF->CreateMachineBasicBlock(BB);
   7634     MF->insert(++BBI, SuccMBB);
   7635   }
   7636   // Add it as a successor of ParentMBB.
   7637   ParentMBB->addSuccessor(
   7638       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
   7639   return SuccMBB;
   7640 }
   7641 
   7642 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
   7643   MachineFunction::iterator I(MBB);
   7644   if (++I == FuncInfo.MF->end())
   7645     return nullptr;
   7646   return &*I;
   7647 }
   7648 
   7649 /// During lowering new call nodes can be created (such as memset, etc.).
   7650 /// Those will become new roots of the current DAG, but complications arise
   7651 /// when they are tail calls. In such cases, the call lowering will update
   7652 /// the root, but the builder still needs to know that a tail call has been
   7653 /// lowered in order to avoid generating an additional return.
   7654 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
   7655   // If the node is null, we do have a tail call.
   7656   if (MaybeTC.getNode() != nullptr)
   7657     DAG.setRoot(MaybeTC);
   7658   else
   7659     HasTailCall = true;
   7660 }
   7661 
   7662 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
   7663                                   unsigned *TotalCases, unsigned First,
   7664                                   unsigned Last) {
   7665   assert(Last >= First);
   7666   assert(TotalCases[Last] >= TotalCases[First]);
   7667 
   7668   APInt LowCase = Clusters[First].Low->getValue();
   7669   APInt HighCase = Clusters[Last].High->getValue();
   7670   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
   7671 
   7672   // FIXME: A range of consecutive cases has 100% density, but only requires one
   7673   // comparison to lower. We should discriminate against such consecutive ranges
   7674   // in jump tables.
   7675 
   7676   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
   7677   uint64_t Range = Diff + 1;
   7678 
   7679   uint64_t NumCases =
   7680       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
   7681 
   7682   assert(NumCases < UINT64_MAX / 100);
   7683   assert(Range >= NumCases);
   7684 
   7685   return NumCases * 100 >= Range * MinJumpTableDensity;
   7686 }
   7687 
   7688 static inline bool areJTsAllowed(const TargetLowering &TLI) {
   7689   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
   7690          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
   7691 }
   7692 
   7693 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
   7694                                          unsigned First, unsigned Last,
   7695                                          const SwitchInst *SI,
   7696                                          MachineBasicBlock *DefaultMBB,
   7697                                          CaseCluster &JTCluster) {
   7698   assert(First <= Last);
   7699 
   7700   auto Prob = BranchProbability::getZero();
   7701   unsigned NumCmps = 0;
   7702   std::vector<MachineBasicBlock*> Table;
   7703   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
   7704 
   7705   // Initialize probabilities in JTProbs.
   7706   for (unsigned I = First; I <= Last; ++I)
   7707     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
   7708 
   7709   for (unsigned I = First; I <= Last; ++I) {
   7710     assert(Clusters[I].Kind == CC_Range);
   7711     Prob += Clusters[I].Prob;
   7712     APInt Low = Clusters[I].Low->getValue();
   7713     APInt High = Clusters[I].High->getValue();
   7714     NumCmps += (Low == High) ? 1 : 2;
   7715     if (I != First) {
   7716       // Fill the gap between this and the previous cluster.
   7717       APInt PreviousHigh = Clusters[I - 1].High->getValue();
   7718       assert(PreviousHigh.slt(Low));
   7719       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
   7720       for (uint64_t J = 0; J < Gap; J++)
   7721         Table.push_back(DefaultMBB);
   7722     }
   7723     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
   7724     for (uint64_t J = 0; J < ClusterSize; ++J)
   7725       Table.push_back(Clusters[I].MBB);
   7726     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
   7727   }
   7728 
   7729   unsigned NumDests = JTProbs.size();
   7730   if (isSuitableForBitTests(NumDests, NumCmps,
   7731                             Clusters[First].Low->getValue(),
   7732                             Clusters[Last].High->getValue())) {
   7733     // Clusters[First..Last] should be lowered as bit tests instead.
   7734     return false;
   7735   }
   7736 
   7737   // Create the MBB that will load from and jump through the table.
   7738   // Note: We create it here, but it's not inserted into the function yet.
   7739   MachineFunction *CurMF = FuncInfo.MF;
   7740   MachineBasicBlock *JumpTableMBB =
   7741       CurMF->CreateMachineBasicBlock(SI->getParent());
   7742 
   7743   // Add successors. Note: use table order for determinism.
   7744   SmallPtrSet<MachineBasicBlock *, 8> Done;
   7745   for (MachineBasicBlock *Succ : Table) {
   7746     if (Done.count(Succ))
   7747       continue;
   7748     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
   7749     Done.insert(Succ);
   7750   }
   7751   JumpTableMBB->normalizeSuccProbs();
   7752 
   7753   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7754   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
   7755                      ->createJumpTableIndex(Table);
   7756 
   7757   // Set up the jump table info.
   7758   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
   7759   JumpTableHeader JTH(Clusters[First].Low->getValue(),
   7760                       Clusters[Last].High->getValue(), SI->getCondition(),
   7761                       nullptr, false);
   7762   JTCases.emplace_back(std::move(JTH), std::move(JT));
   7763 
   7764   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
   7765                                      JTCases.size() - 1, Prob);
   7766   return true;
   7767 }
   7768 
   7769 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
   7770                                          const SwitchInst *SI,
   7771                                          MachineBasicBlock *DefaultMBB) {
   7772 #ifndef NDEBUG
   7773   // Clusters must be non-empty, sorted, and only contain Range clusters.
   7774   assert(!Clusters.empty());
   7775   for (CaseCluster &C : Clusters)
   7776     assert(C.Kind == CC_Range);
   7777   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
   7778     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
   7779 #endif
   7780 
   7781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   7782   if (!areJTsAllowed(TLI))
   7783     return;
   7784 
   7785   const int64_t N = Clusters.size();
   7786   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
   7787 
   7788   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
   7789   SmallVector<unsigned, 8> TotalCases(N);
   7790 
   7791   for (unsigned i = 0; i < N; ++i) {
   7792     APInt Hi = Clusters[i].High->getValue();
   7793     APInt Lo = Clusters[i].Low->getValue();
   7794     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
   7795     if (i != 0)
   7796       TotalCases[i] += TotalCases[i - 1];
   7797   }
   7798 
   7799   if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
   7800     // Cheap case: the whole range might be suitable for jump table.
   7801     CaseCluster JTCluster;
   7802     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
   7803       Clusters[0] = JTCluster;
   7804       Clusters.resize(1);
   7805       return;
   7806     }
   7807   }
   7808 
   7809   // The algorithm below is not suitable for -O0.
   7810   if (TM.getOptLevel() == CodeGenOpt::None)
   7811     return;
   7812 
   7813   // Split Clusters into minimum number of dense partitions. The algorithm uses
   7814   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
   7815   // for the Case Statement'" (1994), but builds the MinPartitions array in
   7816   // reverse order to make it easier to reconstruct the partitions in ascending
   7817   // order. In the choice between two optimal partitionings, it picks the one
   7818   // which yields more jump tables.
   7819 
   7820   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
   7821   SmallVector<unsigned, 8> MinPartitions(N);
   7822   // LastElement[i] is the last element of the partition starting at i.
   7823   SmallVector<unsigned, 8> LastElement(N);
   7824   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
   7825   SmallVector<unsigned, 8> NumTables(N);
   7826 
   7827   // Base case: There is only one way to partition Clusters[N-1].
   7828   MinPartitions[N - 1] = 1;
   7829   LastElement[N - 1] = N - 1;
   7830   assert(MinJumpTableSize > 1);
   7831   NumTables[N - 1] = 0;
   7832 
   7833   // Note: loop indexes are signed to avoid underflow.
   7834   for (int64_t i = N - 2; i >= 0; i--) {
   7835     // Find optimal partitioning of Clusters[i..N-1].
   7836     // Baseline: Put Clusters[i] into a partition on its own.
   7837     MinPartitions[i] = MinPartitions[i + 1] + 1;
   7838     LastElement[i] = i;
   7839     NumTables[i] = NumTables[i + 1];
   7840 
   7841     // Search for a solution that results in fewer partitions.
   7842     for (int64_t j = N - 1; j > i; j--) {
   7843       // Try building a partition from Clusters[i..j].
   7844       if (isDense(Clusters, &TotalCases[0], i, j)) {
   7845         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
   7846         bool IsTable = j - i + 1 >= MinJumpTableSize;
   7847         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
   7848 
   7849         // If this j leads to fewer partitions, or same number of partitions
   7850         // with more lookup tables, it is a better partitioning.
   7851         if (NumPartitions < MinPartitions[i] ||
   7852             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
   7853           MinPartitions[i] = NumPartitions;
   7854           LastElement[i] = j;
   7855           NumTables[i] = Tables;
   7856         }
   7857       }
   7858     }
   7859   }
   7860 
   7861   // Iterate over the partitions, replacing some with jump tables in-place.
   7862   unsigned DstIndex = 0;
   7863   for (unsigned First = 0, Last; First < N; First = Last + 1) {
   7864     Last = LastElement[First];
   7865     assert(Last >= First);
   7866     assert(DstIndex <= First);
   7867     unsigned NumClusters = Last - First + 1;
   7868 
   7869     CaseCluster JTCluster;
   7870     if (NumClusters >= MinJumpTableSize &&
   7871         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
   7872       Clusters[DstIndex++] = JTCluster;
   7873     } else {
   7874       for (unsigned I = First; I <= Last; ++I)
   7875         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
   7876     }
   7877   }
   7878   Clusters.resize(DstIndex);
   7879 }
   7880 
   7881 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
   7882   // FIXME: Using the pointer type doesn't seem ideal.
   7883   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
   7884   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
   7885   return Range <= BW;
   7886 }
   7887 
   7888 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
   7889                                                 unsigned NumCmps,
   7890                                                 const APInt &Low,
   7891                                                 const APInt &High) {
   7892   // FIXME: I don't think NumCmps is the correct metric: a single case and a
   7893   // range of cases both require only one branch to lower. Just looking at the
   7894   // number of clusters and destinations should be enough to decide whether to
   7895   // build bit tests.
   7896 
   7897   // To lower a range with bit tests, the range must fit the bitwidth of a
   7898   // machine word.
   7899   if (!rangeFitsInWord(Low, High))
   7900     return false;
   7901 
   7902   // Decide whether it's profitable to lower this range with bit tests. Each
   7903   // destination requires a bit test and branch, and there is an overall range
   7904   // check branch. For a small number of clusters, separate comparisons might be
   7905   // cheaper, and for many destinations, splitting the range might be better.
   7906   return (NumDests == 1 && NumCmps >= 3) ||
   7907          (NumDests == 2 && NumCmps >= 5) ||
   7908          (NumDests == 3 && NumCmps >= 6);
   7909 }
   7910 
   7911 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
   7912                                         unsigned First, unsigned Last,
   7913                                         const SwitchInst *SI,
   7914                                         CaseCluster &BTCluster) {
   7915   assert(First <= Last);
   7916   if (First == Last)
   7917     return false;
   7918 
   7919   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
   7920   unsigned NumCmps = 0;
   7921   for (int64_t I = First; I <= Last; ++I) {
   7922     assert(Clusters[I].Kind == CC_Range);
   7923     Dests.set(Clusters[I].MBB->getNumber());
   7924     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
   7925   }
   7926   unsigned NumDests = Dests.count();
   7927 
   7928   APInt Low = Clusters[First].Low->getValue();
   7929   APInt High = Clusters[Last].High->getValue();
   7930   assert(Low.slt(High));
   7931 
   7932   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
   7933     return false;
   7934 
   7935   APInt LowBound;
   7936   APInt CmpRange;
   7937 
   7938   const int BitWidth = DAG.getTargetLoweringInfo()
   7939                            .getPointerTy(DAG.getDataLayout())
   7940                            .getSizeInBits();
   7941   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
   7942 
   7943   // Check if the clusters cover a contiguous range such that no value in the
   7944   // range will jump to the default statement.
   7945   bool ContiguousRange = true;
   7946   for (int64_t I = First + 1; I <= Last; ++I) {
   7947     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
   7948       ContiguousRange = false;
   7949       break;
   7950     }
   7951   }
   7952 
   7953   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
   7954     // Optimize the case where all the case values fit in a word without having
   7955     // to subtract minValue. In this case, we can optimize away the subtraction.
   7956     LowBound = APInt::getNullValue(Low.getBitWidth());
   7957     CmpRange = High;
   7958     ContiguousRange = false;
   7959   } else {
   7960     LowBound = Low;
   7961     CmpRange = High - Low;
   7962   }
   7963 
   7964   CaseBitsVector CBV;
   7965   auto TotalProb = BranchProbability::getZero();
   7966   for (unsigned i = First; i <= Last; ++i) {
   7967     // Find the CaseBits for this destination.
   7968     unsigned j;
   7969     for (j = 0; j < CBV.size(); ++j)
   7970       if (CBV[j].BB == Clusters[i].MBB)
   7971         break;
   7972     if (j == CBV.size())
   7973       CBV.push_back(
   7974           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
   7975     CaseBits *CB = &CBV[j];
   7976 
   7977     // Update Mask, Bits and ExtraProb.
   7978     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
   7979     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
   7980     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
   7981     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
   7982     CB->Bits += Hi - Lo + 1;
   7983     CB->ExtraProb += Clusters[i].Prob;
   7984     TotalProb += Clusters[i].Prob;
   7985   }
   7986 
   7987   BitTestInfo BTI;
   7988   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
   7989     // Sort by probability first, number of bits second.
   7990     if (a.ExtraProb != b.ExtraProb)
   7991       return a.ExtraProb > b.ExtraProb;
   7992     return a.Bits > b.Bits;
   7993   });
   7994 
   7995   for (auto &CB : CBV) {
   7996     MachineBasicBlock *BitTestBB =
   7997         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
   7998     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
   7999   }
   8000   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
   8001                             SI->getCondition(), -1U, MVT::Other, false,
   8002                             ContiguousRange, nullptr, nullptr, std::move(BTI),
   8003                             TotalProb);
   8004 
   8005   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
   8006                                     BitTestCases.size() - 1, TotalProb);
   8007   return true;
   8008 }
   8009 
   8010 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
   8011                                               const SwitchInst *SI) {
   8012 // Partition Clusters into as few subsets as possible, where each subset has a
   8013 // range that fits in a machine word and has <= 3 unique destinations.
   8014 
   8015 #ifndef NDEBUG
   8016   // Clusters must be sorted and contain Range or JumpTable clusters.
   8017   assert(!Clusters.empty());
   8018   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
   8019   for (const CaseCluster &C : Clusters)
   8020     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
   8021   for (unsigned i = 1; i < Clusters.size(); ++i)
   8022     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
   8023 #endif
   8024 
   8025   // The algorithm below is not suitable for -O0.
   8026   if (TM.getOptLevel() == CodeGenOpt::None)
   8027     return;
   8028 
   8029   // If target does not have legal shift left, do not emit bit tests at all.
   8030   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8031   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
   8032   if (!TLI.isOperationLegal(ISD::SHL, PTy))
   8033     return;
   8034 
   8035   int BitWidth = PTy.getSizeInBits();
   8036   const int64_t N = Clusters.size();
   8037 
   8038   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
   8039   SmallVector<unsigned, 8> MinPartitions(N);
   8040   // LastElement[i] is the last element of the partition starting at i.
   8041   SmallVector<unsigned, 8> LastElement(N);
   8042 
   8043   // FIXME: This might not be the best algorithm for finding bit test clusters.
   8044 
   8045   // Base case: There is only one way to partition Clusters[N-1].
   8046   MinPartitions[N - 1] = 1;
   8047   LastElement[N - 1] = N - 1;
   8048 
   8049   // Note: loop indexes are signed to avoid underflow.
   8050   for (int64_t i = N - 2; i >= 0; --i) {
   8051     // Find optimal partitioning of Clusters[i..N-1].
   8052     // Baseline: Put Clusters[i] into a partition on its own.
   8053     MinPartitions[i] = MinPartitions[i + 1] + 1;
   8054     LastElement[i] = i;
   8055 
   8056     // Search for a solution that results in fewer partitions.
   8057     // Note: the search is limited by BitWidth, reducing time complexity.
   8058     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
   8059       // Try building a partition from Clusters[i..j].
   8060 
   8061       // Check the range.
   8062       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
   8063                            Clusters[j].High->getValue()))
   8064         continue;
   8065 
   8066       // Check nbr of destinations and cluster types.
   8067       // FIXME: This works, but doesn't seem very efficient.
   8068       bool RangesOnly = true;
   8069       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
   8070       for (int64_t k = i; k <= j; k++) {
   8071         if (Clusters[k].Kind != CC_Range) {
   8072           RangesOnly = false;
   8073           break;
   8074         }
   8075         Dests.set(Clusters[k].MBB->getNumber());
   8076       }
   8077       if (!RangesOnly || Dests.count() > 3)
   8078         break;
   8079 
   8080       // Check if it's a better partition.
   8081       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
   8082       if (NumPartitions < MinPartitions[i]) {
   8083         // Found a better partition.
   8084         MinPartitions[i] = NumPartitions;
   8085         LastElement[i] = j;
   8086       }
   8087     }
   8088   }
   8089 
   8090   // Iterate over the partitions, replacing with bit-test clusters in-place.
   8091   unsigned DstIndex = 0;
   8092   for (unsigned First = 0, Last; First < N; First = Last + 1) {
   8093     Last = LastElement[First];
   8094     assert(First <= Last);
   8095     assert(DstIndex <= First);
   8096 
   8097     CaseCluster BitTestCluster;
   8098     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
   8099       Clusters[DstIndex++] = BitTestCluster;
   8100     } else {
   8101       size_t NumClusters = Last - First + 1;
   8102       std::memmove(&Clusters[DstIndex], &Clusters[First],
   8103                    sizeof(Clusters[0]) * NumClusters);
   8104       DstIndex += NumClusters;
   8105     }
   8106   }
   8107   Clusters.resize(DstIndex);
   8108 }
   8109 
   8110 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
   8111                                         MachineBasicBlock *SwitchMBB,
   8112                                         MachineBasicBlock *DefaultMBB) {
   8113   MachineFunction *CurMF = FuncInfo.MF;
   8114   MachineBasicBlock *NextMBB = nullptr;
   8115   MachineFunction::iterator BBI(W.MBB);
   8116   if (++BBI != FuncInfo.MF->end())
   8117     NextMBB = &*BBI;
   8118 
   8119   unsigned Size = W.LastCluster - W.FirstCluster + 1;
   8120 
   8121   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   8122 
   8123   if (Size == 2 && W.MBB == SwitchMBB) {
   8124     // If any two of the cases has the same destination, and if one value
   8125     // is the same as the other, but has one bit unset that the other has set,
   8126     // use bit manipulation to do two compares at once.  For example:
   8127     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
   8128     // TODO: This could be extended to merge any 2 cases in switches with 3
   8129     // cases.
   8130     // TODO: Handle cases where W.CaseBB != SwitchBB.
   8131     CaseCluster &Small = *W.FirstCluster;
   8132     CaseCluster &Big = *W.LastCluster;
   8133 
   8134     if (Small.Low == Small.High && Big.Low == Big.High &&
   8135         Small.MBB == Big.MBB) {
   8136       const APInt &SmallValue = Small.Low->getValue();
   8137       const APInt &BigValue = Big.Low->getValue();
   8138 
   8139       // Check that there is only one bit different.
   8140       APInt CommonBit = BigValue ^ SmallValue;
   8141       if (CommonBit.isPowerOf2()) {
   8142         SDValue CondLHS = getValue(Cond);
   8143         EVT VT = CondLHS.getValueType();
   8144         SDLoc DL = getCurSDLoc();
   8145 
   8146         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
   8147                                  DAG.getConstant(CommonBit, DL, VT));
   8148         SDValue Cond = DAG.getSetCC(
   8149             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
   8150             ISD::SETEQ);
   8151 
   8152         // Update successor info.
   8153         // Both Small and Big will jump to Small.BB, so we sum up the
   8154         // probabilities.
   8155         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
   8156         if (BPI)
   8157           addSuccessorWithProb(
   8158               SwitchMBB, DefaultMBB,
   8159               // The default destination is the first successor in IR.
   8160               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
   8161         else
   8162           addSuccessorWithProb(SwitchMBB, DefaultMBB);
   8163 
   8164         // Insert the true branch.
   8165         SDValue BrCond =
   8166             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
   8167                         DAG.getBasicBlock(Small.MBB));
   8168         // Insert the false branch.
   8169         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
   8170                              DAG.getBasicBlock(DefaultMBB));
   8171 
   8172         DAG.setRoot(BrCond);
   8173         return;
   8174       }
   8175     }
   8176   }
   8177 
   8178   if (TM.getOptLevel() != CodeGenOpt::None) {
   8179     // Order cases by probability so the most likely case will be checked first.
   8180     std::sort(W.FirstCluster, W.LastCluster + 1,
   8181               [](const CaseCluster &a, const CaseCluster &b) {
   8182       return a.Prob > b.Prob;
   8183     });
   8184 
   8185     // Rearrange the case blocks so that the last one falls through if possible
   8186     // without without changing the order of probabilities.
   8187     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
   8188       --I;
   8189       if (I->Prob > W.LastCluster->Prob)
   8190         break;
   8191       if (I->Kind == CC_Range && I->MBB == NextMBB) {
   8192         std::swap(*I, *W.LastCluster);
   8193         break;
   8194       }
   8195     }
   8196   }
   8197 
   8198   // Compute total probability.
   8199   BranchProbability DefaultProb = W.DefaultProb;
   8200   BranchProbability UnhandledProbs = DefaultProb;
   8201   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
   8202     UnhandledProbs += I->Prob;
   8203 
   8204   MachineBasicBlock *CurMBB = W.MBB;
   8205   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
   8206     MachineBasicBlock *Fallthrough;
   8207     if (I == W.LastCluster) {
   8208       // For the last cluster, fall through to the default destination.
   8209       Fallthrough = DefaultMBB;
   8210     } else {
   8211       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
   8212       CurMF->insert(BBI, Fallthrough);
   8213       // Put Cond in a virtual register to make it available from the new blocks.
   8214       ExportFromCurrentBlock(Cond);
   8215     }
   8216     UnhandledProbs -= I->Prob;
   8217 
   8218     switch (I->Kind) {
   8219       case CC_JumpTable: {
   8220         // FIXME: Optimize away range check based on pivot comparisons.
   8221         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
   8222         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
   8223 
   8224         // The jump block hasn't been inserted yet; insert it here.
   8225         MachineBasicBlock *JumpMBB = JT->MBB;
   8226         CurMF->insert(BBI, JumpMBB);
   8227 
   8228         auto JumpProb = I->Prob;
   8229         auto FallthroughProb = UnhandledProbs;
   8230 
   8231         // If the default statement is a target of the jump table, we evenly
   8232         // distribute the default probability to successors of CurMBB. Also
   8233         // update the probability on the edge from JumpMBB to Fallthrough.
   8234         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
   8235                                               SE = JumpMBB->succ_end();
   8236              SI != SE; ++SI) {
   8237           if (*SI == DefaultMBB) {
   8238             JumpProb += DefaultProb / 2;
   8239             FallthroughProb -= DefaultProb / 2;
   8240             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
   8241             JumpMBB->normalizeSuccProbs();
   8242             break;
   8243           }
   8244         }
   8245 
   8246         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
   8247         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
   8248         CurMBB->normalizeSuccProbs();
   8249 
   8250         // The jump table header will be inserted in our current block, do the
   8251         // range check, and fall through to our fallthrough block.
   8252         JTH->HeaderBB = CurMBB;
   8253         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
   8254 
   8255         // If we're in the right place, emit the jump table header right now.
   8256         if (CurMBB == SwitchMBB) {
   8257           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
   8258           JTH->Emitted = true;
   8259         }
   8260         break;
   8261       }
   8262       case CC_BitTests: {
   8263         // FIXME: Optimize away range check based on pivot comparisons.
   8264         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
   8265 
   8266         // The bit test blocks haven't been inserted yet; insert them here.
   8267         for (BitTestCase &BTC : BTB->Cases)
   8268           CurMF->insert(BBI, BTC.ThisBB);
   8269 
   8270         // Fill in fields of the BitTestBlock.
   8271         BTB->Parent = CurMBB;
   8272         BTB->Default = Fallthrough;
   8273 
   8274         BTB->DefaultProb = UnhandledProbs;
   8275         // If the cases in bit test don't form a contiguous range, we evenly
   8276         // distribute the probability on the edge to Fallthrough to two
   8277         // successors of CurMBB.
   8278         if (!BTB->ContiguousRange) {
   8279           BTB->Prob += DefaultProb / 2;
   8280           BTB->DefaultProb -= DefaultProb / 2;
   8281         }
   8282 
   8283         // If we're in the right place, emit the bit test header right now.
   8284         if (CurMBB == SwitchMBB) {
   8285           visitBitTestHeader(*BTB, SwitchMBB);
   8286           BTB->Emitted = true;
   8287         }
   8288         break;
   8289       }
   8290       case CC_Range: {
   8291         const Value *RHS, *LHS, *MHS;
   8292         ISD::CondCode CC;
   8293         if (I->Low == I->High) {
   8294           // Check Cond == I->Low.
   8295           CC = ISD::SETEQ;
   8296           LHS = Cond;
   8297           RHS=I->Low;
   8298           MHS = nullptr;
   8299         } else {
   8300           // Check I->Low <= Cond <= I->High.
   8301           CC = ISD::SETLE;
   8302           LHS = I->Low;
   8303           MHS = Cond;
   8304           RHS = I->High;
   8305         }
   8306 
   8307         // The false probability is the sum of all unhandled cases.
   8308         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
   8309                      UnhandledProbs);
   8310 
   8311         if (CurMBB == SwitchMBB)
   8312           visitSwitchCase(CB, SwitchMBB);
   8313         else
   8314           SwitchCases.push_back(CB);
   8315 
   8316         break;
   8317       }
   8318     }
   8319     CurMBB = Fallthrough;
   8320   }
   8321 }
   8322 
   8323 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
   8324                                               CaseClusterIt First,
   8325                                               CaseClusterIt Last) {
   8326   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
   8327     if (X.Prob != CC.Prob)
   8328       return X.Prob > CC.Prob;
   8329 
   8330     // Ties are broken by comparing the case value.
   8331     return X.Low->getValue().slt(CC.Low->getValue());
   8332   });
   8333 }
   8334 
   8335 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
   8336                                         const SwitchWorkListItem &W,
   8337                                         Value *Cond,
   8338                                         MachineBasicBlock *SwitchMBB) {
   8339   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
   8340          "Clusters not sorted?");
   8341 
   8342   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
   8343 
   8344   // Balance the tree based on branch probabilities to create a near-optimal (in
   8345   // terms of search time given key frequency) binary search tree. See e.g. Kurt
   8346   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
   8347   CaseClusterIt LastLeft = W.FirstCluster;
   8348   CaseClusterIt FirstRight = W.LastCluster;
   8349   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
   8350   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
   8351 
   8352   // Move LastLeft and FirstRight towards each other from opposite directions to
   8353   // find a partitioning of the clusters which balances the probability on both
   8354   // sides. If LeftProb and RightProb are equal, alternate which side is
   8355   // taken to ensure 0-probability nodes are distributed evenly.
   8356   unsigned I = 0;
   8357   while (LastLeft + 1 < FirstRight) {
   8358     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
   8359       LeftProb += (++LastLeft)->Prob;
   8360     else
   8361       RightProb += (--FirstRight)->Prob;
   8362     I++;
   8363   }
   8364 
   8365   for (;;) {
   8366     // Our binary search tree differs from a typical BST in that ours can have up
   8367     // to three values in each leaf. The pivot selection above doesn't take that
   8368     // into account, which means the tree might require more nodes and be less
   8369     // efficient. We compensate for this here.
   8370 
   8371     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
   8372     unsigned NumRight = W.LastCluster - FirstRight + 1;
   8373 
   8374     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
   8375       // If one side has less than 3 clusters, and the other has more than 3,
   8376       // consider taking a cluster from the other side.
   8377 
   8378       if (NumLeft < NumRight) {
   8379         // Consider moving the first cluster on the right to the left side.
   8380         CaseCluster &CC = *FirstRight;
   8381         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
   8382         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
   8383         if (LeftSideRank <= RightSideRank) {
   8384           // Moving the cluster to the left does not demote it.
   8385           ++LastLeft;
   8386           ++FirstRight;
   8387           continue;
   8388         }
   8389       } else {
   8390         assert(NumRight < NumLeft);
   8391         // Consider moving the last element on the left to the right side.
   8392         CaseCluster &CC = *LastLeft;
   8393         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
   8394         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
   8395         if (RightSideRank <= LeftSideRank) {
   8396           // Moving the cluster to the right does not demot it.
   8397           --LastLeft;
   8398           --FirstRight;
   8399           continue;
   8400         }
   8401       }
   8402     }
   8403     break;
   8404   }
   8405 
   8406   assert(LastLeft + 1 == FirstRight);
   8407   assert(LastLeft >= W.FirstCluster);
   8408   assert(FirstRight <= W.LastCluster);
   8409 
   8410   // Use the first element on the right as pivot since we will make less-than
   8411   // comparisons against it.
   8412   CaseClusterIt PivotCluster = FirstRight;
   8413   assert(PivotCluster > W.FirstCluster);
   8414   assert(PivotCluster <= W.LastCluster);
   8415 
   8416   CaseClusterIt FirstLeft = W.FirstCluster;
   8417   CaseClusterIt LastRight = W.LastCluster;
   8418 
   8419   const ConstantInt *Pivot = PivotCluster->Low;
   8420 
   8421   // New blocks will be inserted immediately after the current one.
   8422   MachineFunction::iterator BBI(W.MBB);
   8423   ++BBI;
   8424 
   8425   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
   8426   // we can branch to its destination directly if it's squeezed exactly in
   8427   // between the known lower bound and Pivot - 1.
   8428   MachineBasicBlock *LeftMBB;
   8429   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
   8430       FirstLeft->Low == W.GE &&
   8431       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
   8432     LeftMBB = FirstLeft->MBB;
   8433   } else {
   8434     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
   8435     FuncInfo.MF->insert(BBI, LeftMBB);
   8436     WorkList.push_back(
   8437         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
   8438     // Put Cond in a virtual register to make it available from the new blocks.
   8439     ExportFromCurrentBlock(Cond);
   8440   }
   8441 
   8442   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
   8443   // single cluster, RHS.Low == Pivot, and we can branch to its destination
   8444   // directly if RHS.High equals the current upper bound.
   8445   MachineBasicBlock *RightMBB;
   8446   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
   8447       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
   8448     RightMBB = FirstRight->MBB;
   8449   } else {
   8450     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
   8451     FuncInfo.MF->insert(BBI, RightMBB);
   8452     WorkList.push_back(
   8453         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
   8454     // Put Cond in a virtual register to make it available from the new blocks.
   8455     ExportFromCurrentBlock(Cond);
   8456   }
   8457 
   8458   // Create the CaseBlock record that will be used to lower the branch.
   8459   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
   8460                LeftProb, RightProb);
   8461 
   8462   if (W.MBB == SwitchMBB)
   8463     visitSwitchCase(CB, SwitchMBB);
   8464   else
   8465     SwitchCases.push_back(CB);
   8466 }
   8467 
   8468 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
   8469   // Extract cases from the switch.
   8470   BranchProbabilityInfo *BPI = FuncInfo.BPI;
   8471   CaseClusterVector Clusters;
   8472   Clusters.reserve(SI.getNumCases());
   8473   for (auto I : SI.cases()) {
   8474     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
   8475     const ConstantInt *CaseVal = I.getCaseValue();
   8476     BranchProbability Prob =
   8477         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
   8478             : BranchProbability(1, SI.getNumCases() + 1);
   8479     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
   8480   }
   8481 
   8482   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
   8483 
   8484   // Cluster adjacent cases with the same destination. We do this at all
   8485   // optimization levels because it's cheap to do and will make codegen faster
   8486   // if there are many clusters.
   8487   sortAndRangeify(Clusters);
   8488 
   8489   if (TM.getOptLevel() != CodeGenOpt::None) {
   8490     // Replace an unreachable default with the most popular destination.
   8491     // FIXME: Exploit unreachable default more aggressively.
   8492     bool UnreachableDefault =
   8493         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
   8494     if (UnreachableDefault && !Clusters.empty()) {
   8495       DenseMap<const BasicBlock *, unsigned> Popularity;
   8496       unsigned MaxPop = 0;
   8497       const BasicBlock *MaxBB = nullptr;
   8498       for (auto I : SI.cases()) {
   8499         const BasicBlock *BB = I.getCaseSuccessor();
   8500         if (++Popularity[BB] > MaxPop) {
   8501           MaxPop = Popularity[BB];
   8502           MaxBB = BB;
   8503         }
   8504       }
   8505       // Set new default.
   8506       assert(MaxPop > 0 && MaxBB);
   8507       DefaultMBB = FuncInfo.MBBMap[MaxBB];
   8508 
   8509       // Remove cases that were pointing to the destination that is now the
   8510       // default.
   8511       CaseClusterVector New;
   8512       New.reserve(Clusters.size());
   8513       for (CaseCluster &CC : Clusters) {
   8514         if (CC.MBB != DefaultMBB)
   8515           New.push_back(CC);
   8516       }
   8517       Clusters = std::move(New);
   8518     }
   8519   }
   8520 
   8521   // If there is only the default destination, jump there directly.
   8522   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
   8523   if (Clusters.empty()) {
   8524     SwitchMBB->addSuccessor(DefaultMBB);
   8525     if (DefaultMBB != NextBlock(SwitchMBB)) {
   8526       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
   8527                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
   8528     }
   8529     return;
   8530   }
   8531 
   8532   findJumpTables(Clusters, &SI, DefaultMBB);
   8533   findBitTestClusters(Clusters, &SI);
   8534 
   8535   DEBUG({
   8536     dbgs() << "Case clusters: ";
   8537     for (const CaseCluster &C : Clusters) {
   8538       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
   8539       if (C.Kind == CC_BitTests) dbgs() << "BT:";
   8540 
   8541       C.Low->getValue().print(dbgs(), true);
   8542       if (C.Low != C.High) {
   8543         dbgs() << '-';
   8544         C.High->getValue().print(dbgs(), true);
   8545       }
   8546       dbgs() << ' ';
   8547     }
   8548     dbgs() << '\n';
   8549   });
   8550 
   8551   assert(!Clusters.empty());
   8552   SwitchWorkList WorkList;
   8553   CaseClusterIt First = Clusters.begin();
   8554   CaseClusterIt Last = Clusters.end() - 1;
   8555   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
   8556   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
   8557 
   8558   while (!WorkList.empty()) {
   8559     SwitchWorkListItem W = WorkList.back();
   8560     WorkList.pop_back();
   8561     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
   8562 
   8563     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
   8564       // For optimized builds, lower large range as a balanced binary tree.
   8565       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
   8566       continue;
   8567     }
   8568 
   8569     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
   8570   }
   8571 }
   8572